JPS62263375A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPS62263375A
JPS62263375A JP10831386A JP10831386A JPS62263375A JP S62263375 A JPS62263375 A JP S62263375A JP 10831386 A JP10831386 A JP 10831386A JP 10831386 A JP10831386 A JP 10831386A JP S62263375 A JPS62263375 A JP S62263375A
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
carbon fibers
present
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10831386A
Other languages
Japanese (ja)
Inventor
宇野 博文
浅井 肇
中尾 富士夫
穴井 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10831386A priority Critical patent/JPS62263375A/en
Publication of JPS62263375A publication Critical patent/JPS62263375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維の表面処理方法に関するものであり、
良好な耐衝撃性を有するコンポジットを与える表面特性
に優れた炭素繊維を提供することにちる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for surface treatment of carbon fibers,
The object of the present invention is to provide carbon fibers with excellent surface properties that give composites with good impact resistance.

〔従来の技術〕[Conventional technology]

近年、価格の低下とあいまって構造体の軽量化の点から
炭素、繊維コンポジットの一次構造材への利用開発が積
面的に進められている。しかるに、炭素繊維コンポジッ
トは金、萬と比べて耐衝撃性が劣るため、その改善が強
く望まれているのが現状である。特にコンポジットの衝
撃後の残存圧縮強度(Compression Aft
er Impact:CAI)は構造体に衝撃が加わっ
た場合の許容性を表わす尺度として重要であり、−次構
造体に炭素繊維コンポジットを利用する場合の重要な特
性値として、このCAI向上が要求されている。ところ
が従来、殆んどの表面処理は単にコンポジットの層間剪
断強度(ILSS)の向上を目的にしたものにすぎず、
工LSSでは一応満足な値が得られていても、剥離強度
が極端に小さい場合があや、界面接着強度の評価として
、ILSSだけの評価ではより高性能な耐剥離性の良好
なコンポジットにはなり得ないことを先に明らかにした
(特願昭59−237770号)。
In recent years, as prices have declined, the use of carbon and fiber composites as primary structural materials has been extensively developed to reduce the weight of structures. However, since carbon fiber composites have inferior impact resistance compared to gold and yam, there is currently a strong desire for improvement. In particular, the residual compressive strength after impact of composites (Compression Aft
er Impact (CAI) is important as a measure of tolerance when impact is applied to a structure, and improvement of this CAI is required as an important characteristic value when using a carbon fiber composite for a second structure. ing. However, in the past, most surface treatments were simply aimed at improving the interlaminar shear strength (ILSS) of the composite.
Even if a satisfactory value is obtained with engineering LSS, the peel strength may be extremely low, and evaluation of interfacial adhesion strength using ILSS alone will not result in a composite with better peel resistance and higher performance. We have previously made it clear that this is not possible (Japanese Patent Application No. 59-237770).

一方、焼成上りの炭素繊維はマトリックスとの接着強度
が弱く、この接着強度を改善するために従来から多くの
表面処理方法が提案されてきている。これら表面処理方
法のうち、工業的には1!解酸化処理が一般的であるが
、気相酸化処理は短時間処理が可能であシ設備的にも有
利な点がある。オゾンによる気相酸化法は公知であるが
、それらはオゾンの易熱分解性の故にオゾンが実質的に
分解しないような比較的低温度範囲で処理する方法が採
られているが、この場合得られたコンポジットの特性は
工L8Sは良好なものの剥離強度が低く界面接着強度と
しては不充分であり、しかも、処理時間も長くかかり工
業的には実施し得ないものであった。零発゛明者らは、
先にオゾンを含む酸化性雰囲気中で160〜250℃で
加熱処理する方法を提案した(特願昭59−23777
0号)。すなわちオシニドによる酸化反応に代えてオゾ
ンの分解状態で炭素繊維に表面処理を施すことによって
酸化反応を短時間に完結せしめ、しかもコンポジットの
耐剥離性を向上させるものである。更に本発明者らは表
面処理後、アルカリ性水溶液中に浸漬せしめる方法を提
案しく特願昭59−272542号)、表層に付着せる
シリカ化合物等で代表される不純物の酸化物を除去せし
め、後処理工程でのサイジング処理工程を安定化させる
方法を提案した。この方法によれば表層に残存するシリ
カ化合物を除去するのに有利でありコンポ特性の向上に
効果的であったが、しかし、アルカリ浸漬後、中和、洗
浄工程が必要となり工程が長く複雑になると共に微量の
アルカリ金属が炭素繊維中に残存するなどの問題点を有
している。
On the other hand, fired carbon fibers have a weak adhesive strength with the matrix, and many surface treatment methods have been proposed to improve this adhesive strength. Among these surface treatment methods, 1! Deoxidation treatment is common, but gas phase oxidation treatment can be performed in a short time and has advantages in terms of equipment. Gas-phase oxidation methods using ozone are well known, but because of the thermal decomposition nature of ozone, they are processed at a relatively low temperature range where ozone does not substantially decompose. Although the properties of the composite L8S were good, the peel strength was low and the interfacial adhesion strength was insufficient, and the processing time was too long, making it impossible to implement industrially. Those who started from zero,
Previously, we proposed a method of heat treatment at 160 to 250°C in an oxidizing atmosphere containing ozone (Japanese Patent Application No. 59-23777).
No. 0). That is, instead of the oxidation reaction using osinide, by surface-treating the carbon fibers in the decomposed state of ozone, the oxidation reaction can be completed in a short time, and the peeling resistance of the composite can be improved. Furthermore, the present inventors have proposed a method of immersing the surface in an alkaline aqueous solution after surface treatment (Japanese Patent Application No. 59-272542), which removes oxides of impurities such as silica compounds adhering to the surface layer, and performs post-treatment. We proposed a method to stabilize the sizing process in the process. This method was advantageous in removing silica compounds remaining on the surface layer and was effective in improving the properties of the composite, but it required neutralization and washing steps after immersion in alkali, making the process long and complicated. In addition, there are problems such as trace amounts of alkali metals remaining in the carbon fibers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的とするところは、コンポジットの衝撃時に
おける耐剥離性を向上させ、いわゆるCAI値を向上さ
せることにあり、解決すべき点は、処理時間が短かく工
程が簡略化され、工業的実施可能性に優れた表面処理方
法を提供することにある。
The purpose of the present invention is to improve the peeling resistance of composites upon impact and to improve the so-called CAI value. The object of the present invention is to provide a surface treatment method with excellent feasibility.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはコンポジットの耐剥潴性を向上させるべく
検討した結果、オゾンを含む空気中で160〜250℃
で酸化処理することと40℃以上の温水又は沸水中で浸
漬処理する工程が不可欠であることを見出し本発明に至
った。
The present inventors studied to improve the peeling resistance of composites, and found that
The present invention was achieved by discovering that oxidation treatment and immersion treatment in hot water of 40° C. or higher or boiling water are essential.

すなわち本発明の要旨は、炭素繊維をオゾンを含む空気
中で雰囲気温度160〜250℃で気相酸化処理した後
膣炭素繊維を40℃以上の温水又は沸水中で浸漬洗浄処
理する点にある。
That is, the gist of the present invention is that after carbon fibers are subjected to vapor phase oxidation treatment in air containing ozone at an ambient temperature of 160 to 250°C, the vaginal carbon fibers are immersed and washed in hot water or boiling water at 40°C or higher.

本発明の処理を行うことでC’AIに悪影響を及コンポ
ジットのCAIを大巾に向上させることが可能となった
。すなわち、炭素繊維表層は焼成過程で分解、発生する
低分子量の炭化物や熱的、機械的な損傷により、脆弱な
層あるいは部分を形成している。この脆弱部は一般に繊
維基質との結合が弱く、剥離しやすい状態になっている
。CAIを向上させるためには衝撃を加えたことによっ
て生じるコンポジット内部の剥離を最小限にとどめるこ
とが重要であり、そのためには炭素繊維表層の脆弱部を
取除くことが必要不可欠でちるとの認識に基づき、こ9
ような脆弱部を効果的に取除く方法について検討した結
果、本発明が非常に有効であることを見出した。表層の
脆弱部は酸化処理を行う前では、非弾性であり親水性に
欠けるため除去されにくいが、オゾン雰囲気下、酸化処
理することによって、より低分子量に分解され脆弱部の
極性がまし、その結果温水中に容易に溶出するようにな
ることを見出し本発明に至ったものでちる。
By performing the treatment of the present invention, it was possible to significantly improve the CAI of the composite without adversely affecting the C'AI. That is, the carbon fiber surface layer forms a fragile layer or portion due to low molecular weight carbides decomposed and generated during the firing process and thermal and mechanical damage. This fragile portion generally has a weak bond with the fiber matrix and is easily peeled off. In order to improve CAI, it is important to minimize the peeling inside the composite that occurs due to impact, and to this end, we recognize that it is essential to remove the weak parts of the carbon fiber surface layer. Based on this 9
As a result of studying methods for effectively removing such fragile parts, it was found that the present invention is very effective. Before oxidation treatment, the fragile parts of the surface layer are difficult to remove because they are inelastic and lack hydrophilicity, but by oxidation treatment in an ozone atmosphere, they are decomposed into lower molecular weight and the polarity of the fragile parts is improved. As a result, it was discovered that it was easily eluted in warm water, and this led to the present invention.

本発明を実施するに際してオゾン濃度は工業的に効率よ
く酸化反応が進む範囲にあればよ(、持て制限はないが
通常1〜2v01チの範囲で処理される。
When carrying out the present invention, the ozone concentration should be within a range where the oxidation reaction can proceed industrially efficiently (although there is no limit to the ozone concentration, it is usually treated within a range of 1 to 2v01ch).

又、本発明に分いて効果的に脆弱層を除去させるために
は、gscAでみられるところの酸素濃度01B / 
C+aが0.1〜0.3、より好ましくはα15〜α2
5になるようにあらかじめ表面処理されていることが望
ましい。ESCAによって測定される表面の酸素濃度は
、VG社製gsCA装置BSCALAB  MKI[型
によって測定した。M!jKa 塚をX線源としたとき
のC10および018  シグナルの強度をそれぞれの
ASF値(0,205督ヨびcl、63)にしたがって
01s/cts原子数比に換算した。
In addition, in order to effectively remove the fragile layer according to the present invention, the oxygen concentration 01B /
C+a is 0.1 to 0.3, more preferably α15 to α2
It is desirable that the surface be treated in advance so as to have a particle size of 5. The surface oxygen concentration measured by ESCA was measured by a gsCA device BSCALAB MKI [type] manufactured by VG. M! The intensities of the C10 and 018 signals when JKa mound was used as the X-ray source were converted to the 01s/cts atomic ratio according to their respective ASF values (0,205 mounds, 63).

本発明に督いて表面処理後、水にて浸漬洗浄するに際し
て処理温度が高い程効果的であり、40℃以上好ましく
は70℃以上、更に好ましくは導水を用いて浸漬洗浄す
るのがよい。40℃未満では洗浄効果が低下し、洗浄時
間が長くなってしまうために、工業的に不利である。
When performing immersion cleaning with water after surface treatment according to the present invention, the higher the treatment temperature, the more effective it is, and the immersion cleaning is preferably carried out at 40° C. or higher, preferably 70° C. or higher, and more preferably using water conveyance. If the temperature is lower than 40°C, the cleaning effect will decrease and the cleaning time will become longer, which is industrially disadvantageous.

本発明にダける洗浄時間は特に制限はないが、本発明の
目的から、炭素繊維の蒸留水による抽出液のU、V、吸
光度が下式(1)を満足するような範囲になるまで洗浄
することがより好ましい。
There is no particular limit to the cleaning time in the present invention, but from the purpose of the present invention, the carbon fibers are washed until the U, V, and absorbance of the extract with distilled water reach a range that satisfies the following formula (1). It is more preferable to do so.

Q、01≦Abs、250℃m−0,027Abs、2
30℃m≦0.85−(1)Abs、250℃m: 2
50℃mの吸光度Abs、230nm: 230℃mの
吸光度ここでいう吸光度は炭素繊維1〜5gを内径8〜
16crnのビーカーに入れ重量比で炭素繊維の11倍
の蒸留水を加えてこれを槽内容積298(巾)X155
(奥行)X152(深さ、鱈)槽内水温50±5℃の超
音波洗浄器(発振周波数43 KHz 、高周波出力9
0W)にみれて10分間抽出し、次いで、上71−1+
液を回収して16r1のセル長の石英製U、V、セルに
λれ対照液に蒸留水を用いてU’V分光光度計により測
定した該当する波長の吸光度である。
Q, 01≦Abs, 250℃m-0,027Abs, 2
30℃m≦0.85-(1) Abs, 250℃m: 2
Abs Abs at 50℃m, 230nm: Absorbance at 230℃m The absorbance here refers to the absorbance of 1 to 5g of carbon fiber with an inner diameter of 8 to 5g.
Put it in a 16crn beaker, add distilled water that is 11 times the weight of carbon fiber, and add this to a tank with an internal volume of 298 (width) x 155.
(Depth) x 152 (depth, cod) Ultrasonic cleaner with water temperature in the tank 50 ± 5℃ (oscillation frequency 43 KHz, high frequency output 9
0W) and extracted for 10 minutes, then the upper 71-1+
The absorbance at the corresponding wavelength was measured using a U'V spectrophotometer using distilled water as a reference solution.

さらに、洗浄方法もオゾン酸化処理に続いて連続的に洗
浄する方法、あるいはオゾン酸化処理後に、一旦炭素繊
維を巻取った後に再度連続的またはバッチで洗浄する方
法等いずれの方法でもよい。洗浄効果をさらに上げるた
めに、温水を強制的に流動させたり、不活性ガスを用い
てバブリングしたり、超音波によって振動を与えたりす
ることもできる。
Furthermore, the cleaning method may be either a continuous cleaning method following the ozone oxidation treatment, or a method in which the carbon fibers are once wound up after the ozone oxidation treatment and then washed again continuously or in batches. To further improve the cleaning effect, it is also possible to forcibly flow hot water, bubble with inert gas, or apply vibrations using ultrasonic waves.

前述の如く炭素繊維上のンリカを取除くにはアルカリ注
水溶液で浸漬処理するのが効果的であるが本発明の目的
とする脆弱部の除去によるCAIの向上に対しては、温
水による一先浄が効果的であり工業的にも有利である。
As mentioned above, immersion treatment with an alkaline water injection solution is effective for removing phosphoric acid on carbon fibers, but in order to improve CAI by removing fragile parts, which is the objective of the present invention, hot water is the first method. It is effective in cleaning and industrially advantageous.

本発明に用いられる炭素繊維とはポリアクリロニトリル
系重合体、ピッチ等から製造された炭素繊維及び黒鉛繊
維の総称である。
The carbon fiber used in the present invention is a general term for carbon fiber and graphite fiber manufactured from polyacrylonitrile polymer, pitch, etc.

〔発明の効果〕〔Effect of the invention〕

以上の酸化処理によって炭素繊維基質並びに脆弱部を酸
化した後に該炭素繊維を続いて40℃以上の温水又は導
水中に浸漬し酸化され親水性をましだ脆弱部を効果的に
除去することでさらに耐剥離性の強い、すなわちCAI
の高い炭素繊維を得ることが可能となった。
After oxidizing the carbon fiber matrix and fragile parts through the above oxidation treatment, the carbon fibers are subsequently immersed in hot water of 40°C or higher or in water to effectively remove the weakened parts that have been oxidized and become more hydrophilic. Strong peeling resistance, i.e. CAI
It became possible to obtain carbon fiber with high carbon fiber.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

炭素繊維コンポジットの#撃抜の残存圧縮強度(CAI
)は次の方法により測定した。
Residual compressive strength (CAI) of carbon fiber composite
) was measured by the following method.

炭素繊維を特開昭59−215314号実施例4に記載
されたと同様のビス(2,3−エポキシシクロベンチ)
V )エーテルzo、9重i部とa凡N:N′テトラグ
リシジl 4.4’ジアミノジフ工ニμメタン477重
量部に4,4′ビス(3−アミノフェノキシ)ジフェニ
ルスルホン60ii部を配合して得たエポキシ樹脂を用
いて一方向プリブレグを作成しC+4510/−45/
90’l、。
Carbon fiber was mixed with bis(2,3-epoxycyclobenzene) similar to that described in Example 4 of JP-A No. 59-215314.
V) 60 parts of 4,4' bis(3-aminophenoxy) diphenyl sulfone was blended with 477 parts by weight of ether zo, 9 parts and a: A unidirectional prepreg was created using the obtained epoxy resin and C+4510/-45/
90'l.

の擬似等方に積層し、180℃で2時間硬化させて試験
片を作成した。
were laminated in a quasi-isotropic manner and cured at 180° C. for 2 hours to prepare a test piece.

NASA  RP109Zに準拠。Compliant with NASA RP109Z.

寸法4 X 6 X O,25インチの試験片を3×5
インチの穴のあいたスチーA/製台上に固定した後、そ
の中心に0.5インチRのノーズをつ’tf タ4−9
−の分銅を落下せしめ、板厚1インチ当り15001b
−inの衝撃を加えた後、その板を圧縮試験することに
よりCAIを求めた。
Dimensions 4 x 6 x O, 3 x 5 25 inch test pieces
After fixing it on a steel A/made table with an inch hole, attach a 0.5 inch radius nose in the center of the 'tf 4-9.
- A weight of 15001b per inch of plate thickness is dropped.
After applying an impact of -in, the CAI was determined by compression testing the plate.

実施例1 外部加熱器を有するチャンバーに表1に示す条件でオゾ
ンを含む空気を0.5@2/hr  のV]合で供給し
ながら、ストランド弾性率が28 t/m2の炭素繊維
を連続的に走行させ、処理温度と時間を変えて酸化処理
を行った。
Example 1 Carbon fibers with a strand modulus of elasticity of 28 t/m2 were continuously fed into a chamber equipped with an external heater under the conditions shown in Table 1 while supplying ozone-containing air at a rate of 0.5@2/hr V]. The oxidation treatment was carried out by running the specimen under different conditions and changing the treatment temperature and time.

以上のように酸化処理した炭素繊維を一旦ワインダーに
巻取ったのち、該炭素繊維をさらに11% 水ヲオーバ
ーフローさせている洗浄槽中に浸潰走行せしめ洗浄処理
した。この時、洗浄水温度と時間を変化させて処理した
After the carbon fibers oxidized as described above were once wound up in a winder, the carbon fibers were further immersed and run in a cleaning tank overflowing with 11% water for cleaning treatment. At this time, the treatment was carried out by changing the temperature and time of the washing water.

以上のようにして得られた炭素繊維の表面をESCAで
分析して018/C8sを測定するとともに、本文中に
記載の方法で抽出液の吸光度を測定した。
The surface of the carbon fiber obtained as described above was analyzed by ESCA to measure 018/C8s, and the absorbance of the extract was measured by the method described in the text.

又得られた炭素繊維のCAIを測定してこれらの結果を
表1に示した。
Furthermore, the CAI of the obtained carbon fibers was measured and the results are shown in Table 1.

本発明の方法により工業上効率よ(CAIの高い炭素繊
維が得られることが明らかである。
It is clear that carbon fibers with high CAI can be obtained with industrial efficiency by the method of the present invention.

Claims (1)

【特許請求の範囲】 炭素繊維を焼成後、オゾンを含む空気中で 160〜250℃で気相酸化処理した後、該炭素繊維を
40℃以上の温水又は沸水中に浸漬洗浄処理せしめるこ
とを特徴とする炭素繊維の表面処理方法。
[Claims] After firing the carbon fibers, the carbon fibers are subjected to gas phase oxidation treatment at 160 to 250°C in air containing ozone, and then immersed in hot water or boiling water at 40°C or higher to be washed. A method for surface treatment of carbon fiber.
JP10831386A 1986-05-12 1986-05-12 Surface treatment of carbon fiber Pending JPS62263375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10831386A JPS62263375A (en) 1986-05-12 1986-05-12 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10831386A JPS62263375A (en) 1986-05-12 1986-05-12 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62263375A true JPS62263375A (en) 1987-11-16

Family

ID=14481541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10831386A Pending JPS62263375A (en) 1986-05-12 1986-05-12 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62263375A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
JP2009079344A (en) * 2007-09-06 2009-04-16 Mitsubishi Rayon Co Ltd Surface treatment method of carbon fiber
WO2013018860A1 (en) * 2011-08-02 2013-02-07 三菱レイヨン株式会社 Carbon fiber manufacturing method and carbon fiber
WO2016072457A1 (en) * 2014-11-07 2016-05-12 株式会社ダイセル Epoxy-amine adduct, resin composition, sizing agent, sizing agent-coated carbon fiber, and fiber-reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
JP2009079344A (en) * 2007-09-06 2009-04-16 Mitsubishi Rayon Co Ltd Surface treatment method of carbon fiber
WO2013018860A1 (en) * 2011-08-02 2013-02-07 三菱レイヨン株式会社 Carbon fiber manufacturing method and carbon fiber
US9796590B2 (en) 2011-08-02 2017-10-24 Mitsubishi Chemical Corporation Carbon fiber manufacturing method and carbon fiber
WO2016072457A1 (en) * 2014-11-07 2016-05-12 株式会社ダイセル Epoxy-amine adduct, resin composition, sizing agent, sizing agent-coated carbon fiber, and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP4750096B2 (en) Magnesium alloy article, magnesium alloy member and manufacturing method thereof
TWI525217B (en) Aluminum alloy article, aluminum alloy member and manufacturing method thereof
CN108560243B (en) Carbon fiber surface treatment method and application
EP2322691A1 (en) Iron alloy article, iron alloy member, and method for producing the iron alloy article
JPS6262185B2 (en)
EP0374680B1 (en) Carbon fibers having modified surfaces and process for preparing the same
JPS62263375A (en) Surface treatment of carbon fiber
US4814157A (en) Carbon fibers and method for producing same
JP5834345B2 (en) Aluminum alloy article, aluminum alloy member and manufacturing method thereof
JPH1193078A (en) Carbon fiber and its production
JP2006183173A (en) Carbon fiber and method for producing the same
JPH1025627A (en) Acrylic carbon fiber
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
JPS61124674A (en) Surface treatment of carbon fiber
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPS61124677A (en) Surface treatment of carbon fiber
US3876444A (en) Method of treating high strength carbon fibers
JPS62268873A (en) Surface treatment of carbon fiber
JPS59107913A (en) Manufacture of composite carbon-carbon material
JP2592294B2 (en) Post-processing method of carbon fiber
US4888079A (en) Method for bonding joints with an organic adhesive using a water soluble amorphous hydrated metal oxide primer
CN109385891A (en) A method of in carbon fiber surface graft curing agent imidazoles
JPS61194271A (en) Surface treatment of carbon fiber
JPS61132675A (en) Surface treatment of carbon fiber
JPH03227325A (en) Method for modifying surface of carbon fiber