JPS62268873A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPS62268873A
JPS62268873A JP10928886A JP10928886A JPS62268873A JP S62268873 A JPS62268873 A JP S62268873A JP 10928886 A JP10928886 A JP 10928886A JP 10928886 A JP10928886 A JP 10928886A JP S62268873 A JPS62268873 A JP S62268873A
Authority
JP
Japan
Prior art keywords
carbon fiber
aqueous solution
alkaline aqueous
surface treatment
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10928886A
Other languages
Japanese (ja)
Inventor
浅井 肇
宇野 博文
穴井 勝美
中尾 富士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10928886A priority Critical patent/JPS62268873A/en
Publication of JPS62268873A publication Critical patent/JPS62268873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は炭素繊維の表面処理法に関するものであり、良
好な耐衝撃性を有するコンポジット?与える表面特性に
優れた炭素M1.維?提供することにある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for surface treatment of carbon fibers, and relates to a method for surface treatment of carbon fibers, including composites having good impact resistance. Carbon M1. has excellent surface properties. Maintenance? It is about providing.

〔従来の技術〕[Conventional technology]

近年、価格の低下とあいまって、構造体の軽量化の点か
ら炭素繊維;ンポジットの一次構造材への利用開発が積
極的に進められている。しかるに、炭素繊維コンポジッ
トは金属と比べて耐衝撃性が劣るためその改善が強く望
まれているのが現状である。特にコンポジットの衝撃後
の残存圧縮強度(Compression After
工mpact :OA工)は構造体に衝撃が加わった場
合の許容性を表わす尺度として重要であり一次構造体に
炭素繊維コンポジットを利用する場合の重要な特性値と
して、このCA工内向上要求されて込る。ところが従来
、殆んどの表面処理は単にコンポジットの層間剪断強度
(工L8S)の向上全目的にしたものにすぎず、工LS
Sでは一応満足々値が得られていても剥離強度が極端に
小さい場合があり、界面接着強度の評価として工LSB
だけの評価ではより高性能な耐剥離性の良好なコンポジ
ットにけ々シ得ないことを先に明らかにした(特願昭5
9−257770号)。
In recent years, as prices have declined, the use of carbon fiber composites as primary structural materials has been actively developed to reduce the weight of structures. However, since carbon fiber composites have inferior impact resistance compared to metals, there is currently a strong desire for improvement. In particular, the residual compressive strength after impact of composites (Compression After
OA work) is important as a measure of tolerance when impact is applied to a structure, and is an important characteristic value when using carbon fiber composite for the primary structure. Enter. However, in the past, most surface treatments were simply aimed at improving the interlaminar shear strength (L8S) of the composite;
Even if a satisfactory value is obtained for S, the peel strength may be extremely low, and as an evaluation of interfacial adhesion strength, engineering LSB is used.
We have previously clarified that it is not possible to obtain a composite with higher performance and good peeling resistance by just evaluating it.
No. 9-257770).

一方、焼成上りの炭素繊維はマトリックスとの接着強度
が弱く、この接着強度を改善するために従来から多くの
表面処理法が提案されてきている。これら表面処理法の
うち工業的には電解酸化処理が一般的であり、その際、
用いられる電解質には種々の化合物が提案されておジア
ルカリ性水溶液中で電解処理をして表面特性を改良する
ことは公知である。
On the other hand, fired carbon fibers have a weak adhesive strength with the matrix, and many surface treatment methods have been proposed to improve this adhesive strength. Among these surface treatment methods, electrolytic oxidation treatment is common industrially;
Various compounds have been proposed for the electrolyte used, and it is known that surface properties can be improved by electrolytic treatment in a dialkaline aqueous solution.

例えば特公昭5B−24554号公報は炭酸アンモニウ
ム類を電解質として用いた後、洗浄せずに加熱により電
解質を分解除去することを提案している。
For example, Japanese Patent Publication No. 5B-24554 proposes using ammonium carbonates as an electrolyte and then decomposing and removing the electrolyte by heating without washing.

ところがこれらの電解酸化は、コンポジットの工LSS
の向上を目的としたものであり、酸化後の炭素繊維の洗
浄は単に電解質の除去と意図とした程度のものであった
。本発明者らはコンポジット特性の剥離強度を向上させ
るには電解処理後、アルカリ性水溶液で洗浄することが
有効であることを明らかにした(特願昭59−2723
42号、同59−247s91号)。
However, these electrolytic oxidation methods are not suitable for composite engineering LSS.
The cleaning of the carbon fibers after oxidation was merely intended to remove the electrolyte. The present inventors have revealed that cleaning with an alkaline aqueous solution after electrolytic treatment is effective in improving the peel strength of composite properties (Japanese Patent Application No. 59-2723
No. 42, No. 59-247s91).

しかし酸性水溶液中で電解処理を施すと酸素濃度が増大
し横引っばりの剥離強度は向上するもののCA工に代表
される衝撃的な剥離強度はかえって低下する等の問題を
有している。
However, when electrolytic treatment is performed in an acidic aqueous solution, the oxygen concentration increases and although the peel strength in lateral tension improves, the impact peel strength typified by CA processing actually decreases.

〔発明が解決しようとする問題点コ 本発明の目的とするところは、コンポジットの衝撃時に
おける耐剥離性を向上させ、いわゆるCAI値を向上さ
せることにあり、解決すべき点け、処理時間が短かく工
程が簡略化され、工業的実施可能性に優れた表面処理法
を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to improve the peeling resistance of composites upon impact and to improve the so-called CAI value, and to shorten the heating and processing time to be solved. The object of the present invention is to provide a surface treatment method with simplified steps and excellent industrial feasibility.

〔問題点を解決するための手段] 本発明者らはコンポジットのCA工全全向上せるべく検
討した結果、アルカリ性水溶液中で電解酸化?施すこと
とその後温水又はアルカリ性水溶液中で洗浄する工程が
不可欠であることを見出し本発明に至った。
[Means for Solving the Problems] As a result of our study to improve the overall CA process of composites, we found that electrolytic oxidation in an alkaline aqueous solution? The present inventors have discovered that the steps of applying and then washing in warm water or an alkaline aqueous solution are essential, leading to the present invention.

すなわち本発明の要旨は炭素繊維を焼成後、アルカリ性
水溶液中で炭素繊維を陽極として電解酸化処理し六後、
該炭素繊維を水洗あるいはアルカリ性水溶液中で浸漬洗
浄処理する点にある。
That is, the gist of the present invention is that after firing carbon fibers, electrolytically oxidizing the carbon fibers in an alkaline aqueous solution using the carbon fibers as an anode,
The carbon fiber is washed with water or immersed in an alkaline aqueous solution.

炭素繊維表層は焼成過程で分解発生する低分子量の炭化
物や熱的、機械的欠陥により脆弱な層あるいけ部分を形
成しており、この脆弱部は一般に繊維基質との結合が弱
く剥離し易い状態になっている。コンポジットのOA工
を向上させるためには衝撃を加えた事によって生じるコ
ンポジット内部の剥離を最小限にとどめることが重要で
あり、そのためには炭素繊維表層を酸化すると同時に脆
弱部?取り除くことが必要不可欠であるとの認識にもと
すき、本発明はこのような脆弱部を効果的に取り除く方
法を見い出したものである。
The carbon fiber surface layer forms a fragile layer or part due to low molecular weight carbides decomposed during the firing process and thermal and mechanical defects, and this fragile part is generally in a state where the bond with the fiber matrix is weak and it is easy to peel off. It has become. In order to improve the OA process of composites, it is important to minimize the peeling inside the composite that occurs due to impact.To do this, it is necessary to oxidize the carbon fiber surface layer and at the same time remove the weak parts. Recognizing that it is essential to remove such weak parts, the present invention has discovered a method for effectively removing such weak parts.

炭素繊維表層の脆弱部は酸性水溶液中で電解酸化を行な
う限り、全く除去されず、アルカリ性水溶液中で電解酸
化することにより始めて、低分子景物に酸化分解される
と同時に官能基の導入により極性の増した脆弱部が容易
にアルカり往水溶液中に溶出するようになる。
The fragile parts of the carbon fiber surface layer are not removed at all as long as electrolytic oxidation is carried out in an acidic aqueous solution, and only by electrolytic oxidation in an alkaline aqueous solution are they oxidized and decomposed into low-molecular substances and at the same time polarized by the introduction of functional groups. The increased brittle portion becomes easily eluted into the alkaline aqueous solution.

アルカリ性水溶液中で電解酸化を行なうと、電解液が著
るしく着色してくることからもわかるように、酸化と同
時に、OA工に悪影響?およぼす炭素繊維の脆弱部を取
除くことが可能であり、引続く水洗あるいけアルカリ性
水溶液中で充分に洗浄除去することを組み合せることに
よって炭素繊維基質と樹脂?強固に結合させ衝撃的な剥
離強度を大巾に向上させることができる。
When electrolytic oxidation is performed in an alkaline aqueous solution, the electrolyte becomes noticeably colored, which suggests that oxidation may also have a negative effect on OA work. It is possible to remove the weakened parts of the carbon fibers by combining the carbon fiber matrix with subsequent thorough washing in water or an alkaline aqueous solution. It can be strongly bonded and the impact peel strength can be greatly improved.

本発明において電解酸化処理後、水洗するに際して処理
温度が高い程効果的であり40℃以上、好ましくは70
℃以上、更に好ましくは洪水を用いて洗浄処理するのが
よい。40℃未満では洗浄効果が低下し、洗浄時間が長
くなってしまうために工業的に不利である。
In the present invention, when washing with water after electrolytic oxidation treatment, the higher the treatment temperature is, the more effective it is;
It is preferable to perform the cleaning treatment at a temperature higher than 0.degree. C., more preferably using a flood. If the temperature is lower than 40°C, the cleaning effect will decrease and the cleaning time will become long, which is industrially disadvantageous.

更に電解酸化での処理条件によってはpHが7より大き
いアルカリ性水溶液を用いた方がより効果的に洗浄でき
る。電流密度を犬きくして電解酸化レベルを高めた場合
や電解液のブルカリ濃度を低くして可溶物の溶出を抑え
た場合等にはアルカリ性水溶液中で洗浄するのがより効
果的である。この場合、洗浄用アルカリ性水溶液は電解
用アルカリ性水溶液と同一である必要はなく、全く別の
アルカリ種、濃度およびpHを採用してもさしつかえな
いが、工業的には同一溶液であれば有利であることは当
然である。
Furthermore, depending on the treatment conditions for electrolytic oxidation, using an alkaline aqueous solution with a pH of more than 7 can be used for more effective cleaning. Cleaning in an alkaline aqueous solution is more effective when increasing the current density to increase the electrolytic oxidation level, or when reducing the electrolytic solution concentration to suppress elution of soluble materials. In this case, the alkaline aqueous solution for cleaning does not need to be the same as the alkaline aqueous solution for electrolysis, and a completely different alkali type, concentration, and pH can be used, but from an industrial perspective, it is advantageous to use the same solution. Of course.

本発明で用いるアルカリ化合物としては、水に対して通
常002%、より好ましくはα05チ以上溶解し、pE
 が7より大きく14以下を呈する化合物であればよく
、例えば水酸化ナトリウム、水酸化カリウム、水酸化バ
リウム等の水酸化物、アンモニア、りん酸二ナトリウム
、りん酸三カリウム、炭酸ナトリウム、炭酸水素ナトリ
ウム、炭酸アンモニウム、炭酸水素アンモニウム、硝酸
す) IJウム等の無機塩類、酢酸ナトリウム、酢酸カ
リ゛ウム、安息香酸ナトリウム、安息香酸アンモニウム
等の有機塩等を単独、もしくは二種以上の混合物で用い
ることができる。アルカリ金属、アルカリ土金属の炭素
繊維中への残存を避けるためには、りん酸ニアンモニウ
ム、安息香酸アンモニウム、炭酸アンモニウム等のアン
モニウム塩を用いるのが好ましく更に炭酸アンモニウム
、炭酸水素アンモニウム、カルバミン酸アンそニウム等
は加熱分解により除去可能であるのでより好ましい。
The alkaline compound used in the present invention is usually dissolved in water by 0.02%, more preferably α05% or more, and has a pE of
is greater than 7 and less than or equal to 14, such as hydroxides such as sodium hydroxide, potassium hydroxide, and barium hydroxide, ammonia, disodium phosphate, tripotassium phosphate, sodium carbonate, and sodium hydrogen carbonate. Inorganic salts such as ammonium carbonate, ammonium hydrogen carbonate, nitrate), organic salts such as sodium acetate, potassium acetate, sodium benzoate, ammonium benzoate, etc. may be used alone or in a mixture of two or more. Can be done. In order to avoid residual alkali metals and alkaline earth metals in carbon fibers, it is preferable to use ammonium salts such as ammonium phosphate, ammonium benzoate, ammonium carbonate, etc. Sonium and the like are more preferable because they can be removed by thermal decomposition.

又、アルカリ性水溶液を用いて洗浄する場合、30〜8
0℃に加熱して行なうとより効果的であり望ましい。し
かし炭酸アンモニウム、炭酸水素アンモニウムの如く、
加熱により易分解性の化合物では室温で処理するのが適
当である。
In addition, when cleaning with an alkaline aqueous solution, 30 to 8
It is more effective and desirable to carry out heating to 0°C. However, like ammonium carbonate and ammonium hydrogen carbonate,
For compounds that are easily decomposed by heating, it is appropriate to treat them at room temperature.

本発明における洗浄時間は特に制限はないが、本発明の
目的から炭素繊維の蒸留水による抽出液のU、 ’/、
吸光度が下式(])を満足するような範囲になるまで洗
浄することがよシ好ましい。
The cleaning time in the present invention is not particularly limited, but for the purpose of the present invention, the extraction liquid of carbon fibers with distilled water is
It is more preferable to wash until the absorbance falls within a range that satisfies the following formula ().

α01 ≦Abs、250nm−α027 Abs、2
30nm≦ α85   ・1llAbs、250nm
 :  250nmの吸光度Abs、250nm : 
 230nmの吸光度ここでいう吸光度は炭素線維1〜
51を内径8〜16crRのビーカーに入れ重量比で炭
素繊維の11倍の蒸留水を加えてこれ?槽内容積298
(巾)X155(奥行)×152(深さ、W)槽内水温
50±5℃の超音波洗浄器(発振周波数43 KHz 
、高周波出力90W)に入れて10分間抽出し、次いで
上澄み液を回収して1閏のセル長の石英MUvセルに入
れ対照液に蒸留水を用いてUV分光光度計により測定し
た該当する波長の吸光度である。
α01≦Abs, 250nm-α027 Abs, 2
30nm≦ α85 ・1llAbs, 250nm
: 250nm absorbance Abs, 250nm :
Absorbance at 230 nm The absorbance here is carbon fiber 1~
51 into a beaker with an inner diameter of 8 to 16 crR, add distilled water that is 11 times the weight of carbon fiber, and do this? Tank internal volume 298
(Width) x 155 (Depth) x 152 (Depth, W) Ultrasonic cleaner with tank water temperature 50±5℃ (oscillation frequency 43 KHz)
, high-frequency power of 90 W) for 10 minutes, and then the supernatant was collected and placed in a quartz MUv cell with a cell length of one leap. It is absorbance.

本発明の洗浄工程は、電解酸化処理後、連続的に洗浄す
る方法、あるいけ一旦炭素穢維を巻取った後に再度連続
的又はバッチで洗浄する方法等いずれの方法でもよく、
洗浄効果を更に上げるために温水を強制的に流動させた
り、不活性ガスを用いてバブリングをしたり、超音波に
よって振動を与えたりすることもできる。
The cleaning step of the present invention may be carried out by any method, such as a continuous cleaning method after electrolytic oxidation treatment, or a method in which carbon filth fibers are once rolled up and then washed again continuously or batchwise.
To further improve the cleaning effect, it is also possible to forcibly flow hot water, use bubbling with an inert gas, or apply vibrations using ultrasonic waves.

本発明に用いられる炭素繊維とはポリアクリロニトリル
系重合体、ピッチ等から製造された炭素繊維および黒鉛
繊維の総称である。
The carbon fiber used in the present invention is a general term for carbon fiber and graphite fiber manufactured from polyacrylonitrile polymer, pitch, etc.

〔発明の効果] アルカリ性水溶液中で電解酸化処理した後、温水又はア
ルカリ性水溶液中で洗浄することにより炭素繊維表層を
酸化すると同時に脆弱層を完全に除去することにより衝
撃的な耐剥離性の強い、すなわちCA工の高いコンポジ
ット用の炭素線維を得ることが可能となる。
[Effect of the invention] After electrolytic oxidation treatment in an alkaline aqueous solution, washing in warm water or an alkaline aqueous solution oxidizes the carbon fiber surface layer and simultaneously completely removes the brittle layer, resulting in strong impact peeling resistance. That is, it becomes possible to obtain carbon fiber for composites with high CA quality.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

炭素繊維コンポジットの衝撃後の残存圧縮強度(ch工
)は次の方法により測定した。
The residual compressive strength (ch) of the carbon fiber composite after impact was measured by the following method.

炭素繊維を特開昭59−215314号実施列4に記載
されたと同様のビス(2,3−二ポキシシクロペンチル
)エーテル20.9 M置部トN。
The carbon fibers were mixed with 20.9 M bis(2,3-dipoxycyclopentyl)ether similar to that described in Example 4 of JP-A-59-215314.

N、 Nzrテトラグリシジル4.4′ジアミノ・ジフ
ェニルメタン47.7重号部に4.4′ビス(3−アミ
ノフェノキシ)ジフェニルスルホン60 重量部に配合
して得たエポキシ樹脂を用いて一方向プリプレグを作成
しC+a 5101−45/90−+4sの擬似等方に
積層し、180℃で2時間硬化させて試験片を作成した
A unidirectional prepreg is made using an epoxy resin obtained by blending 47.7 parts by weight of N, Nzr tetraglycidyl 4.4'diamino diphenylmethane with 60 parts by weight of 4.4'bis(3-aminophenoxy)diphenylsulfone. A test piece was prepared by laminating C+a 5101-45/90-+4s in a quasi-isotropic manner and curing at 180° C. for 2 hours.

NASA RP 1092  に準拠。Compliant with NASA RP 1092.

寸14X6Xα25インチの試験片を3×5インチの穴
のあいたスチール製台上に固定した後、その中心にα5
インチRのノーズをつけた4、 9 kgの分銅?落下
せしめ、板厚1インチ当υ15001b−1nのVr撃
を加えた後、その板を圧縮試験することによりOA工を
求めた。
After fixing a test piece with dimensions 14 x 6 x α 25 inches on a steel stand with a 3 x 5 inch hole,
A 4.9 kg weight with an inch radius nose? After dropping the plate and applying a Vr blow of υ15001b-1n per inch of plate thickness, the plate was subjected to a compression test to determine the OA work.

実施u11 弾性率24 t/m”の12に炭素繊維トウ1002を
陽極としてそれぞれ2%硫酸、5%りん酸アンモニウム
、5%硝酸ナトリウム、5%りん酸二ナトリウムおよび
5%水酸化カリウムの各水溶液1tを電解液とし、1.
5A/m2の電流密度で1分間電解酸化処理した。処理
後裔電解液の400 nm における透過率を測定した
ところ第1表の如き結果が得られた。電解液のpHが7
より大きくなると、表面処理による酸化生成物が電解液
中に溶出してくるのがわかる。
Implementation u11 Each aqueous solution of 2% sulfuric acid, 5% ammonium phosphate, 5% sodium nitrate, 5% disodium phosphate and 5% potassium hydroxide was applied to 12 with a modulus of elasticity of 24 t/m'' using carbon fiber tow 1002 as an anode. 1 t as electrolyte, 1.
Electrolytic oxidation treatment was performed for 1 minute at a current density of 5 A/m2. When the transmittance at 400 nm of the treated progeny electrolyte was measured, the results shown in Table 1 were obtained. pH of electrolyte is 7
As the size increases, it can be seen that oxidation products from the surface treatment are eluted into the electrolyte.

第1表 実施例2 弾性率24 t/sew”の12に炭素繊維トウを陽極
として5優の炭酸アンモニウム水溶液中1、OA / 
m ”の電流密度で電解酸化処理した後、第2表に示す
各条件で水洗を行ない、得られた炭素繊維について、本
文中に記載の方法で抽出液の吸光度?計算した。
Table 1 Example 2 1, OA /
After electrolytic oxidation treatment at a current density of m'', water washing was performed under each condition shown in Table 2, and the absorbance of the extract of the obtained carbon fibers was calculated using the method described in the text.

又得られた炭素繊維の♂A工全全測定たところ第2表に
示す結果が得られた。
In addition, the results shown in Table 2 were obtained when the entire ♂A process of the obtained carbon fiber was measured.

第2表 実施列3 弾性率30 t/w”の6に炭素繊維トウを陽極として
10壬の炭酸水素アンモニウム水溶液中t a b/m
2の電流密、度で電解酸化処理した後、室温で15%の
水酸化ナトリウム水溶液で洗浄した後、同じく室温で水
洗し処理系を得た。水酸化ナトリウム水溶液およびその
後の水洗の時間?かえて、吸光度およびOA工を測定し
たところ第3表に示す結果が得られた。
Table 2, Column 3: Elastic modulus: 30 t/w'', carbon fiber tow used as an anode, t a b/m in 10 m of ammonium bicarbonate aqueous solution
After electrolytic oxidation treatment at a current density of 2, the treated system was washed with a 15% aqueous sodium hydroxide solution at room temperature, and then washed with water at room temperature to obtain a treated system. Sodium hydroxide solution and subsequent water washing time? On the contrary, when absorbance and OA were measured, the results shown in Table 3 were obtained.

第3表 実施例4 弾性率28 t/w2の12’に炭素繊維トウを陽極と
して第4表に示す条件で表面処理を施した後(A)70
℃の温水で3分間洗浄した場合と(B)[15係の水酸
化ナトリウム水溶液でα4分洗浄した後20℃の水で3
分間洗浄した場合を比較して示した。アルカリ性水溶液
での洗浄の優位性が明らかである。
Table 3 Example 4 After surface treatment was performed on 12' of elastic modulus 28 t/w2 using carbon fiber tow as an anode under the conditions shown in Table 4 (A) 70
(B) When washed with warm water at 20°C for 3 minutes and (B) after washing with a sodium hydroxide aqueous solution of Section 15 for 4 minutes,
A comparison is shown for the case of washing for 1 minute. The superiority of cleaning with an alkaline aqueous solution is clear.

第4表 実施例5 弾性率33 t/m”の6に炭素繊維トウを陽極として
5%の水酸化ナトリウム水溶液中で1.8h/m”の電
流密度で1分間表面処理した後、第5表に示すアルカリ
種、濃度)よび液温で洗浄を行ない処理系を得だ。彦お
アルカリ水溶液洗浄後の水洗は室温で2分間行った。得
られた炭素繊維の吸光度およびCAIは第5表に示した
Table 4 Example 5 After surface treatment for 1 minute at a current density of 1.8 h/m'' in a 5% sodium hydroxide aqueous solution using a carbon fiber tow as an anode with an elastic modulus of 33 t/m'', A treatment system was obtained by cleaning with the alkali species and concentration shown in the table and the liquid temperature. Washing with water after washing with the Hikoo alkaline aqueous solution was carried out at room temperature for 2 minutes. The absorbance and CAI of the obtained carbon fibers are shown in Table 5.

第5表Table 5

Claims (1)

【特許請求の範囲】 1、炭素繊維を焼成後、アルカリ性水溶液中で炭素繊維
を陽極として電解酸化処理した後、該炭素繊維を水洗あ
るいはアルカリ性水溶液中で浸漬洗浄処理することを特
徴とする炭素繊維の表面処理法。 2、水洗を40℃以上の温水又は沸水中で行うことを特
徴とする特許請求の範囲第1項記載の処理法。 3、アルカリ性水溶液が炭酸アンモニウム、炭酸水素ア
ンモニウム又はカルバミン酸アンモニウムの水溶液であ
ることを特徴とする特許請求の範囲第1項記載の処理法
[Claims] 1. A carbon fiber characterized in that after firing the carbon fiber, the carbon fiber is electrolytically oxidized in an alkaline aqueous solution using the carbon fiber as an anode, and then the carbon fiber is washed with water or immersed in an alkaline aqueous solution. surface treatment method. 2. The treatment method according to claim 1, wherein the washing is carried out in hot water of 40° C. or higher or in boiling water. 3. The treatment method according to claim 1, wherein the alkaline aqueous solution is an aqueous solution of ammonium carbonate, ammonium hydrogen carbonate, or ammonium carbamate.
JP10928886A 1986-05-13 1986-05-13 Surface treatment of carbon fiber Pending JPS62268873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10928886A JPS62268873A (en) 1986-05-13 1986-05-13 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10928886A JPS62268873A (en) 1986-05-13 1986-05-13 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62268873A true JPS62268873A (en) 1987-11-21

Family

ID=14506374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10928886A Pending JPS62268873A (en) 1986-05-13 1986-05-13 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62268873A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332189A (en) * 2003-04-18 2004-11-25 Toray Ind Inc Hot-water washing apparatus and method for treating carbon fiber bundle using the same
JP2008106109A (en) * 2006-10-24 2008-05-08 Nagase Chemtex Corp Method for producing carbon fiber-reinforced composite material
JP2010229572A (en) * 2009-03-26 2010-10-14 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber and method for producing the same
WO2012093484A1 (en) * 2011-01-06 2012-07-12 株式会社日立製作所 Mechanical fuse installation system and mechanical fuse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332189A (en) * 2003-04-18 2004-11-25 Toray Ind Inc Hot-water washing apparatus and method for treating carbon fiber bundle using the same
JP4547969B2 (en) * 2003-04-18 2010-09-22 東レ株式会社 Hot water cleaning apparatus and carbon fiber bundle processing method using the same
JP2008106109A (en) * 2006-10-24 2008-05-08 Nagase Chemtex Corp Method for producing carbon fiber-reinforced composite material
JP2010229572A (en) * 2009-03-26 2010-10-14 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber and method for producing the same
WO2012093484A1 (en) * 2011-01-06 2012-07-12 株式会社日立製作所 Mechanical fuse installation system and mechanical fuse

Similar Documents

Publication Publication Date Title
JP6044946B2 (en) Method for recovering carbon fiber from carbon fiber composite material
JPS6262185B2 (en)
CN107190513A (en) The method of the twice-modified chopped carbon fiber of polyethyleneimine
JPS62268873A (en) Surface treatment of carbon fiber
WO2019153218A1 (en) Environmentally friendly non-destructive fiber-reinforced composite material recovering method
EP0374680A1 (en) Carbon fibers having modified surfaces and process for preparing the same
JPS62276075A (en) Carbon fiber and its production
US3657082A (en) Treatment of fibrous materials
JPH0544154A (en) Surface treatment of carbon fiber
CN107217491B (en) The method of the modified chopped carbon fiber of polyaniline-coated
JPH1025627A (en) Acrylic carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
WO2020093503A1 (en) Electrically promoted heterogeneous catalytic device for recovering cfrp and control method thereof
CN115418450A (en) High-hardness corrosion-resistant alloy steel for offshore wind power bolt bar and preparation method thereof
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
JPS61124674A (en) Surface treatment of carbon fiber
JPS6385167A (en) Surface modified carbon fiber and its production
JPS61124677A (en) Surface treatment of carbon fiber
KR910003351B1 (en) Method for after-treatment of carbon fiber
JPS62263375A (en) Surface treatment of carbon fiber
JP2592294B2 (en) Post-processing method of carbon fiber
CN111926329A (en) Preparation method of laser modified organic-inorganic composite protective coating on surface of titanium alloy
US2945779A (en) Treatment of titanium and product, and composition therefor
US20060006072A1 (en) Pre-treating method for plating a Fe-Mn-Al alloy surface
JPS61119772A (en) Surface treatment of carbon fiber