JPS6253586B2 - - Google Patents

Info

Publication number
JPS6253586B2
JPS6253586B2 JP59213591A JP21359184A JPS6253586B2 JP S6253586 B2 JPS6253586 B2 JP S6253586B2 JP 59213591 A JP59213591 A JP 59213591A JP 21359184 A JP21359184 A JP 21359184A JP S6253586 B2 JPS6253586 B2 JP S6253586B2
Authority
JP
Japan
Prior art keywords
annealing
less
alloy
temperature
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59213591A
Other languages
Japanese (ja)
Other versions
JPS6191352A (en
Inventor
Hideyoshi Usui
Kozo Hoshino
Kazushi Tasaka
Terumi Kiryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21359184A priority Critical patent/JPS6191352A/en
Publication of JPS6191352A publication Critical patent/JPS6191352A/en
Publication of JPS6253586B2 publication Critical patent/JPS6253586B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は磁気デイスクの基板となるAl合金板
の軟質化焼鈍(以下単に焼鈍といことがある)方
法に関し、特に研磨後のAl合金板に発生する微
小うねりを可及的に少なくすることのできる焼鈍
方法に関するものである。 〔従来の技術〕 磁気デイスク基板の素材としては、従来Al−
Mg系合金、特に5086合金が知られている。しか
しながら電子計算機に組込まれる磁気デイスクシ
ステムの小型化・大容量化が指向されている現況
に鑑み、高記録密度磁気デイスクの開発が要望さ
れる様になつており、磁気デイスクとしての半径
方向及び円周方向に見た夫々の平坦度(ミクロ的
及びマクロ的の両面)の要求が極めて厳しいもの
になりつつある。その為磁気デイスクの素材であ
る磁気デイスク基板自体が平坦度の高い円板ない
しドーナツ板として供給されなくてはならず、磁
気デイスク基板の表面に対する精密切削技術及び
精密研磨技術が著しく進歩してきている。 〔発明が解決しようとする問題点〕 切削や研磨を高精度に行なうことができるに至
つても、素材そのものが包含する表面欠陥や歪等
は精密切削や精密研磨によつて除去乃至解消し得
るものではない。そこで素材面についての検討も
色々展開されており、原料となる地金純度の向上
によつて金属間化合物の晶出を抑制したり、或は
凝固速度を早めて金属間化合物の固溶・分散を高
める等の対策がとられつつある。この様な改善に
よつて精密切削や精密研磨後の微小ピツトについ
ては大幅な改良を見るに至つているが、微小うね
りの欠陥が未解決課題として残されている。この
微小うねりの発生原因については未解明の部分が
残されており、本発明者等が研究したところによ
ると、金属間化合物とは無縁であり素材の再結晶
粒径が影響していることが明らかになつた。そこ
で本発明者等は熱処理条件を工夫すること、又そ
の工夫によつて平均結晶粒径をどの程度まで小さ
くできるかという課題を設定し、種々研究の結果
本発明を完成するに至つた。 〔問題点を解決する為の技術的手段〕 即ち本発明は、Mg:3〜6重量%(以下単に
%と表示する)を含む磁気デイスク基板用Al合
金板の軟質化焼鈍において、10℃/分以上の昇温
速度で280〜550℃に至らしめ、同温度範囲内で1
〜60分間保持した後冷却し、平均結晶粒径(以下
単に結晶粒径ということがある)を25μm以下に
抑制することによつて微小うねりの少ない磁気デ
イスク基板用Al合金板を得る点に要旨を有する
ものである。 〔作 用〕 まず素材であるAl合金について説明する。こ
のAl合金は、実質的にMgのみを合金成分として
配合したものであれば良い。 Mgは、基板作製時の機械加工や研磨等に十分
耐え得る機械的強度を付与するのに不可欠の元素
であり、3%以上含有させなければならない。し
かし多すぎると焼鈍時Al−Mg析出物が結晶粒界
に生成し易くなると共に、溶解・鋳造時の高温酸
化によつてMgOの非金属介在物が生成し表面精
度が低下するので、6%以下に抑えるべきであ
る。即ち、Al−Mg析出物やMgOはAlマトリツク
スとは不連続であり且つMgOはAlマトリツクス
よりも硬質であるから、基板を機械加工や研磨加
工したときに表面が突起部として残るか或は脱落
してその後に穴ができる。その結果研磨を十分に
行なつても良好な表面精度が得られなくなる。 Mg以外の合金成分については本発明の作用効
果に対して直接の関係をもたず、一般的性状に対
して悪影響を与えるものでない限り任意の合金成
分を含むことができる。しかしもつとも普遍的な
ものは前述の5086合金であり、Mg以外の合金成
分は可及的に少ない方が望ましい。但し製造面で
の実状もあり、許容元素及び許容含有量について
補足的に述べると次の通りである。即ち既に特開
昭57−47853号にも記されている様に、金属間化
合物の粗大化を抑えて高記録密度に適した素材と
する上では、Mn≦0.4%、Cr≦0.1%、Ti≦0.01
%、Si≦0.1%、Fe≦0.2%の条件を満足すること
が望まれており、合金組成に関する限りこの思想
が本発明にも適用される。更に加えるならば、
Cu≦1.0%、Zn≦1.0%に規制することが望まし
い。 即ちMnは合金板の耐食性を高め、Feは合金板
の強度及び切削・研磨性を高める作用があるが、
共に多すぎると粗大なAl−Fe−Mn系晶出物が生
成し易くなるので、それぞれ、Mnは0.4%以下、
Feは0.2%以下にすることが望ましい。 CrはMnと同様に合金板の耐食性を高める作用
があるが、0.1%を越えると前記Al−Fe−Mn系
晶出物を粗大化し表面精度を低下させるので好ま
しくない。 Siは0.1%を超えて存在するとMg−Si系の粗大
化合物が生じ易く、0.1%以下が望ましい。 Ti及びBは鋳塊組織を微細化しミクロ偏析を
防止する為に有効な元素で、これらの効果を有意
に発揮させる為にはTi:0.001%以上及びB:
0.0005%以上を単独で添加し或は併用することが
望まれる。 Cu,Znは本系合金の強度向上には有効である
が多量に添加されると焼鈍後の冷却時に結晶粒界
にAl−Mg−Cu、Mg−Zn等が析出し、精密研磨
等の際に問題が発生し易かつた。しかしながら、
冷却速度を本発明で推奨する範囲とすればCu≦
1.0%、Zn≦1.0%までは粒界析出が少なく、多少
の添加が許容される。 次にAl合金板(以下単に円板ということもあ
る)の軟質化焼鈍条件について説明する。 円板の焼鈍に当たつては、従来から行なわれて
いる積層焼鈍が効率面においてもつと有利であり
本発明においてもこの面では従来技術を踏襲する
ことができる。尚積層数は炉容に応じて定めるべ
きである。又焼鈍に先立つて行なわれる圧延加
工、打抜加工や切削加工に起因する板歪の除去を
考えれば、積層円板の板面に対して荷重を負荷し
ながら焼鈍を行なうことも望まれ、この場合の初
期負荷としては面当り1〜20トン程度が良い。 焼鈍の為の加熱手段としては、後述する昇温速
度及び保持温度の管理という観点から、制御性能
の良い電磁誘導加熱が推奨されるが、もとより本
発明は加熱手段そのものを特定すものではないか
ら、昇温速度の制御や所定温度での保持といつた
温度管理面上の不都合がない限り任意の加熱手段
を採用することができる。 まず昇温速度の及ぼす影響を知る目的で、焼鈍
処理済み円板の結晶粒径と表面切削済み円板の表
面精度について両者の関係を求めてみたところ、
第1図に示す様な結果が得られた。第1図に示し
た関係は同一積層状態の円板を同一条件で焼鈍
(厳密には昇温速度については条件を変更し、焼
鈍保持温度・時間・冷却速度及び円板加圧力等を
同一)し、更に同一条件で切削したときに結果を
示すものである。縦軸に示した表面粗度(μ
mRa)は磁気デイスクの微小うねりを数値化し
て表現する概念であり、同図によると横軸に示し
た結晶粒径との間には極めて良好な相関性が認め
られる。そして微小うねりの抑制目標を厳しくす
ればする程結晶粒径についてもこれを小さくして
いかなければならないことが分かる。そこで本発
明者等は、微小うねりの当面の抑制目標を、表面
粗度にして0.015μmRaと定め、これを達成する
為には安全を見越して25μm以下の結晶粒径を確
保することが必要であるとの結論を得るに至つ
た。次に結晶粒径を25μm以下とする条件につい
て検討したところ、円板の成分組成や加工度によ
つて再結晶温度や再結晶粒径が変化し、結晶粒径
を25μm以下とする為の昇温速度の下限も変化し
てくるが、10℃/分以上の昇温速度を確保してお
けば一般的な条件では結晶粒径を25μm以下に抑
えることが可能であることを知つた。即ち昇温速
度が遅いものほど結晶粒の粗大化が進行し、そろ
に伴なつて表面粗度も大きくなる傾向を示すの
で、これらを回避する条件として、10℃/分以上
の昇温を設定した訳である。一方昇温速度の上限
については再結晶粒の微細化という観点に立つ限
り存在しないが、昇温が速すぎると積層円板に温
度の不均一が生じて製品の均一性を損なうので
500℃/分以下に抑えておくことが望まれる。 到達焼鈍温度は、目的とする軟化程度に応じて
決定すべきであるが、微細再結晶粒の確保という
基本的主旨からすれば、280〜550℃とする必要が
あり、又焼鈍時間は1〜60分とすべきである。
280℃未満であると再結晶の進行が不十分とな
り、又550℃超では前記の様なMgを含むAl合金に
特有なバーニング現象を生じるからである。又1
分未満では積層円板の昇温時に発生する温度勾配
が解消しきらないうちに加熱が完了して再結晶の
不十分な部分が生じ易く、他方60分超では結晶粒
が粗大化し易いからである。尚焼鈍期間中(1〜
60分)は、280〜550℃の範囲内である限り温度変
化の発生は許容できるが、このときの温度差が大
き過ぎると焼鈍効果に不均一を生じすることもあ
るので、できる限り一定の温度で保持することが
望ましい。 次に、冷却の好適条件について述べる。 冷却は炉中にガスを吹き込んで冷却するか、あ
るいは積層円板を別の所定の冷却炉もしくは装置
に移動し、冷却しても良い。本質的には円板の冷
却速度を0.5〜10℃/分として150℃まで冷却する
ことである。冷却速度が0.5℃/分未満では、
軟質焼鈍の場合再結晶粒が粗大化し易く、また
何れの目的の焼鈍においても溶質元素が粒界析出
し易い。また10℃/分超では冷却速度が速すぎ、
熱応力に起因して板の平坦度が十分なものにはな
り難い。尚最も望ましい冷却速度範囲は、円板の
積層枚数、板厚、外径、内径、負荷荷重、焼鈍温
度等によつて若干異なるが、概むね1〜5℃/分
である。また冷却速度の歪への影響や析出への影
響は、150℃未満の領域では殆んどないので、150
℃までは上記冷却速度の範囲で冷却し、それ以降
は急冷しても徐冷しても良い。 尚、デイスクの製造工程では実用上前記先願発
明(特開昭57−47853号)にも示される様に軟質
化焼鈍に先立つて半硬質焼鈍を行なうことが多
い。しかして半硬質焼鈍の有無は本発明の実施に
何ら関係がなく、下記実施例では半硬質焼鈍の有
無にかかわらず満足し得る結果を得ることができ
る。 〔実施例〕 実施例 1 第1表の示す組成の鋳塊を得、均熱処理、熱延
及び冷延を行なつて2mmtの板を得た。
[Industrial Application Field] The present invention relates to a method of softening annealing (hereinafter simply referred to as annealing) an Al alloy plate that serves as a substrate for a magnetic disk, and in particular, a method for softening and annealing Al alloy plates that are used as substrates for magnetic disks. The present invention relates to an annealing method that can reduce the amount of damage. [Conventional technology] Conventionally, Al-
Mg-based alloys, especially 5086 alloy, are known. However, in view of the current trend towards miniaturization and larger capacity of magnetic disk systems incorporated in electronic computers, there is a growing demand for the development of high-density magnetic disks, and magnetic disks with radial and circular Requirements for flatness (both microscopic and macroscopic) in the circumferential direction are becoming extremely strict. Therefore, the magnetic disk substrate itself, which is the material of the magnetic disk, must be supplied as a highly flat disk or donut plate, and precision cutting and polishing techniques for the surface of the magnetic disk substrate have made significant progress. . [Problems to be solved by the invention] Even if cutting and polishing can be performed with high precision, surface defects and distortions contained in the material itself can be removed or eliminated by precision cutting and polishing. It's not a thing. Therefore, various studies are being conducted on the material side, such as suppressing the crystallization of intermetallic compounds by improving the purity of the raw metal, or increasing the solidification rate to dissolve and disperse intermetallic compounds. Measures are being taken to increase the Although such improvements have led to significant improvements in micro pits after precision cutting and precision polishing, defects in micro waviness remain as an unresolved issue. The cause of this microwaviness remains unclear, and according to research conducted by the present inventors, it has nothing to do with intermetallic compounds and is influenced by the recrystallized grain size of the material. It became clear. Therefore, the present inventors set the problem of devising heat treatment conditions and how much the average crystal grain size could be reduced by such devising, and as a result of various studies, they completed the present invention. [Technical means for solving the problem] That is, the present invention provides a method for softening an Al alloy plate for magnetic disk substrates containing Mg: 3 to 6% by weight (hereinafter simply expressed as %) at 10°C/ Raise the temperature to 280 to 550℃ at a heating rate of 1 minute or more, and 1 minute within the same temperature range.
The main point is that an Al alloy plate for magnetic disk substrates with less minute waviness can be obtained by cooling after holding for ~60 minutes and suppressing the average crystal grain size (hereinafter simply referred to as crystal grain size) to 25 μm or less. It has the following. [Function] First, the material Al alloy will be explained. This Al alloy may be one containing substantially only Mg as an alloy component. Mg is an essential element for imparting mechanical strength sufficient to withstand machining, polishing, etc. during substrate production, and must be contained in an amount of 3% or more. However, if it is too large, Al-Mg precipitates are likely to form at grain boundaries during annealing, and non-metallic inclusions of MgO are formed due to high-temperature oxidation during melting and casting, reducing surface precision. It should be kept below. That is, since Al-Mg precipitates and MgO are discontinuous with the Al matrix, and MgO is harder than the Al matrix, when the substrate is machined or polished, the surface remains as protrusions or falls off. Then a hole will appear. As a result, even if sufficient polishing is performed, good surface precision cannot be obtained. The alloy components other than Mg have no direct relation to the effects of the present invention, and any alloy components can be included as long as they do not have a negative effect on the general properties. However, the most common one is the aforementioned 5086 alloy, and it is desirable that the alloy components other than Mg be as small as possible. However, due to the actual situation in terms of manufacturing, the following is a supplementary description of the permissible elements and permissible content. That is, as already described in JP-A No. 57-47853, in order to suppress the coarsening of intermetallic compounds and make the material suitable for high recording density, Mn≦0.4%, Cr≦0.1%, Ti ≦0.01
%, Si≦0.1%, and Fe≦0.2%, and this idea is also applied to the present invention as far as the alloy composition is concerned. If you add more,
It is desirable to regulate Cu≦1.0% and Zn≦1.0%. In other words, Mn has the effect of increasing the corrosion resistance of the alloy plate, and Fe has the effect of increasing the strength and cutting/polishing properties of the alloy plate.
If the amount of both is too large, coarse Al-Fe-Mn crystallized substances are likely to be formed, so Mn should be 0.4% or less, respectively.
It is desirable that Fe content be 0.2% or less. Like Mn, Cr has the effect of increasing the corrosion resistance of the alloy plate, but if it exceeds 0.1%, it is not preferable because it coarsens the Al--Fe--Mn system crystallized substances and reduces surface precision. If Si is present in an amount exceeding 0.1%, Mg-Si type coarse compounds are likely to be formed, and it is desirable that Si be present in an amount of 0.1% or less. Ti and B are effective elements for refining the ingot structure and preventing micro-segregation, and in order to exhibit these effects significantly, Ti: 0.001% or more and B:
It is desirable to add 0.0005% or more alone or in combination. Cu and Zn are effective in improving the strength of this alloy, but if they are added in large quantities, Al-Mg-Cu, Mg-Zn, etc. will precipitate at the grain boundaries during cooling after annealing, which may cause problems such as precision polishing. It was easy for problems to occur. however,
If the cooling rate is within the range recommended by the present invention, Cu≦
1.0%, Zn≦1.0%, grain boundary precipitation is small, and some addition is allowed. Next, the softening annealing conditions for the Al alloy plate (hereinafter also simply referred to as a disk) will be explained. When annealing a disc, laminated annealing, which has been conventionally performed, is advantageous in terms of efficiency, and the present invention can also follow the conventional technology in this respect. The number of laminated layers should be determined according to the furnace capacity. In addition, considering the removal of plate distortion caused by rolling, punching, and cutting performed prior to annealing, it is desirable to perform annealing while applying a load to the plate surface of the laminated disk. In this case, the initial load should be about 1 to 20 tons per surface. As a heating means for annealing, electromagnetic induction heating with good control performance is recommended from the viewpoint of controlling the temperature increase rate and holding temperature, which will be described later.However, the present invention does not specify the heating means itself. Any heating means can be used as long as it does not cause any inconvenience in terms of temperature control such as controlling the heating rate or maintaining a predetermined temperature. First, in order to understand the influence of the temperature increase rate, we tried to find the relationship between the grain size of the annealed disk and the surface accuracy of the surface-cut disk.
The results shown in FIG. 1 were obtained. The relationship shown in Figure 1 is annealing disks with the same laminated state under the same conditions (strictly speaking, the conditions for the temperature increase rate are changed, but the annealing holding temperature, time, cooling rate, disk pressing force, etc. are the same) Furthermore, the results are shown when cutting under the same conditions. Surface roughness (μ
mRa) is a concept that numerically expresses minute waviness in a magnetic disk, and according to the figure, there is an extremely good correlation with the crystal grain size shown on the horizontal axis. It can be seen that the stricter the target for suppressing microwaviness, the smaller the crystal grain size must be. Therefore, the present inventors set the immediate target for suppressing microwaviness as a surface roughness of 0.015 μmRa, and in order to achieve this goal, it is necessary to ensure a crystal grain size of 25 μm or less for safety reasons. I came to the conclusion that there is. Next, we investigated the conditions for reducing the crystal grain size to 25 μm or less, and found that the recrystallization temperature and recrystallization grain size change depending on the component composition and degree of processing of the disk. Although the lower limit of the heating rate changes, we have learned that under general conditions it is possible to suppress the crystal grain size to 25 μm or less as long as the heating rate is maintained at 10°C/min or higher. In other words, the slower the heating rate, the coarser the crystal grains become, and the more surface roughness tends to increase, so to avoid this, a temperature increase of 10°C/min or more is set. That's why I did it. On the other hand, there is no upper limit to the temperature increase rate from the perspective of refining recrystallized grains, but if the temperature increase is too rapid, temperature non-uniformity will occur in the laminated disks, impairing the uniformity of the product.
It is desirable to keep the temperature below 500℃/min. The ultimate annealing temperature should be determined according to the desired degree of softening, but from the basic point of ensuring fine recrystallized grains, it needs to be 280 to 550 °C, and the annealing time should be 1 to 550 °C. It should be 60 minutes.
This is because if the temperature is less than 280°C, recrystallization will not progress sufficiently, and if it exceeds 550°C, the above-mentioned burning phenomenon peculiar to Mg-containing Al alloys will occur. Again 1
If the heating time is less than 60 minutes, the heating will be completed before the temperature gradient that occurs when the laminated disk is heated is completely resolved, resulting in insufficient recrystallization. On the other hand, if it exceeds 60 minutes, the crystal grains will tend to become coarse. be. During the annealing period (1~
60 minutes), as long as the temperature is within the range of 280 to 550℃, temperature changes can be tolerated, but if the temperature difference at this time is too large, the annealing effect may be uneven, so it should be kept as constant as possible. It is desirable to hold it at temperature. Next, preferred conditions for cooling will be described. Cooling may be performed by blowing gas into the furnace, or by moving the laminated disks to another predetermined cooling furnace or device for cooling. Essentially, the disc is cooled to 150°C at a cooling rate of 0.5 to 10°C/min. If the cooling rate is less than 0.5℃/min,
In the case of soft annealing, recrystallized grains tend to become coarse, and solute elements tend to precipitate at grain boundaries in any purpose of annealing. Also, if it exceeds 10℃/min, the cooling rate is too fast,
Due to thermal stress, it is difficult for the plate to have sufficient flatness. The most desirable cooling rate range varies slightly depending on the number of laminated disks, plate thickness, outer diameter, inner diameter, applied load, annealing temperature, etc., but is generally 1 to 5° C./min. In addition, the effect of cooling rate on strain and precipitation is almost non-existent in the region below 150°C.
℃, cooling may be performed within the above cooling rate range, and thereafter, rapid cooling or slow cooling may be performed. Incidentally, in the manufacturing process of the disk, in practice, semi-hard annealing is often performed prior to softening annealing, as shown in the aforementioned prior invention (Japanese Patent Laid-Open No. 57-47853). However, the presence or absence of semi-hard annealing has no bearing on the implementation of the present invention, and in the following examples, satisfactory results can be obtained regardless of the presence or absence of semi-hard annealing. [Examples] Example 1 An ingot having the composition shown in Table 1 was obtained, and subjected to soaking treatment, hot rolling, and cold rolling to obtain a 2 mm t plate.

【表】 材及び材の合金板を外径357mmφ、内径167
のドーナツ状に打抜き基板用素材(円板)とし
た。 圧延歪矯正の目的で上記材を87枚積層し、定
盤を用いて6トンの荷重で締つけた。これを誘導
加熱炉に装入し、約60KWの電力を投入し、11分
間を要して240℃に到達せしめ(昇温速度:19
℃/分)、同温度で20分間保持した後出炉放冷し
半硬質焼鈍した。又比較の為雰囲気焼鈍炉を用い
て半硬質焼鈍した(昇温速度:0.5℃/分、240℃
×2時間)。同じ材であつても焼鈍条件の違い
によつて第2表に示す様な相違が認められた。
[Table] Materials and alloy plates with an outer diameter of 357mmφ and an inner diameter of 167mm.
It was made into a donut-shaped punched material (disk) for a board. For the purpose of correcting rolling strain, 87 sheets of the above materials were laminated and tightened using a surface plate with a load of 6 tons. This was placed in an induction heating furnace, and about 60KW of power was applied, and it took 11 minutes to reach 240℃ (heating rate: 19
℃/min) and held at the same temperature for 20 minutes, then taken out of the furnace to cool and semi-hard annealed. For comparison, semi-hard annealing was performed using an atmospheric annealing furnace (heating rate: 0.5°C/min, 240°C
x 2 hours). Even though the materials were the same, differences as shown in Table 2 were observed due to differences in annealing conditions.

【表】 誘導加熱を使う実施例では在炉時間を大幅に減
少させても焼鈍後の性状は全く遜色が見られず、
焼鈍時間の短縮化という効果の得られていること
が明らかである。 次に上記実施例の様に材及び材を半硬質焼
鈍した後、片面0.1mmずつの両面切削を施し、ス
ペーサを介して64枚を積層した後、定盤を用いて
6トンの荷重で締付けた。これを誘導加熱炉に装
入し、18℃/分の速度で昇温させて360℃に至ら
しめ、10分間保持して軟質化焼鈍した。尚投入電
力は約60KWであつた。 また比較の為材及び材とも同様の荷重をか
けつつ0.67℃/分(40℃/時間)の速度で昇温
し、360℃×2時間の軟質化焼鈍を行つた。焼鈍
後の諸特性は第3表に示す通りであつた。
[Table] In the examples using induction heating, the properties after annealing were not inferior at all even if the furnace time was significantly reduced.
It is clear that the effect of shortening the annealing time is achieved. Next, after semi-hard annealing the material and material as in the above example, both sides were cut by 0.1 mm on each side, 64 sheets were stacked with spacers, and then tightened with a load of 6 tons using a surface plate. Ta. This was placed in an induction heating furnace, heated at a rate of 18°C/min to 360°C, and held for 10 minutes for softening annealing. The input power was approximately 60KW. For comparison, both materials were subjected to softening annealing at 360°C for 2 hours while applying the same load and increasing the temperature at a rate of 0.67°C/min (40°C/hour). The properties after annealing were as shown in Table 3.

【表】 第3表に見られる如く、軟質化焼鈍に本発明に
係る技術を適用した実施例のものは何れも焼鈍後
の結晶粒径が小さく、それに伴なつて微小うねり
も顕著に小さくなつている。即ち本発明において
半硬質焼鈍の如何にかかわらず優れた微小うねり
が得られることが明らかである。 実施例 2
[Table] As shown in Table 3, all of the examples in which the technology of the present invention was applied to softening annealing had small grain sizes after annealing, and the micro waviness was also significantly smaller. ing. That is, it is clear that excellent microwaviness can be obtained in the present invention regardless of semi-hard annealing. Example 2

【表】 第4表に示す組成のアルミニウム合金を、常法
に従つて鋳造、面削、均熱、冷延し、2mm厚に仕
上げた。この2mm厚板を外径約357mmφ内径約167
mmφに打抜き円板とした。この円板の圧延矯正の
ため、上記円板を87枚積層し、定盤にて8トンの
荷重で締めつけ、誘導加熱炉に装入し、約60KW
の電力を投入し、19℃/分の昇温速度で255℃の
温度に到達させ、255℃で10分間保持後、A合金
円板については150℃まで1℃/分で、B合金円
板については150℃まで3℃/分で、C合金につ
いては4℃/分で夫々150℃まで冷却し半硬質焼
鈍した。尚何れも100℃以下で自然冷却とした。
また比較のためA合金につき上記と同様な積層加
圧で約40℃/時間の昇温速度にて240℃×2時間
の雰囲気焼鈍を行ない、150℃まで0.2℃/分の冷
却速度で炉冷し半硬質焼鈍した。これらの処理材
につき平坦度を測定した結果を第5表に示す。
[Table] Aluminum alloys having the compositions shown in Table 4 were cast, faced, soaked, and cold-rolled to a thickness of 2 mm according to conventional methods. This 2mm thick plate has an outer diameter of about 357mmφ and an inner diameter of about 167mm.
It was made into a punched disk with a diameter of mmφ. In order to roll and straighten the discs, 87 of the discs were stacked, clamped on a surface plate with a load of 8 tons, and charged into an induction heating furnace with a power of approximately 60KW.
power was applied to reach the temperature of 255°C at a heating rate of 19°C/min, and after holding at 255°C for 10 minutes, the A alloy disc was heated to 150°C at a rate of 1°C/min, and the B alloy disc The C alloy was cooled to 150°C at a rate of 3°C/min, and the C alloy was cooled to 150°C at a rate of 4°C/min. In both cases, natural cooling was performed at 100°C or less.
For comparison, Alloy A was annealed at 240°C for 2 hours at a heating rate of approximately 40°C/hour under the same lamination pressure as above, and then was furnace cooled to 150°C at a cooling rate of 0.2°C/minute. and semi-hard annealed. Table 5 shows the results of measuring the flatness of these treated materials.

【表】 第5表から、実施例に係る方式の焼鈍方法を採
用すると同じAl合金円板でも円周うねりが改善
されていることが明らかである。 実施例 3 次に上記実施例と同じ円板を半硬質焼鈍後、片
面を各々約0.1mmずつ粗切削した円板につき70枚
積層し昇温速度18℃/分で360℃まで加熱し、360
℃×10分保持して軟質化焼鈍後、A合金は2℃/
分、B合金は3℃/分、C合金は5℃/分で150
℃まで冷却し軟質化焼鈍した。初期負荷荷重は6
トン/面とした。また比較のためAとC合金につ
き上記と同様な積層加圧にて約40℃/時間で360
℃とし、360℃×2時間の焼鈍を行ない、150℃ま
で0.2℃/分の冷却速度で冷却し軟質化焼鈍し
た。上記焼鈍後の各円板の平坦度を第6表に示
す。さらに各円板を精密研磨仕上げ時の特性を第
7表に示す。
[Table] From Table 5, it is clear that when the annealing method according to the example is adopted, the circumferential waviness of the same Al alloy disc is improved. Example 3 Next, after semi-hard annealing, the same disks as in the above example were laminated with 70 disks with rough cutting of approximately 0.1 mm on each side and heated to 360℃ at a heating rate of 18℃/min.
After softening annealing by holding for 10 minutes at ℃, alloy A was heated to 2℃/
150 min, B alloy at 3°C/min, C alloy at 5°C/min.
It was cooled to ℃ and softened and annealed. The initial load is 6
tons/surface. For comparison, the A and C alloys were laminated and pressed at approximately 40°C/hour at 360°C.
℃, and annealed at 360℃ for 2 hours, and then cooled to 150℃ at a cooling rate of 0.2℃/min for softening annealing. Table 6 shows the flatness of each disk after the above annealing. Furthermore, Table 7 shows the characteristics of each disc when precision polished and finished.

【表】【table】

【表】 第7表に見られる如く軟質化焼鈍条件が本発明
を満足しない比較例A,Cでは主として粒界に不
具合があり、良好な平坦度を得ることができなか
つた。 実施例 4 常法に従い鋳造、面削、均熱、熱間圧延、冷間
圧延を行ない4mm厚のAl合金厚板を得た。この
厚板を外径約360mmφ、内径約167mmφに打抜き円
板とした。尚Al合金組成は不記第8表の通りで
ある。
[Table] As shown in Table 7, in Comparative Examples A and C in which the softening annealing conditions did not satisfy the present invention, there were defects mainly in the grain boundaries, and good flatness could not be obtained. Example 4 A 4 mm thick Al alloy thick plate was obtained by casting, facing, soaking, hot rolling, and cold rolling according to conventional methods. This thick plate was punched into a disk with an outer diameter of approximately 360 mmφ and an inner diameter of approximately 167 mmφ. The Al alloy composition is shown in Table 8 (not shown).

【表】 この円板について下記の如く軟質化焼鈍を行な
つた。 圧延歪矯正のため上記円板を46枚積層し、1ト
ンの荷重で締めつけ誘導加熱炉に装入した。18
℃/分で360℃まで加熱し、20分間保持した後3
℃/分で150℃まで冷却した。比較の為上記と同
じ積層した円板を誘導加熱炉で約40℃℃/Hrの
速度で369℃まで加熱し、同温度で2時間保持し
た後150℃まで0.2℃/分で冷却した。 得られた円板の結晶粒径及び平坦度は第9表の
通りであつた。
[Table] This disc was subjected to softening annealing as described below. In order to correct rolling strain, 46 of the above discs were stacked, clamped under a load of 1 ton, and charged into an induction heating furnace. 18
After heating to 360℃ at ℃/min and holding for 20 minutes,
Cooled to 150°C at a rate of °C/min. For comparison, the same laminated disks as above were heated to 369°C at a rate of approximately 40°C/Hr in an induction heating furnace, held at the same temperature for 2 hours, and then cooled to 150°C at a rate of 0.2°C/min. The crystal grain size and flatness of the obtained disks were as shown in Table 9.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の様に構成されているので、精密
切削性が優れると共に、Al合金板としての微小
うねりも減少し、磁気デイスクの高記録密度化に
も十分対応することが可能となつた。
Since the present invention is constructed as described above, it has excellent precision machinability, reduces minute waviness in the Al alloy plate, and is able to sufficiently respond to higher recording densities of magnetic disks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面粗度と平均結晶粒径の関係を示す
グラフ、第2,3図はうねり評価試験方法を示す
説明図である。
FIG. 1 is a graph showing the relationship between surface roughness and average grain size, and FIGS. 2 and 3 are explanatory diagrams showing the waviness evaluation test method.

Claims (1)

【特許請求の範囲】 1 Mg:3〜6重量%を含む磁気デイスク基板
用Al合金板を軟質化焼鈍するに当たり、10℃/
分以上の昇温速度で280〜550℃に至らしめ、同温
度範囲内で1〜60分間保持した後冷却し、平均結
晶粒径を25μm以下に抑制することを特徴とする
微小うねりの発生が少ない磁気デイスク基板用
Al合金板の軟質化焼鈍方法。 2 温度150℃までの冷却を0.5〜10℃/分の冷却
速度で行なう特許請求の範囲第1項記載の軟質化
焼鈍方法。 3 Al合金中の不純物を各々 Si:0.1%以下(重量%、以下同じ) Fe:0.2%以下 Cu:1.0%以下 Mn:0.4%以下 Cr:0.1%以下 Zn:1.0%以下 Ti:0.01%以下 に規制する特許請求の範囲第1または2項記載の
軟質化焼鈍方法。
[Claims] 1. When softening and annealing an Al alloy plate for a magnetic disk substrate containing 3 to 6% by weight of Mg,
The generation of micro-waviness is characterized by raising the temperature to 280-550℃ at a heating rate of 1 minute or more, holding it within the same temperature range for 1-60 minutes, and then cooling it to suppress the average grain size to 25 μm or less. For small magnetic disk substrates
Softening annealing method for Al alloy plate. 2. The softening annealing method according to claim 1, wherein cooling to a temperature of 150°C is performed at a cooling rate of 0.5 to 10°C/min. 3 Impurities in the Al alloy: Si: 0.1% or less (weight%, same below) Fe: 0.2% or less Cu: 1.0% or less Mn: 0.4% or less Cr: 0.1% or less Zn: 1.0% or less Ti: 0.01% or less A softening annealing method according to claim 1 or 2, which is regulated by:
JP21359184A 1984-10-11 1984-10-11 Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving Granted JPS6191352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21359184A JPS6191352A (en) 1984-10-11 1984-10-11 Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359184A JPS6191352A (en) 1984-10-11 1984-10-11 Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Publications (2)

Publication Number Publication Date
JPS6191352A JPS6191352A (en) 1986-05-09
JPS6253586B2 true JPS6253586B2 (en) 1987-11-11

Family

ID=16641731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359184A Granted JPS6191352A (en) 1984-10-11 1984-10-11 Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Country Status (1)

Country Link
JP (1) JPS6191352A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159544A (en) * 1984-12-29 1986-07-19 Canon Inc Aluminum alloy for precision working, and tubing and photo-conductive members by use of it
JPS61179842A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS637355A (en) * 1986-06-25 1988-01-13 Kobe Steel Ltd Annealing method for al-mg alloy
JPH01188654A (en) * 1988-01-21 1989-07-27 Kobe Steel Ltd Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain
JPH081699B2 (en) * 1988-10-28 1996-01-10 株式会社神戸製鋼所 Method for manufacturing an alloy mirror-finished substrate for magnetic disk
JP5199714B2 (en) * 2008-03-31 2013-05-15 株式会社神戸製鋼所 Method for manufacturing aluminum alloy substrate for magnetic disk
JP5325869B2 (en) * 2010-11-02 2013-10-23 株式会社神戸製鋼所 Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP5903031B2 (en) * 2011-12-26 2016-04-13 株式会社神戸製鋼所 Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP5815153B1 (en) * 2015-07-02 2015-11-17 株式会社神戸製鋼所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639699A (en) * 1979-09-10 1981-04-15 Toshiba Corp Acoustic transducer
JPS6099431A (en) * 1983-11-04 1985-06-03 Sumitomo Light Metal Ind Ltd Method and apparatus for correcting strain of metallic disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639699A (en) * 1979-09-10 1981-04-15 Toshiba Corp Acoustic transducer
JPS6099431A (en) * 1983-11-04 1985-06-03 Sumitomo Light Metal Ind Ltd Method and apparatus for correcting strain of metallic disk

Also Published As

Publication number Publication date
JPS6191352A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
JPS60140B2 (en) Manufacturing method of Al-based alloy plate for magnetic disks
JPS6253586B2 (en)
JP6908741B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JP2005344173A (en) Aluminum-alloy substrate for magnetic disk, and its manufacturing method
JPH0261538B2 (en)
JP4751246B2 (en) Manufacturing method of aluminum alloy substrate for magnetic disk and aluminum alloy substrate for magnetic disk manufactured by this manufacturing method
JPS6152228B2 (en)
JP2005194590A (en) Aluminum alloy substrate for magnetic disk, and its production method
JP4477999B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
JPH02205651A (en) Aluminum alloy for magnetic disk base
JP6826679B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JPS6154105B2 (en)
JP3794930B2 (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JPH0310168B2 (en)
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JPS6056415B2 (en) Manufacturing method of Al alloy plate for magnetic disk
JP2018059138A (en) Al-Mg-BASED ALLOY SHEET FOR MAGNETIC DISK, Al-Mg-BASED ALLOY BLANK FOR MAGNETIC DISK, AND Al-Mg-BASED ALLOY SUBSTRATE FOR MAGNETIC DISK
JP4477998B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
WO2020184038A1 (en) Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JPS6151018B2 (en)
WO2023167219A1 (en) Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk
JPS63257917A (en) Production of al substrate for magnetic disk
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH0364596B2 (en)