JPH01188654A - Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain - Google Patents

Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain

Info

Publication number
JPH01188654A
JPH01188654A JP1107788A JP1107788A JPH01188654A JP H01188654 A JPH01188654 A JP H01188654A JP 1107788 A JP1107788 A JP 1107788A JP 1107788 A JP1107788 A JP 1107788A JP H01188654 A JPH01188654 A JP H01188654A
Authority
JP
Japan
Prior art keywords
disk
plating
aluminum alloy
strain
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107788A
Other languages
Japanese (ja)
Inventor
Toshikazu Sato
佐藤 敏和
Masahiro Kawaguchi
雅弘 川口
Hideo Fujimoto
日出男 藤本
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1107788A priority Critical patent/JPH01188654A/en
Publication of JPH01188654A publication Critical patent/JPH01188654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain an Al alloy sheet for magnetic disk excellent in plating suitability and reduced in strain by applying hot and cold rollings to an Al alloy containing respectively prescribed amounts of Cu and/or Zn together with Mg, blanking the resulting sheet into a disk blank, and subjecting the disk- shaped sheet to holding at a temp. in the prescribed temp. range and then to cooling at a specific cooling velocity. CONSTITUTION:An Al alloy which has a composition containing, by weight, 2-6% Mg and either or both of 0.03-1% Cu and 0.1-2% Zn and further containing, if necessary, 0.05-1.0% Mn and/or 0.03-0.3% Cr is hot-rolled and cold-rolled, and the resulting rolled sheet is formed into disk shape by means of blanking, cutting, etc., and then subjected to stress relief annealing. Subsequently, the disk-shaped Al-alloy sheet after annealing is held at >=280 deg.C, desirably 340-360 deg.C, for 1-10hr, particularly about 2hr, and then cooled down to 120 deg.C at 20-300 deg.C/hr cooling rate. By this method, the Al alloy sheet excellent in surface preparation characteristic and the adhesive strength of a plating film, reduced in strain, and suitable for magnetic disk, optical disk, etc., can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はメッキ性に優れ且つ歪の少ないディスク用アル
ミニウム合金板の製造に関するものである。 (従来の技術) 一般に、磁気ディスク、光ディスク或いは光磁気ディス
ク等のディスク用基盤には種々の特性が要求されるが、
例えば、磁気ディスク用基盤としては以下の(1)〜(
8)のような特性が要求される。 (1)磁性媒体を表面に被覆し、情報の記録再生を行う
ため、基盤は非磁性であること。 (2)高速回転に耐え得る機械的強度及び剛性゛を有す
ること。 (3)基盤表面に被覆される磁性媒体の欠陥の原因とな
る突起や穴状くぼみが小さく且つ少ないこと。 (4)記録再生用磁気ヘッドのディスク表面からの浮上
高さは1μm以下となっているので、安定に浮上するた
めの表面精度及び平坦度を有すること。 (5)磁性媒体被覆時及び保護膜形成時等の高温環境に
耐え得る成る程度の耐熱性を有するこ(6)磁性媒体被
覆に伴う表面処理性(メッキ、アルマイト等)が良好な
こと。 (7)成る程度の耐食性を有し、形状精度、寸法精度が
長期的に安定なこと。 (8)  ドライブモーターの小型化の傾向から軽量で
あること。 (発明が解決しようとする課題) 従来より、このような要求を満たすための磁気ディスク
用基盤としては、AA5086やJIS7075等のア
ルミニウム合金にメッキを施したものが使用されている
。 しかし乍ら、これらの従来の材料は、アルミニウム合金
板表面における品出用(AQ−Fe系、AQ−Mn−F
e系)及び析出相(特にJI87075合金におけるA
Q−Cu7Mg系)等が研磨時において脱落し或いはメ
ッキ前処理(アルカリエツチング、酸エツチング)に溶
解脱落する等により、表面が粗くなり易いという欠点が
あった。 また、JIS7075合金においては、熱処理系合金で
あることから、圧延板から打ち抜き或いは切削等により
作製したディスクの歪取り焼鈍において、冷却速度を適
切に調整しない場合に内部応力が発生したり、粗大析出
物が出現するという欠点があった。 このように、ディスク表面の粗さが大きくなり易く、或
いはそれに起因してメッキ皮膜にピット(小さな穴)が
発生し易いという理由から、従来の材料においてはメッ
キ皮膜として、例えば30〜50μm前後の比較的厚い
皮膜を形成し、次いで研磨して仕上げるという方法が採
用されていた。 しかして、生産性の向上及びコメ1〜低減のため、メッ
キ皮膜の厚さを薄くすることが重要な課題となっており
、また、メッキ皮膜の厚さとは別にピットを低減するこ
と並びに前処理における粗さを低減して処理効率を向」
ニさせることも重要な課題となっている。そのため、例
えば、99.9%或いは99.99%AQ地金を使用し
、晶出物・析出物を微細化することによる改善も試みら
れているが、唯単に使用地金の純度を上げただけでは、
却ってジンケート処理におけるZnの置換が均一に行わ
れず、メッキ面の粗さが増大するのみならず、メッキ層
の密着性も低下するという問題が発生する。 本発明は、上記問題点を解決するためになされたもので
あって、メッキ性、特にNj−Pメッキ膜の密着性に優
れ旧っ歪の少ない磁気ディスク、光ティスフ或いは光・
磁気ディスク等のディスク用アルミニウム合金板の製造
方法を提供することを目的とするものである。 (課題を解決するための手段) 本発明者等は、このような実情を鑑み、かねてよりアル
ミニウム合金のメッキ性の改善に関して鋭意研究を重ね
た結果、先に、CuとZnを少量同時添加することによ
りメッキ性の優れたアルミニウム合金板を提案(特公昭
62−201.8号)したが、その後頁に研究を重ねた
結果、Cu又はZnの単独添加において、メッキ膜の密
着性等のメッキ性を低下させることがなく、しかもZn
置換が更に薄く均一に行われるとの知見を得ると共に、
歪取り焼鈍後の冷却速度を適切に保つことによって析出
物の粗大化を防ぎ、歪の少ないディスク用基盤を製造し
得ることを見い出し、ここに本発明を完成するに至った
ものである。 (問題点を解決するための手段) すなわち、本発明に係るメッキ性に優れ歪の少ないディ
スク用アルミニウム合金板の製造方法は、Mg: 2−
6%を含むと共にCu:0,03−1%及びZn:0.
1〜2%のうちの少なくとも1種を含み、更に必要に応
じて、Mn:0.05〜1.0%及びCr:0.03〜
0.3%のうちの少なくとも1種を含み、残部がAQ及
び不純物よりなるアルミニウム合金につき、熱間圧延及
び冷間圧延を行い、ディスクブランクを打抜いた後、少
なくとも280′C以上の温度に1時間以上10時間以
内保持し、次いで20℃/hr以上300°C/hr以
下の速度で120℃まで冷却することを特徴とするもの
である。 以下に本発明を更に詳細に説明する。 まず、本発明における化学成分の限定理由を説明する。 Mg: Mgはディスク基盤として必要な機械的強度を付与する
のに必要な元素である。しかし、含有量が2%未満では
ディスク基盤としての必要な強度が得られず、また6%
を超えると圧延時に耳割れが生じ易くなり、生産性が低
下すると共にAQ−Mg系金属間化合物が生成したり、
溶解鋳造時の高温酸化によってMgO等の非金属介在物
が生成し易くなる。よって、Mg含有量は2〜6%の範
囲とする。 Cu、 Zn: Cu及びZnはそれぞれアルミニウム合金中に均一に固
溶し、ジンケート処理における亜鉛置換反応開始時の核
となることが期待され、Cu又はZnを均一に分布させ
ることにより、薄く且つ均一緻密な亜鉛置換被膜が得ら
れる。これによってN1−Pメッキ被膜の粗さを小さく
し且つ研磨後のピット発生が抑制される。しかし、Cu
含有量が0゜03%未満又はZn含有量が0.1%未満
では上記のような効果が得られない。またCu含有量が
1%を超えると過剰な亜鉛置換を生じ、薄く均一な亜鉛
置換被膜が得られないばかりか、素材の耐食性が低下す
る。またZn含有量が2%を超えると耐食性の低下や機
械的強度の低下、更に焼鈍時の粒界析出等が生じ、メッ
キ用ディスク素材として不適当となる。 よって、Cu含有量は0.03〜1%、Zn含有量は0
.1〜2%の範囲とし、添加量とその効果を考慮した場
合、Cu含有量は0.03〜0.4%、Zn含有量は0
.1〜1.5%の範囲が好ましい。 但し、Cu及びZnの少なくとも1種を含有せしめれば
足りる。なお、先の提案のようにCuとZnを同時に添
加する場合には、2元素の相乗効果が生じるため、上記
範囲内で更に少量添加すれば充分である。 以上の元素を必須成分とするが、更に必要に応じてMn
及びCrの少なくとも1種を添加することができる。 Mnニ ア− Mnは微細な金属間化合物を形成することによって機械
的強度を向上させる共に結晶粒の粗大化を抑制する効果
が期待されるため、Mg量を比較的低濃度に抑制し、し
かも機械的強度を適度に保つことが要求される場合や最
終製品(メディア)までの製造工程中で結晶粒粗大化の
恐れがある場合等に、必要によって添加される。しかし
、Mn含有量が0.05%未満では、前記のような効果
が得られず、また1、0%を越えるとAQ−Mn、AQ
−Mn−Fe等の巨大金属間化合物が晶出してメッキ性
を低下させ、るため、好ましくない。よって、Mn含有
量は0.05〜1.0%の範囲とする。 Cr: CrもMnと同様、結晶粒微細化の効果が期待されるが
、0,03%未満ではその効果が認められず、一方、0
.3%を越えると巨大な金属間化合物が晶出する。よっ
て、Cr含有量はO,,03〜0゜3%の範囲とする。 なお、上記組成のアルミニウム合金には不純物が随伴さ
れ得るが、これらは可能な限り少なく抑制することが望
ましい。 特に、Fe、Siは地金不純物として混入するものであ
るが、これらはへ〇−Fe系、Afl−Fe−8i系、
Mg−8i系等の金属間化合物を生成する。 これらはAQマトリックスよりも硬いために切削、研磨
時に突起や脱落くぼみの原因となったり、またMg−8
i系はメッキ前処理によって溶解脱落し、メッキ面のピ
ットの原因となる。したがって、これらの金属間化合物
は小さく、少ないことが望ましく、10μm以下の大き
さが望まれる。Fe含有量が0.4%、Si含有量が0
.25%を超えた場合、10μm以上の金属間化合物の
晶出が無視できなくなるため、Fe含有量は0.40%
以下に、またSi含有量は0.25%以下にそれぞれ抑
制することが望ましい。なお、これらの晶出物の大きさ
は、鋳造法(特に冷却速度)に大きく影響され、所謂、
半連続鋳造法を使用する場合には、Fe含有量は0.1
5%以下、Si含有量は0.1%以下がよく、より好ま
しくはFe含有量0.1%以下、Si含有量0.07%
以下である。 また下1、B等の不純物については、JIS5086合
金に含有されている範囲において含まれていても、本発
明による得られるディスク用アルミニウム合金板に対し
て何等の影響を与えるものではない。 次に、上記組成のディスク用アルミニウム合金板の製造
について説明する。 上記アルミニウム合金は、常法により、溶解鋳造し、鋳
塊(或いは薄板連続鋳造コイル)を均熱処理及び圧延を
施す。なお、この均熱処理は通常4oo’c以上の温度
に48時間以内の保持を行う。 圧延工程では大型鋳塊は生産性の点から熱間圧延及び冷
間圧延を行い、また、薄板連続鋳造コイルは冷間圧延の
みでもよく、また、板厚が比較的厚い場合は熱間圧延を
鋳造に引続いて行ってもよい。 この場合、冷間圧延工程においては、必要に応して焼鈍
を行うのがよく、薄板連続鋳造コイルの場合は圧延の前
、途中において焼鈍を行うことしこより、偏析の除去及
び圧延性向上の効果がある。 次いで、この圧延板を打ち抜き、切削等によりディスク
の形状となし、歪除去のために焼鈍を行う。 通常、ディスクブランクはコイルより打ち抜き加工によ
って製造されるが、打ち抜かれた円盤にはソリ等の歪が
100μm程度存在している。この歪は焼鈍によって除
去する。 本発明においては、以下の条件にて焼鈍を施すことが歪
の少ないディスク基盤を得るうえで重要である。特に、
この時、再結晶させ、O材とすることが好ましいことが
判明した。 ■ 焼鈍温度 数時間の保持時間で再結晶を完了させるためには300
℃前後の高温が必要であるが、上記アルミニウム合金に
おいては280℃で再結晶するため、280℃以上が必
要である。保持時間を考慮した場合、望ましくは340
℃以上である。 ■ 保持時間 280°Cでの焼鈍においては、1時間以内の保持時間
ではディスク全体が再結晶しない可能性があり、一方、
生産性を考慮するとあまり長時間の=11− 加熱保持は好ましくないので、1時間以上10時間以内
とする。 なお、焼鈍温度と保持時間は、望ましくは34o ’c
〜360°Cで2時間程度である。 ■ 冷却速度 冷却過程は最終的な歪量と析出物に影響する。 冷却時に150℃〜200℃の温度に長時間保持された
場合、A Q −Mg、 A Q−Cu、 A Q −
Mn等の化合物が析出し、メッキ前処理性を低下させる
ため、120℃まで20’C/hr以上の速度で冷却す
る必要がある。20℃/hrより遅い冷却速度では15
0℃〜200°Cの温度を通過する時間も長くなり、析
出物のメッキ性への悪影響が生じるので、好ましくない
。 一方、300″C/hr以上の冷却速度ではディスク及
び焼鈍治具内の温度分布や内部応力が最終的な歪を増加
させるので好ましくない。 以上の理由により、冷却過程では20’C/hr以上3
00℃/hr以下の速度で冷却することとする。 工業的レベルでの生産性を考慮した場合、望ましくは荷
重をかけて焼鈍し、冷却速度は40°C/hr以上10
0℃/hr以下が望ましい。 なお、通常の圧延板は粗度が、例えば、Ra=0.1〜
0.5μmとディスク基盤としては大きく、また、歪も
更に低下させる必要があるので、切削或いは研磨により
ディスク表面を削除する。この場合、10μm未満の表
面削除では歪除去が充分ではなく、また、500μmを
越える表面削除ではディスクの性能は満足するけれども
、生産性、コスト等の経済的な点から無駄であるので、
アルミニウム合金板のディスク基盤としては、表面を削
除する厚さは10〜500μmとするのがよい。 そして、この加工工程において、加工歪を除去するため
に必要により焼鈍を行う。この焼鈍においても上記冷却
条件にて冷却する。 次いで、常法により、脱脂、エツチング、 Zn置換或
いはSn置換等の前処理を繰り返し行い、その上に、例
えば、N1−P等の非磁性のメッキ皮膜を形成する。な
お、N1−P等の非磁性メッキ皮膜を形成する前にCu
等のストライクメッキを施してもよい。 このメッキ皮膜の厚さは、3μm未満では前処理の影響
でディスク表面の粗さが大きく、ピットも残存し易く、
更に、仕上研磨式も必然的に少ないことになり、粗さの
小さい均一なメッキ皮膜が得られないので、メッキ皮膜
形成厚さは3μm以上とするのがよく、また、メッキ皮
膜強度の点からは5μm以上とするのが好ましい。また
、メッキ皮膜の厚さは厚くなっても特に性能が低下する
ことはないが、あまり厚くするのも経済的にみて不利で
あるので、20μm以下とするのが好ましい。 このようにしてメッキを施し製造されたディスクを仕上
げ研磨した後、更にメッキ或いはスパッター処理により
磁性体皮膜を形成し、磁気ディスクとして供する。 (実施例) 次に本発明の詳細な説明する。 実施例1 第1表に示す化学成分を有するアルミニウム合金を溶解
し、フィルター処理後、造塊し、両面固剤後、400m
mX1000mmX3500mmの鋳塊とした。 次いで、530℃の温度で12時間の均質化処理を施し
た後、熱間圧延を行って板厚を5mmとし、更に板厚2
mmまで冷間圧延を行った。 次に、得られた板材を打ち抜き加工により外径130m
m、内径40mmの中空円盤とした。この円盤の表面を
切削加工してRmaxo、08μmとした後、350℃
、2時間保持で歪取り焼鈍を施し、120℃までを45
℃/hrの速度で冷却し、磁気ディスク用アルミニウム
合金基盤を得た。 このようにして得られた基盤を脱脂(トリクロルエタン
)→アルカリエツチング(5%NaOH125℃、30
秒、浸漬)→中和(30%HNO,,25℃、10秒、
浸漬)→酸洗(HNO3: HF :’H20=3 :
 1 : 2.25℃、30秒、浸漬)→亜鉛置換(1
回目)(120g/QNaOH120g/QZnO12
g/fl FeCR3・6H20、50g/flKNa
C4H40G・4H20、Ig/QNaNO,,25−
15= ℃、30秒、浸漬)→酸洗(20%HNO3,25℃、
10秒、浸漬)→亜鉛置換(2回目)(処理溶液及び条
件は1回目と同じ)→N1−Pメッキ(日本カニゼン製
ブルーシューマ、90℃、浸漬、メッキ厚5μm及び1
0μm)の条件で処理した。 下地処理性、メッキ付着性及びメッキ面の研磨後表面を
調査した結果を第3表に示す。 なお、下地処理性は、2回目の亜鉛置換後の表面を観察
し、析出物が均一でムラのないものをO印、析出物の粒
が粗くムラの多いものをx印、それらの中間のものをΔ
印を付して評価した。 メッキ付着性は、900曲げによりメッキの剥離が生じ
ないものをO印、一部でも剥離するものはX印を付して
評価した。 メッキ面の研磨後表面については、メッキ面を酸化アル
ミニウム粉を用いて鏡面研磨した後、表面を観察し調査
した。なお、研磨式は2μmとした。評価は、顕微鏡に
より400倍の倍率で50ケ所観察し、最大径2μm以
上のピットのないものをO印、1〜4個のピットがある
ものをΔ印、5個以上のものをX印を付した。 第2表から明らかなように、適切に組成調整された本発
明例■、■、■、■は、比較例■、■、■、■に比べ、
下地処理性、メッキ膜の密着性等において優れており、
特にメッキ厚を薄くしても良好な結果が得られているこ
とがわかる。なお、得られたディスクはすべて歪量が1
0μm以下であった。
(Industrial Application Field) The present invention relates to the production of an aluminum alloy plate for disks that has excellent plating properties and less distortion. (Prior Art) In general, disk substrates such as magnetic disks, optical disks, and magneto-optical disks are required to have various characteristics.
For example, the following (1) to (
8) are required. (1) The substrate must be non-magnetic since the surface is coated with a magnetic medium to record and reproduce information. (2) It must have mechanical strength and rigidity that can withstand high-speed rotation. (3) The number of protrusions and pits that cause defects in the magnetic medium coated on the surface of the substrate is small and few. (4) Since the flying height of the recording/reproducing magnetic head from the disk surface is 1 μm or less, the surface accuracy and flatness must be sufficient for stable flying. (5) It must have sufficient heat resistance to withstand high-temperature environments such as when coating magnetic media and forming a protective film. (6) It must have good surface treatment properties (plating, alumite, etc.) associated with coating magnetic media. (7) It has a certain degree of corrosion resistance, and its shape accuracy and dimensional accuracy are stable over a long period of time. (8) Light weight due to the trend toward smaller drive motors. (Problems to be Solved by the Invention) Conventionally, as a magnetic disk substrate to meet such requirements, a plated aluminum alloy such as AA5086 or JIS7075 has been used. However, these conventional materials are suitable for use on the surface of aluminum alloy plates (AQ-Fe series, AQ-Mn-F
e type) and precipitated phases (especially A in JI87075 alloy)
Q-Cu7Mg series) etc. fall off during polishing or dissolve and fall off during plating pretreatment (alkali etching, acid etching), resulting in a disadvantage that the surface tends to become rough. In addition, since JIS 7075 alloy is a heat-treated alloy, internal stress may occur or coarse precipitation may occur if the cooling rate is not appropriately adjusted during strain relief annealing of disks made by punching or cutting from rolled plates. There was a drawback that objects appeared. In this way, because the roughness of the disk surface tends to increase, or because of this, pits (small holes) tend to occur in the plating film, conventional materials have a plating film with a diameter of about 30 to 50 μm, for example. The method used was to form a relatively thick film and then finish it by polishing. Therefore, reducing the thickness of the plating film has become an important issue in order to improve productivity and reduce the number of pits. Improve processing efficiency by reducing roughness in
It is also an important issue to make the Therefore, for example, attempts have been made to improve the quality by using 99.9% or 99.99% AQ metal and making the crystallized substances and precipitates finer. alone,
On the contrary, the substitution of Zn during the zincate treatment is not performed uniformly, causing problems such as not only increasing the roughness of the plated surface but also reducing the adhesion of the plated layer. The present invention has been made to solve the above-mentioned problems, and provides a magnetic disk, an optical disk, or an optical disk with excellent plating properties, especially the adhesion of the Nj-P plating film, and less distortion.
The object of the present invention is to provide a method for manufacturing an aluminum alloy plate for disks such as magnetic disks. (Means for Solving the Problems) In view of the above circumstances, the present inventors have conducted extensive research on improving the plating properties of aluminum alloys, and as a result, they first added a small amount of Cu and Zn simultaneously. proposed an aluminum alloy plate with excellent plating properties (Special Publication No. 201.8/1982), but as a result of subsequent research, it was found that the adhesion of the plating film could be improved by adding Cu or Zn alone. Zn does not reduce the properties of the
In addition to gaining the knowledge that the substitution can be performed thinner and more uniformly,
We have discovered that by maintaining an appropriate cooling rate after strain relief annealing, it is possible to prevent coarsening of precipitates and to produce a disk base with little distortion, and have thus completed the present invention. (Means for Solving the Problems) That is, the method for manufacturing an aluminum alloy plate for disks with excellent plating properties and low distortion according to the present invention is as follows: Mg: 2-
6%, Cu:0.03-1% and Zn:0.
Mn: 0.05-1.0% and Cr: 0.03-0.03%.
An aluminum alloy containing at least one of 0.3% and the remainder consisting of AQ and impurities is heated to a temperature of at least 280'C or higher after hot rolling and cold rolling and punching a disk blank. It is characterized by being held for 1 hour or more and less than 10 hours, and then cooling to 120°C at a rate of 20°C/hr or more and 300°C/hr or less. The present invention will be explained in more detail below. First, the reason for limiting the chemical components in the present invention will be explained. Mg: Mg is an element necessary to provide mechanical strength necessary for a disk base. However, if the content is less than 2%, the necessary strength as a disk base cannot be obtained, and if the content is less than 2%,
If it exceeds the above range, edge cracking tends to occur during rolling, productivity decreases, and AQ-Mg intermetallic compounds are generated.
Non-metallic inclusions such as MgO are likely to be generated due to high temperature oxidation during melting and casting. Therefore, the Mg content is set in the range of 2 to 6%. Cu, Zn: Cu and Zn are each dissolved uniformly in an aluminum alloy, and are expected to form a nucleus at the start of the zinc substitution reaction in zincate treatment.By uniformly distributing Cu or Zn, a thin and uniform A dense zinc-substituted coating is obtained. This reduces the roughness of the N1-P plating film and suppresses the occurrence of pits after polishing. However, Cu
If the Zn content is less than 0.03% or the Zn content is less than 0.1%, the above effects cannot be obtained. Further, if the Cu content exceeds 1%, excessive zinc substitution occurs, and not only a thin and uniform zinc substitution film cannot be obtained, but also the corrosion resistance of the material decreases. Furthermore, if the Zn content exceeds 2%, corrosion resistance and mechanical strength will decrease, and grain boundary precipitation will occur during annealing, making it unsuitable as a plated disk material. Therefore, the Cu content is 0.03 to 1%, and the Zn content is 0.
.. If the range is 1 to 2%, and considering the amount added and its effect, the Cu content is 0.03 to 0.4%, and the Zn content is 0.
.. A range of 1 to 1.5% is preferred. However, it is sufficient to contain at least one of Cu and Zn. Note that when Cu and Zn are added at the same time as proposed above, a synergistic effect of the two elements occurs, so it is sufficient to add a smaller amount within the above range. The above elements are essential components, but if necessary, Mn
and Cr. Mn near - Mn is expected to improve mechanical strength by forming fine intermetallic compounds and suppress coarsening of crystal grains, so the amount of Mg can be suppressed to a relatively low concentration and mechanical It is added as necessary when it is required to maintain appropriate physical strength or when there is a risk of coarsening of crystal grains during the manufacturing process up to the final product (media). However, if the Mn content is less than 0.05%, the above effects cannot be obtained, and if it exceeds 1.0%, AQ-Mn, AQ
This is not preferable because giant intermetallic compounds such as -Mn-Fe crystallize and deteriorate plating properties. Therefore, the Mn content is in the range of 0.05 to 1.0%. Cr: Similar to Mn, Cr is expected to have the effect of grain refinement, but this effect is not observed at less than 0.03%;
.. If it exceeds 3%, huge intermetallic compounds will crystallize. Therefore, the Cr content is set in the range of 0.03% to 0.3%. Note that the aluminum alloy having the above composition may be accompanied by impurities, but it is desirable to suppress these to as low a level as possible. In particular, Fe and Si are mixed as base metal impurities, but these are He-Fe series, Afl-Fe-8i series,
Generates intermetallic compounds such as Mg-8i. Since these are harder than the AQ matrix, they may cause protrusions or fall-off dents during cutting or polishing, and Mg-8
The i-series dissolves and falls off during the plating pretreatment, causing pits on the plating surface. Therefore, it is desirable that these intermetallic compounds be small and few in number, and desirably have a size of 10 μm or less. Fe content is 0.4%, Si content is 0
.. If it exceeds 25%, the crystallization of intermetallic compounds of 10 μm or more cannot be ignored, so the Fe content is 0.40%.
It is desirable to suppress the Si content to 0.25% or less. The size of these crystallized substances is greatly influenced by the casting method (especially the cooling rate), and the so-called
When using semi-continuous casting method, the Fe content is 0.1
5% or less, Si content is preferably 0.1% or less, more preferably Fe content is 0.1% or less, Si content is 0.07%.
It is as follows. Furthermore, impurities such as No. 1 and B do not have any influence on the aluminum alloy plate for disks obtained according to the present invention even if they are contained within the range contained in the JIS5086 alloy. Next, manufacturing of the aluminum alloy plate for disks having the above composition will be explained. The above aluminum alloy is melted and cast using a conventional method, and the ingot (or thin continuous cast coil) is soaked and rolled. Note that this soaking treatment is usually performed by maintaining the temperature at 4 oo'c or higher for 48 hours or less. In the rolling process, large ingots are hot-rolled and cold-rolled from the viewpoint of productivity, and thin continuous cast coils may only be cold-rolled, and if the plate thickness is relatively thick, hot-rolling is performed. It may also be carried out subsequent to casting. In this case, it is best to perform annealing as necessary during the cold rolling process, and in the case of thin continuous cast coils, annealing is performed before and during rolling to remove segregation and improve rollability. effective. Next, this rolled plate is punched out, cut, etc. into a disk shape, and annealed to remove strain. Usually, a disk blank is manufactured by punching a coil, but the punched disk has distortions such as warping of about 100 μm. This strain is removed by annealing. In the present invention, it is important to perform annealing under the following conditions in order to obtain a disk substrate with little distortion. especially,
At this time, it was found that it is preferable to recrystallize the material to obtain an O material. ■ Annealing temperature: 300°C in order to complete recrystallization within several hours of holding time.
A high temperature of around 10°C is required, but since the above aluminum alloy recrystallizes at 280°C, a temperature of 280°C or higher is required. When considering retention time, desirably 340
℃ or higher. ■ When annealing at a holding time of 280°C, there is a possibility that the entire disk will not recrystallize if the holding time is less than 1 hour.
Considering productivity, it is not preferable to hold the heat for too long. Therefore, the heating time should be 1 hour or more and 10 hours or less. The annealing temperature and holding time are preferably 34o'c.
It takes about 2 hours at ~360°C. ■ Cooling rate The cooling process affects the final amount of strain and precipitates. When kept at a temperature of 150°C to 200°C for a long time during cooling, AQ-Mg, AQ-Cu, AQ-
Since compounds such as Mn precipitate and deteriorate plating pretreatment properties, it is necessary to cool to 120°C at a rate of 20'C/hr or more. 15 for cooling rates slower than 20°C/hr
The time required to pass through the temperature range of 0° C. to 200° C. is also increased, which is undesirable because the deposits have an adverse effect on the plating properties. On the other hand, a cooling rate of 300'C/hr or more is not preferable because the temperature distribution and internal stress within the disk and annealing jig will increase the final strain.For the above reasons, the cooling rate of 20'C/hr or more is undesirable. 3
Cooling is performed at a rate of 00°C/hr or less. When considering productivity at an industrial level, it is preferable to perform annealing under load, and the cooling rate is 40°C/hr or more.
Desirably 0°C/hr or less. Note that the roughness of a normal rolled plate is, for example, Ra=0.1~
Since it is 0.5 μm, which is large for a disk substrate, and it is necessary to further reduce distortion, the disk surface is removed by cutting or polishing. In this case, surface deletion of less than 10 μm is not enough to remove distortion, and surface deletion of more than 500 μm, although the disk performance is satisfactory, is wasteful from an economic point of view such as productivity and cost.
For a disk base made of an aluminum alloy plate, the thickness of the surface to be removed is preferably 10 to 500 μm. In this processing step, annealing is performed if necessary to remove processing strain. This annealing is also performed under the above cooling conditions. Next, pre-treatments such as degreasing, etching, Zn substitution, Sn substitution, etc. are repeatedly performed by conventional methods, and a non-magnetic plating film such as N1-P is formed thereon. In addition, before forming a non-magnetic plating film such as N1-P, Cu
Strike plating may also be applied. If the thickness of this plating film is less than 3 μm, the disk surface will be rough due to the influence of pretreatment, and pits will easily remain.
Furthermore, the number of final polishing methods is inevitably reduced, and it is not possible to obtain a uniform plating film with small roughness, so it is better to form a plating film with a thickness of 3 μm or more, and from the viewpoint of the strength of the plating film. is preferably 5 μm or more. Further, even if the thickness of the plating film is increased, the performance does not particularly deteriorate, but it is economically disadvantageous to make the plating film too thick, so it is preferably 20 μm or less. After final polishing the disk manufactured by plating in this manner, a magnetic film is further formed by plating or sputtering, and the disk is used as a magnetic disk. (Example) Next, the present invention will be explained in detail. Example 1 An aluminum alloy having the chemical components shown in Table 1 was melted, filtered, agglomerated, and solidified on both sides.
It was made into an ingot with dimensions of m x 1000 mm x 3500 mm. Next, after performing homogenization treatment at a temperature of 530°C for 12 hours, hot rolling was performed to obtain a plate thickness of 5 mm, and then a plate thickness of 2 mm.
Cold rolling was performed to a thickness of mm. Next, the obtained plate material was punched to an outer diameter of 130 m.
It was a hollow disk with an inner diameter of 40 mm and an inner diameter of 40 mm. After cutting the surface of this disk to give Rmaxo of 08 μm,
, subjected to strain relief annealing by holding for 2 hours, and heated to 45℃ up to 120℃.
It was cooled at a rate of .degree. C./hr to obtain an aluminum alloy substrate for a magnetic disk. The base thus obtained was degreased (trichloroethane) → alkaline etched (5% NaOH at 125°C, 30°C).
2 seconds, immersion) → Neutralization (30% HNO, 25℃, 10 seconds,
Soaking) → Pickling (HNO3: HF:'H20=3:
1: 2.25℃, 30 seconds, immersion) → Zinc replacement (1
(120g/QNaOH120g/QZnO12
g/fl FeCR3・6H20, 50g/flKNa
C4H40G・4H20, Ig/QNaNO,,25-
15 = °C, 30 seconds, immersion) → Pickling (20% HNO3, 25 °C,
10 seconds, immersion) → Zinc replacement (second time) (processing solution and conditions are the same as the first time) → N1-P plating (Nippon Kanigen Blue Shuma, 90°C, immersion, plating thickness 5 μm and 1
0 μm). Table 3 shows the results of investigating the surface treatment properties, plating adhesion, and the surface of the plated surface after polishing. The surface treatment property was determined by observing the surface after the second zinc substitution. If the precipitate was uniform and even, it would be marked O. If the precipitate was coarse and uneven, it would be marked x. thing Δ
It was evaluated by marking it. Plating adhesion was evaluated by marking O if the plating did not peel off after 900 bends, and marking X if it peeled off even partially. Regarding the polished surface of the plated surface, the plated surface was mirror polished using aluminum oxide powder, and then the surface was observed and investigated. Note that the polishing method was set to 2 μm. For evaluation, observe 50 locations using a microscope at 400x magnification, and mark O if there are no pits with a maximum diameter of 2 μm or more, mark Δ if there are 1 to 4 pits, and mark X if there are 5 or more pits. Attached. As is clear from Table 2, the inventive examples ■, ■, ■, ■, whose compositions were appropriately adjusted, compared with the comparative examples ■, ■, ■, ■,
Excellent in surface treatment properties, plating film adhesion, etc.
In particular, it can be seen that good results are obtained even when the plating thickness is reduced. Note that all of the discs obtained had a distortion of 1
It was 0 μm or less.

【以下余白】[Left below]

−19一 実施例2 第1表に示した化学成分を有するアルミニウム合金Na
 ]〜4について、実施例1と同様の工程、条件にて磁
気ディスク用アルミニウム合金基盤を得た。但し、歪取
り焼鈍における加熱後の冷却は第3表に示す種々の冷却
速度により行った。 得られた基盤について全体重及び前処理性を調へた。そ
の結果を第3表に併記する なお、全体重は、レーザー干渉を用いた歪測定装置(−
デイック製)によって測定した10枚の平均値にて評価
した。また、前処理性は、実施例1における脱脂→アル
カリエツチング→中和→酸洗後の表面粗度を触針型粗度
計で3回測定しくスキャン距離4mm)、ドリフトを含
まないRa(人)の平均値で評価した。 第3表から明らかなように、本発明範囲の冷却条件によ
れば、全体重及びメッキ前処理後の表面粗度のいずれも
小さいことがわかる。
-191 Example 2 Aluminum alloy Na having the chemical components shown in Table 1
] to 4, aluminum alloy substrates for magnetic disks were obtained using the same steps and conditions as in Example 1. However, cooling after heating during strain relief annealing was performed at various cooling rates shown in Table 3. The total weight and pretreatment properties of the obtained substrate were examined. The results are also listed in Table 3.The total weight was calculated using a strain measuring device using laser interference (-
The evaluation was made based on the average value of 10 sheets measured by a method (manufactured by Dick). In addition, the pretreatment property was determined by measuring the surface roughness after degreasing → alkali etching → neutralization → pickling in Example 1 three times using a stylus-type roughness meter (scanning distance 4 mm), and Ra (human roughness) without drift. ) was evaluated based on the average value. As is clear from Table 3, according to the cooling conditions within the range of the present invention, both the overall weight and the surface roughness after plating pretreatment are small.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、アルミニウム合
金の組成を適切に調整すると共に特に歪取り焼鈍条件を
規制したので、下地処理性+メッキ膜の密着性に優れ、
かつ歪の小さい磁気ディスクや光ディスク等に好適なア
ルミニウム合金板が得られる。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, since the composition of the aluminum alloy is appropriately adjusted and the strain relief annealing conditions are particularly regulated, the surface treatment property and the adhesion of the plating film are excellent.
Moreover, an aluminum alloy plate suitable for magnetic disks, optical disks, etc. with small distortion can be obtained. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Mg:2〜6%を含むと共に
Cu:0.03〜1%及びZn:0.1〜2%のうちの
少なくとも1種を含み、更に必要に応じて、Mn:0.
05〜1.0%及びCr:0.03〜0.3%のうちの
少なくとも1種を含み、残部がAl及び不純物よりなる
アルミニウム合金につき、熱間圧延及び冷間圧延を行い
、ディスクブランクを打抜いた後、少なくとも280℃
以上の温度に1時間以上10時間以内保持し、次いで2
0℃/hr以上300℃/hr以下の速度で120℃ま
で冷却することを特徴とするメッキ性に優れ歪の小さい
ディスク用アルミニウム合金板の製造方法。
In terms of weight% (the same applies hereinafter), it contains Mg: 2 to 6% and also contains at least one of Cu: 0.03 to 1% and Zn: 0.1 to 2%, and further, if necessary, Mn: 0.
An aluminum alloy containing at least one of 05 to 1.0% Cr and 0.03 to 0.3% Cr, with the remainder consisting of Al and impurities is hot rolled and cold rolled to produce a disk blank. At least 280℃ after punching
Maintain at the above temperature for 1 hour or more but less than 10 hours, then 2
A method for producing an aluminum alloy plate for disks with excellent plating properties and low distortion, characterized by cooling to 120°C at a rate of 0°C/hr or more and 300°C/hr or less.
JP1107788A 1988-01-21 1988-01-21 Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain Pending JPH01188654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107788A JPH01188654A (en) 1988-01-21 1988-01-21 Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107788A JPH01188654A (en) 1988-01-21 1988-01-21 Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain

Publications (1)

Publication Number Publication Date
JPH01188654A true JPH01188654A (en) 1989-07-27

Family

ID=11767918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107788A Pending JPH01188654A (en) 1988-01-21 1988-01-21 Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain

Country Status (1)

Country Link
JP (1) JPH01188654A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193239A (en) * 1983-04-15 1984-11-01 Mitsubishi Alum Co Ltd Al-alloy for magnetic disk substrate
JPS60194040A (en) * 1984-02-18 1985-10-02 Kobe Steel Ltd Aluminum alloy substrate for disc having superior suitability to plating
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving
JPS61266548A (en) * 1985-05-21 1986-11-26 Furukawa Alum Co Ltd Aluminum alloy for substrate of magnetic disc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193239A (en) * 1983-04-15 1984-11-01 Mitsubishi Alum Co Ltd Al-alloy for magnetic disk substrate
JPS60194040A (en) * 1984-02-18 1985-10-02 Kobe Steel Ltd Aluminum alloy substrate for disc having superior suitability to plating
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving
JPS61266548A (en) * 1985-05-21 1986-11-26 Furukawa Alum Co Ltd Aluminum alloy for substrate of magnetic disc

Similar Documents

Publication Publication Date Title
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
CN111164228B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP5480599B2 (en) Aluminum alloy plate for magnetic disk and manufacturing method thereof
JP5901168B2 (en) Aluminum alloy substrate for magnetic disk and method for manufacturing the same, and aluminum alloy substrate for base treatment magnetic disk and method for manufacturing the same
KR900007975B1 (en) Aluminium alloy substrate for disk having superior suitability to plating
CN111448611B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP6339726B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JP4477999B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH01188654A (en) Manufacture of aluminum alloy sheet for disk excellent in plating suitability and reduced in strain
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
WO2020080363A1 (en) Aluminum alloy plate for magnetic disk, method for manufacturing same, and magnetic disk using same
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JP4477998B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
JPH10273749A (en) Aluminum alloy sheet for magnetic disk base and its production
JPH10121178A (en) Aluminum alloy clad plate for high capacity magnetic disk substrate excellent in zincate treatability and substrate treatability and its production
JPH10121173A (en) Aluminum alloy clad plate for high capacity magnetic disk substrate excellent in plating property and blistering resistance and its production
JPH108177A (en) Aluminum alloy sheet for magnetic disk substrate and its production
WO2023167219A1 (en) Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk
JP6339710B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk