JP2592294B2 - Post-processing method of carbon fiber - Google Patents

Post-processing method of carbon fiber

Info

Publication number
JP2592294B2
JP2592294B2 JP63144521A JP14452188A JP2592294B2 JP 2592294 B2 JP2592294 B2 JP 2592294B2 JP 63144521 A JP63144521 A JP 63144521A JP 14452188 A JP14452188 A JP 14452188A JP 2592294 B2 JP2592294 B2 JP 2592294B2
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
ultrasonic
frequency
khz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63144521A
Other languages
Japanese (ja)
Other versions
JPH0192471A (en
Inventor
富士夫 中尾
伸之 山本
勝美 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63144521A priority Critical patent/JP2592294B2/en
Publication of JPH0192471A publication Critical patent/JPH0192471A/en
Application granted granted Critical
Publication of JP2592294B2 publication Critical patent/JP2592294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維の新規な後処理方法に関するもので
ある。
The present invention relates to a novel post-treatment method for carbon fibers.

〔従来の技術〕 炭素繊維を補強材とする複合材料は軽量でかつ強度、
弾性率に優れているため、スポーツ,レジャー用品の構
成部品として、或いは宇宙航空用器材等として幅広い分
野にわたつてその用途開発が進められている。従来複合
材の補強材として用いられてきた炭素繊維は、マトリツ
クス樹脂との接着性が必ずしも十分ではないため、その
表面を活性化させるため、薬剤酸化処理、気相酸化処理
あるいは電解酸化処理等の表面処理方法が採用されてき
た。その中でも電解酸化処理方法は、その操作性の良
さ、反応制御の容易さ等の見地から実用的な表面処理方
法である。
[Prior art] Composite materials using carbon fiber as a reinforcing material are lightweight and strong,
Due to its excellent elastic modulus, its use is being developed in a wide range of fields as a component of sports and leisure goods or as an aerospace equipment. Conventionally, carbon fibers that have been used as a reinforcing material for composite materials do not always have sufficient adhesiveness to the matrix resin, so to activate the surface, chemical oxidation treatment, gas phase oxidation treatment, electrolytic oxidation treatment, etc. Surface treatment methods have been employed. Among them, the electrolytic oxidation treatment method is a practical surface treatment method from the viewpoint of good operability, easy reaction control and the like.

電解酸化処理方法として、従来種々の電解質が使用さ
れてきた。一方、電解酸化処理後、炭素繊維表面には酸
化不純物が存在し、これを洗浄除去する必要がある。電
解酸化処理後の洗浄を温水で行うと長時間処理する必要
があり、短時間の処理が可能で、しかも炭素繊維の性能
をそこなうことのない方法は、いまだ見い出されていな
いのが現状である。
Conventionally, various electrolytes have been used as the electrolytic oxidation treatment method. On the other hand, after the electrolytic oxidation treatment, oxidized impurities are present on the carbon fiber surface and need to be removed by washing. If the washing after the electrolytic oxidation treatment is performed with warm water, it is necessary to perform the treatment for a long time, and a method that can perform the treatment in a short time and does not impair the performance of the carbon fiber has not yet been found. .

洗浄において、超音波を使用することは良くしられて
いるが、炭素繊維の様に伸度の少ない物に超音波を使用
すると、洗浄する炭素繊維自体を傷めることがある。特
開昭62−149967号公報には、炭素繊維を酸性電解質を含
む水溶液中で電解処理後、超音波洗浄し、続いて400〜9
00℃で不活性化処理を行うことが示されているが、界面
接着力の発現性の点から不十分であり、さらに、電解酸
化における電解質と超音波洗浄の組み合わせ、及び、超
音波洗浄の適正な条件を検討する必要があった。
In cleaning, the use of ultrasonic waves has been improved. However, if ultrasonic waves are used for objects having low elongation, such as carbon fibers, the carbon fibers themselves may be damaged. JP-A-62-149967 discloses that a carbon fiber is subjected to an electrolytic treatment in an aqueous solution containing an acidic electrolyte, followed by ultrasonic cleaning, followed by 400 to 9
Although it is shown that the inactivation treatment is performed at 00 ° C., it is insufficient from the viewpoint of the development of interfacial adhesion, and furthermore, the combination of electrolyte and ultrasonic cleaning in electrolytic oxidation, and ultrasonic cleaning It was necessary to consider appropriate conditions.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的はコンポジツト特性(特に界面接着力)
の発現性が良好で、しかも引つ張り強度の優れた炭素繊
維を製造することである。
The purpose of the present invention is the composite properties (especially interfacial adhesion)
The object of the present invention is to produce a carbon fiber which has a good expression and a high tensile strength.

本発明はそのための新規な表面処理方法を提供するも
のである。
The present invention provides a novel surface treatment method for that purpose.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨とするところは、炭素繊維を陽極とし
て、アンモニウムイオン濃度が0.2〜4.0mol/であり、
pHが7以上の水溶液中で電解酸化処理した後、さらに別
の水中で周波数20kHz以上、下記式を満足する強度で超
音波処理して炭素繊維表面の脆弱部を除去することを特
徴とする炭素繊維の後処理方法にある。
The gist of the present invention is that, using carbon fiber as an anode, the ammonium ion concentration is 0.2 to 4.0 mol /,
Electrolytic oxidation treatment in an aqueous solution having a pH of 7 or more, followed by ultrasonic treatment in another water at a frequency of 20 kHz or more at a strength that satisfies the following formula to remove fragile portions on the carbon fiber surface. In the post-treatment method of the fiber.

本発明で使用するアンモニウム塩は特に制限はなく、
例えばカルバミン酸アンモニウム、炭酸アンモニウム、
炭酸水素アンモニウム等を単独でもしくは二種以上の混
合物として用いることができる。又、電解酸化処理液の
導電度を上げるためNaOH,KOH等のアルカリ金属の水酸化
物を併用しても良い。
The ammonium salt used in the present invention is not particularly limited,
For example, ammonium carbamate, ammonium carbonate,
Ammonium hydrogen carbonate or the like can be used alone or as a mixture of two or more. Further, an alkali metal hydroxide such as NaOH or KOH may be used in combination to increase the conductivity of the electrolytic oxidation treatment solution.

炭酸繊維の表面には焼成過程で焼結付着したタール・
ミスト成分及び表面処理過程で酸化されたそれらの酸化
物が付着或いは結晶間のミクロボイド部に沈積し、脆弱
な層或いは部分を形成しており、この脆弱部は一般に繊
維基質との結合が弱く、剥離し易い状態になつている。
On the surface of the carbon dioxide fiber, tar
Mist components and their oxides oxidized in the surface treatment process adhere or deposit in microvoids between crystals to form a fragile layer or portion, which is generally weakly bonded to the fiber matrix, It is in a state of easy peeling.

コンポジツトの残存圧縮強度(CAI)を向上させるた
めには、衝撃を加えた事によつて生じるコンポジツト内
部の剥離を最小限にとどめることが重要であり、そのた
めには炭素繊維表層を酸化すると同時に脆弱部を取り除
くことが必要不可欠であるとの認識に基づき、検討の結
果炭素繊維を陽極として、アンモニウムイオン濃度が0.
2〜4.0mol/であり、pHが7以上の水溶液中で電解酸化
処理することにより、炭素繊維基質が酸化されると同時
に表面層の脆弱部が除去されることを見い出した。
In order to improve the residual compressive strength (CAI) of the composite, it is important to minimize the exfoliation inside the composite caused by the impact, so that the carbon fiber surface layer is oxidized and fragile at the same time. Based on the recognition that it was indispensable to remove the part, the result of the examination was that carbon fiber was used as the anode and the ammonium ion concentration was reduced to 0.
It was found that by performing electrolytic oxidation treatment in an aqueous solution having a pH of 2 to 4.0 mol / and a pH of 7 or more, the carbon fiber substrate was oxidized and the fragile portion of the surface layer was removed at the same time.

この表面層の脆弱部を除去する電解酸化処理の前に、
炭素繊維表面に酸素をできるだけ多く導入するため、酸
性電解質中で電解酸化処理を行つても良い。
Before electrolytic oxidation treatment to remove the fragile part of this surface layer,
In order to introduce as much oxygen as possible into the carbon fiber surface, electrolytic oxidation treatment may be performed in an acidic electrolyte.

しかし炭素繊維表面上の残存酸化不純物は上記の処理
によつてもまだ表面に付着している。本発明は更に超音
波処理を加えることによつて残存酸化不純物を除去する
ものである。
However, the remaining oxidized impurities on the carbon fiber surface are still attached to the surface by the above treatment. The present invention further removes residual oxidized impurities by applying ultrasonic treatment.

超音波強度が小さいと、炭素繊維表面上の残存酸化不
純物は除去できず、超音波強度が大きすぎると、炭素繊
維を傷つけ、毛羽が発生する。本発明者らは、さらにこ
の現象が、超音波の周波数と超音波の処理時間に影響さ
れることを見出した。即ち、超音波の周波数が低いほ
ど、酸化不純物は除去しやすいが、炭素繊維を傷つけや
すく、余り超音波強度を高くすることができない。一
方、超音波の周波数が高れけば、炭素繊維を傷つけにく
く、毛羽の発生が起こりにくいが、酸化不純物を除去し
にくく、余り超音波強度を低くすることはできない。
If the ultrasonic intensity is low, the remaining oxidized impurities on the carbon fiber surface cannot be removed, and if the ultrasonic intensity is too high, the carbon fiber is damaged and fluff is generated. The present inventors have further found that this phenomenon is affected by the frequency of the ultrasonic waves and the processing time of the ultrasonic waves. In other words, the lower the frequency of the ultrasonic wave, the easier it is to remove the oxidized impurities, but the more easily the carbon fiber is damaged, and the ultrasonic intensity cannot be increased much. On the other hand, if the frequency of the ultrasonic wave is high, the carbon fiber is hardly damaged and fluff is unlikely to occur, but it is difficult to remove oxidized impurities, and the ultrasonic intensity cannot be reduced too much.

また超音波の処理時間を長くすると、酸化不純物は除
去しやすいが、炭素繊維を傷つけやすい。
When the ultrasonic treatment time is increased, oxidized impurities are easily removed, but the carbon fibers are easily damaged.

即ち超音波強度が より小さければ、残存酸化不純物の除去が不充分であ
り、 より大きければ、炭素繊維の一部が切断して、毛羽が発
生する。
That is, the ultrasonic intensity If it is smaller, the removal of residual oxide impurities is insufficient, If it is larger, a part of the carbon fiber is cut, and fluff is generated.

この時処理する水の温度は高い方が、残存酸化不純物
が良く除去でき、好ましくは60℃以上の温度で処理する
ことが望ましい。
At this time, the higher the temperature of the water to be treated, the better the removal of residual oxidized impurities. Preferably, the treatment is performed at a temperature of 60 ° C. or higher.

炭素繊維表面上の残存酸化不純物が230nmでの吸光度
として0.2以下となるように超音波処理することが必要
である。0.2より大きい数値の時は残存酸化不純物が炭
素繊維表面上から充分に除去されておらず、目的とする
性能のものが得られない。
It is necessary to perform ultrasonic treatment so that residual oxidized impurities on the carbon fiber surface have an absorbance at 230 nm of 0.2 or less. When the value is larger than 0.2, the remaining oxidized impurities are not sufficiently removed from the surface of the carbon fiber, and the desired performance cannot be obtained.

本発明の処理により引張り強度が非常に向上する。こ
の理由はさだかでないが、本発明の処理によつて表層の
欠陥部分の緩和が起こり、炭素繊維の強度も飛躍的に向
上するのではないかと考えられる。
The treatment of the present invention greatly improves the tensile strength. Although the reason for this is not obvious, it is considered that the treatment of the present invention alleviates the defective portion of the surface layer, and that the strength of the carbon fiber is dramatically improved.

炭素繊維の引張強度はコンポジツトの引張強度を向上
させるばかりでなく、コンポジツトのCAIも向上させ
る。その結果、コンポジツトのCAIは本発明の処理によ
つて表層の脆弱部の除去及び表層欠陥部の緩和によつて
大きく向上する。
The tensile strength of carbon fiber not only improves the tensile strength of the composite, but also improves the CAI of the composite. As a result, the CAI of the composite is greatly improved by the removal of the fragile portion of the surface layer and the mitigation of the surface defect portion by the treatment of the present invention.

又、CAIは炭素繊維の表層の結晶構造に大きく左右さ
れる。炭素繊維表層においてグラフアイト面が大きく広
がると、後処理工程において表面酸化が起こりにくくな
る。たとえ一定水準まで表面酸化を行つたとしても、そ
の被酸化部分は広いグラフアイト面の周辺部のみに局在
化し、マトリツクス樹脂との相互作用に乏しいグラフア
イト面が表面を多く被うことになり、後処理の表面酸化
の効果が発現にしくくなつてCAIは向上してこない。グ
ラフアイト面が小さく、本発明の処理によつて実用的な
値までCAIを向上させるためには、対象とする炭素繊維
はその弾性率が40t/mm2以下のものである方が好まし
い。
Further, CAI greatly depends on the crystal structure of the surface layer of carbon fiber. If the graphite surface greatly expands in the surface layer of the carbon fiber, surface oxidation hardly occurs in the post-treatment step. Even if the surface is oxidized to a certain level, the oxidized part is localized only on the periphery of the wide graphite surface, and the graphite surface, which has poor interaction with the matrix resin, will cover the surface a lot. However, the CAI does not improve because the surface oxidation effect of the post-treatment does not easily appear. In order to improve the CAI to a practical value by the treatment of the present invention with a small graphite surface, it is preferable that the target carbon fiber has an elastic modulus of 40 t / mm 2 or less.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

炭素繊維コンポジツトの「衝撃後の残存圧縮強度(CA
I)」はNASA RP1092に準拠して次の方法により測定し
た。
Residual compressive strength after impact (CA
"I)" was measured by the following method in accordance with NASA RP1092.

ビス(4−マレイミドフエニル)メタン50部を2,2−
ビス(4−シアナ−トフエニル)プロパン450部と120℃
で20分間予備反応させ、予備反応物を得た。これにエピ
コート834(油化シエル社製、エポキシ当量250)を4,4
−ジアミノジフエニルスルホンとアミノ基/エポキシ基
=1/4の当量比で160℃、4時間反応させ、エピコート80
7(油化シエル社製、エポキシ当量170)で80%に希釈し
た予備反応物2000部を加え、70℃で30分間均一に混合
し、更にN−(3,4−ジクロロフエニル)−N′,N′−
ジメチル尿素100部、ジクミルパーオキサイド1部及び
酸化珪素微粉末アエロジル380(日本アエロジル社製)2
5部を加え、70℃で1時間均一に混合して得た樹脂組成
物をホツトメルト方式によりフイルム化し、炭素繊維を
用いて一方向プリプレグを作成し、〔+45゜/0゜/−45
゜/+90゜〕4Sの擬似等方に積層し、180℃で2時間硬
化させて寸法4×6×0.25インチの試験片を作成し、3
×5インチの穴のあいたスチール製台上に固定した後、
その中心に0.5インチRのノーズをつけた4.9kgの分銅を
落下せしめ、板厚1インチ当り1500lb−inの衝撃を加え
た後、その板を圧縮試験することにより「CAI」を求め
た。「ストランド強度、ストランド弾性率」はJIS−R76
01に従つて測定した。
50 parts of bis (4-maleimidophenyl) methane is added to 2,2-
450 parts of bis (4-cyana-tophenyl) propane and 120 ° C
For 20 minutes to obtain a pre-reacted product. Add Epicoat 834 (Yuka Kasei Co., Ltd., epoxy equivalent: 250) to this
-Diaminodiphenyl sulfone was reacted with an amino group / epoxy group at an equivalent ratio of 1/4 at 160 ° C for 4 hours, and epicoat 80
Add 2000 parts of the pre-reaction product diluted to 80% with 7 (Yuika Ciel, epoxy equivalent: 170), mix uniformly at 70 ° C for 30 minutes, and further add N- (3,4-dichlorophenyl) -N ′, N′−
100 parts of dimethyl urea, 1 part of dicumyl peroxide and fine powder of silicon oxide Aerosil 380 (manufactured by Nippon Aerosil Co., Ltd.) 2
5 parts were added, and the resin composition obtained by mixing uniformly at 70 ° C. for 1 hour was formed into a film by a hot melt method, and a unidirectional prepreg was prepared using carbon fibers. [+ 45 ° / 0 ° / −45 °
{/ + 90}] 4S quasi-isotropic lamination and curing at 180 ° C for 2 hours to prepare test specimens of dimensions 4 x 6 x 0.25 inches.
After fixing it on a steel table with a hole of × 5 inches,
A 4.9 kg weight having a nose of 0.5 inch R was dropped at the center thereof, and an impact of 1500 lb-in was applied per 1 inch of the plate thickness. Then, the plate was subjected to a compression test to obtain "CAI". "Strand strength, strand elastic modulus" is JIS-R76
Measured according to 01.

吸光度の測定値で示される炭素繊維表面上の「残存酸
化不純物」は次の方法で測定した。炭素繊維1gを10gの
蒸留水に浸漬し、80℃に加熱しながら45kHzの超音波で
0.2W/cm2,10分間処理し、酸化不純物を炭素繊維表面か
ら蒸留水中に分散又は溶解し、その上澄液を1cmの石英
製セルに入れて、UVスペクトルメーターにより230nmで
吸光度を測定した。対照液は蒸留水とした。
"Remaining oxidized impurities" on the carbon fiber surface, which are indicated by the measured values of absorbance, were measured by the following method. 1 g of carbon fiber is immersed in 10 g of distilled water, and heated to 80 ° C with 45 kHz ultrasonic waves.
0.2 W / cm 2 , treated for 10 minutes, oxidized impurities were dispersed or dissolved in distilled water from the carbon fiber surface, the supernatant was placed in a 1 cm quartz cell, and the absorbance was measured at 230 nm with a UV spectrum meter. . The control solution was distilled water.

実施例1 アクリロニトリル98wt%、アクリル酸メチル1wt%、
メタクリル酸1wt%の組成を有する重合体をジメチルホ
ルムアミドに固形分濃度26wt%となるように溶解してド
ーブを作り、10μ過及び3μ過を行つて湿式紡糸を
行い、引続き湯浴で5倍に延伸し、水洗乾燥して更に乾
熱170℃で1.3倍に延伸して0.8デニールの繊度を有する
フイラメント数9000のプレカーサーを得た。
Example 1 98% by weight of acrylonitrile, 1% by weight of methyl acrylate,
A polymer having a composition of 1% by weight of methacrylic acid is dissolved in dimethylformamide so as to have a solid concentration of 26% by weight, and a dove is prepared. The film was stretched, washed and dried, and further stretched 1.3 times at 170 ° C. to obtain a precursor having a filament number of 9000 and a fineness of 0.8 denier.

このプレカーサーを220〜260℃の熱風循環型の耐炎化
炉を60分間通過せしめて15%伸長しながら耐炎化処理し
た。
The precursor was passed through a hot-air circulation type flame stabilization furnace at 220 to 260 ° C. for 60 minutes, and subjected to a flame stabilization treatment while elongating by 15%.

次に、耐炎化繊維を純粋なN2気流中300〜600℃の温度
勾配を有する第一炭素化炉を8%伸長しながら通過せし
め、更に同雰囲気中1300℃の最高温度を有する第二炭素
化炉中において400mg/dの張力下に2分熱処理を行い炭
素繊維を得た。
Next, the oxidized fiber was passed through a first carbonization furnace having a temperature gradient of 300 to 600 ° C. in a pure N 2 gas stream while elongating 8%, and further a second carbon having a maximum temperature of 1300 ° C. in the same atmosphere. Heat treatment was performed for 2 minutes under a tension of 400 mg / d in a gasifier to obtain carbon fibers.

引続いて重炭酸アンモニウム5wt%水溶液(アンモニ
ウムイオン濃度0.6mol/)中を走行せしめ、炭素繊維
を陽極として、被処理炭素繊維1g当り100クーロンの電
気量となるように対極との間で通電処理を行い、次いで
温度90℃の水中で周波数38kHz、強度0.46W/cm2で2分超
音波処理を行つた。
Then, it is run in a 5 wt% ammonium bicarbonate aqueous solution (ammonium ion concentration: 0.6 mol /), and the carbon fiber is used as the anode, and the electricity is passed between the counter electrode so that the amount of electricity becomes 100 coulombs per gram of the carbon fiber to be treated. Then, sonication was performed in water at a temperature of 90 ° C. at a frequency of 38 kHz and an intensity of 0.46 W / cm 2 for 2 minutes.

この炭素繊維のストランド強度は650kg/mm2、弾性率3
2t/mm2、コンポジツトのCAIは38kg/mm2であつた。吸光
度で示される残存酸化不純物は0.17であつた。
The strand strength of this carbon fiber is 650 kg / mm 2 and the elastic modulus is 3
The CAI of the composite was 2 kg / mm 2 and 2 t / mm 2 . The residual oxidized impurity indicated by the absorbance was 0.17.

実施例2 実施例1と同様にして得られた炭素繊維を、重炭素ア
ンモニウム5wt%水溶液(アンモニウムイオン濃度0.6mo
l/)中で150クーロン/gで電解酸化を行い、次いで温
度90℃の水中で周波数38kHz、強度1.0W/cm2で1分超音
波処理を行つた。
Example 2 A carbon fiber obtained in the same manner as in Example 1 was mixed with a 5 wt% aqueous solution of ammonium heavy carbon (ammonium ion concentration: 0.6 mol
Electrolytic oxidation was performed at 150 coulombs / g in l /), and then sonication was performed in water at a temperature of 90 ° C. for 1 minute at a frequency of 38 kHz and an intensity of 1.0 W / cm 2 .

この炭素繊維のストランド強度は640kg/mm2、弾性率3
2t/mm2、コンポジツトのCAIは37kg/mm2であつた。吸光
度で示される残存酸化不純物は0.15であつた。
The strand strength of this carbon fiber is 640 kg / mm 2 and the elastic modulus is 3
The CAI of the composite was 37 kg / mm 2 , 2 t / mm 2 . The residual oxidized impurity indicated by the absorbance was 0.15.

実施例3 超音波処理の周波数を27kHzにして実施例1と同様の
処理を行つた。
Example 3 The same processing as in Example 1 was performed by changing the frequency of the ultrasonic treatment to 27 kHz.

この炭素繊維のストランド強度は650kg/mm2、弾性率3
2.4t/mm2、コンポジツトのCAIは38kg/mm2であつた。吸
光度で示される残存酸化不純物は0.10であつた。
The strand strength of this carbon fiber is 650 kg / mm 2 and the elastic modulus is 3
2.4t / mm 2, CAI of Konpojitsuto was found to be 38kg / mm 2. The residual oxidized impurity indicated by the absorbance was 0.10.

比較例1 実施例1と同様にして得られた炭素繊維をリン酸5%
水溶液中、20クーロン/gで電解酸化を行い、温水90℃で
15分間洗浄処理を行つた。
Comparative Example 1 A carbon fiber obtained in the same manner as in Example 1 was phosphoric acid 5%
Perform electrolytic oxidation at 20 coulomb / g in aqueous solution,
The washing process was performed for 15 minutes.

この炭素繊維のストランド強度は581kg/mm2、弾性率
は31t/mm2、コンポジツトのCAIは24.5kg/mm2であつた。
吸光度で示される残存酸化不純物は0.43であつた。
The strand strength of this carbon fiber was 581 kg / mm 2 , the elastic modulus was 31 t / mm 2 , and the CAI of the composite was 24.5 kg / mm 2 .
The residual oxidized impurity indicated by the absorbance was 0.43.

比較例2 超音波による処理以外は実施例1と同様に処理し、そ
の後温水90℃で15分間洗浄処理を行つた。
Comparative Example 2 The same treatment as in Example 1 was performed except for the treatment with ultrasonic waves, and then a washing treatment was performed at 90 ° C. for 15 minutes with hot water.

この炭素繊維のストランド強度は590kg/mm2、弾性率
は31.2t/mm2、コンポジツトのCAIは35kg/mm2であつた。
吸光度で示される残存酸化不純物は0.21であつた。
The strand strength of this carbon fiber was 590 kg / mm 2 , the elastic modulus was 31.2 t / mm 2 , and the CAI of the composite was 35 kg / mm 2 .
The residual oxidized impurity indicated by the absorbance was 0.21.

実施例4〜7及び比較例3,4 実施例1と同様にして但し超音波処理を38kHzの周波
数で、処理時間1分、温度90℃で表1に示すように変更
して処理を行つた処表1のような結果が得られた。
Examples 4 to 7 and Comparative Examples 3 and 4 The same procedure as in Example 1 was carried out except that the ultrasonic treatment was carried out at a frequency of 38 kHz, a treatment time of 1 minute, and a temperature of 90 ° C. as shown in Table 1. The results shown in Table 1 were obtained.

実施例8〜12及び比較例5,6 実施例1と同様にして、但し超音波処理を27kHzの周
波数で、処理時間1分、温度90℃で、表2に示すように
変更して処理を行つた処表2のような結果が得られた。
Examples 8 to 12 and Comparative Examples 5 and 6 In the same manner as in Example 1, except that the ultrasonic treatment was performed at a frequency of 27 kHz, a treatment time of 1 minute, a temperature of 90 ° C., and changes as shown in Table 2. The results shown in Table 2 were obtained.

実施例13〜18及び比較例7,8 実施例1と同様にして、但し超音波処理を45kHzの周
波数で、処理時間1分、温度90℃で、表3に示すように
変更して処理を行つた処表3のような結果が得られた。
Examples 13 to 18 and Comparative Examples 7 and 8 In the same manner as in Example 1, except that the ultrasonic treatment was performed at a frequency of 45 kHz, a processing time of 1 minute, and a temperature of 90 ° C., as shown in Table 3. The results shown in Table 3 were obtained.

実施例19,20 実施例1と同様にして、但し超音波処理を100kHzの周
波数で、温度90℃で、表4に示すように変更して処理を
行つた処、表4のような結果が得られた。
Examples 19 and 20 In the same manner as in Example 1 except that the ultrasonic treatment was performed at a frequency of 100 kHz, a temperature of 90 ° C., and the treatment was performed as shown in Table 4, the results shown in Table 4 were obtained. Obtained.

実施例21〜25及び比較例9,10 実施例1と同様にして、但し超音波処理は38kHzの周
波数で、超音波強度0.5W/cm2、温度90℃で、表5に示す
ように変更して処理を行つた処、表5のような結果が得
られた。但し比較例10は、プラスチツク製ボビンに炭素
繊維を巻取り、そのボビンを超音波処理した。
Examples 21 to 25 and Comparative Examples 9 and 10 In the same manner as in Example 1, except that the ultrasonic treatment was performed at a frequency of 38 kHz, an ultrasonic intensity of 0.5 W / cm 2 and a temperature of 90 ° C., as shown in Table 5. Then, the results shown in Table 5 were obtained. However, in Comparative Example 10, a carbon fiber was wound around a plastic bobbin, and the bobbin was subjected to ultrasonic treatment.

実施例26,27及び比較例11 実施例1と同様にして得られた炭素繊維を、さらに18
00℃の最高温度を有する第3炭素化炉中で400mg/dの張
力下、2分加熱処理を行つた。このようにして得た炭素
繊維をりん酸5%水溶液中炭素繊維1g当り25クーロンの
電気量となるように電解酸化処理を行い次いで重炭酸ア
ンモニウム5%水溶液中、炭素繊維1g当たり100クーロ
ンの電気量で電解酸化処理を行つた。この炭素繊維を表
6に示すような超音波処理を行い、表6に示すような炭
素繊維を得た。
Examples 26 and 27 and Comparative Example 11 The carbon fibers obtained in the same manner as in Example 1
Heat treatment was performed for 2 minutes under a tension of 400 mg / d in a third carbonization furnace having a maximum temperature of 00 ° C. The carbon fiber thus obtained is subjected to electrolytic oxidation treatment in a 5% aqueous solution of phosphoric acid so that the amount of electricity becomes 25 coulombs per 1 g of carbon fiber, and then 100 coulombs per 1 g of carbon fiber in a 5% aqueous solution of ammonium bicarbonate. The amount was subjected to electrolytic oxidation treatment. This carbon fiber was subjected to an ultrasonic treatment as shown in Table 6 to obtain a carbon fiber as shown in Table 6.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維を陽極として、アンモニウムイオ
ン濃度が0.2〜4.0mol/であり、pHが7以上の水溶液中
で電解酸化処理した後、さらに別の水中で周波数20kHz
以上、下記式を満足する強度で超音波処理して炭素繊維
表面の脆弱部を除去することを特徴とする炭素繊維の後
処理方法。 (Fは周波数(kHz)、Tは処理時間(分)、但しT>
0.1)
1. An electrolytic oxidation treatment in an aqueous solution having an ammonium ion concentration of 0.2 to 4.0 mol / and a pH of 7 or more using a carbon fiber as an anode, and further in another water at a frequency of 20 kHz.
As described above, a post-treatment method for carbon fiber, which comprises removing the brittle portion on the surface of the carbon fiber by ultrasonic treatment at a strength satisfying the following formula. (F is frequency (kHz), T is processing time (min), provided that T>
0.1)
【請求項2】超音波処理を60℃以上の温度で行うことを
特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the sonication is performed at a temperature of 60 ° C. or higher.
【請求項3】処理された炭素繊維の残存酸化不純物が、
吸光度で0.2以下であることを特徴とする請求項1記載
の方法。
3. The residual oxidizing impurities of the treated carbon fiber are:
The method according to claim 1, wherein the absorbance is 0.2 or less.
【請求項4】処理に供される炭素繊維の弾性率が40t/mm
2以下であることを特徴とする請求項1記載の方法。
4. The carbon fiber subjected to the treatment has an elastic modulus of 40 t / mm.
2. The method according to claim 1, wherein the number is 2 or less.
JP63144521A 1987-06-16 1988-06-10 Post-processing method of carbon fiber Expired - Fee Related JP2592294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144521A JP2592294B2 (en) 1987-06-16 1988-06-10 Post-processing method of carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14993687 1987-06-16
JP62-149936 1987-06-16
JP63144521A JP2592294B2 (en) 1987-06-16 1988-06-10 Post-processing method of carbon fiber

Publications (2)

Publication Number Publication Date
JPH0192471A JPH0192471A (en) 1989-04-11
JP2592294B2 true JP2592294B2 (en) 1997-03-19

Family

ID=26475907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144521A Expired - Fee Related JP2592294B2 (en) 1987-06-16 1988-06-10 Post-processing method of carbon fiber

Country Status (1)

Country Link
JP (1) JP2592294B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953410B2 (en) * 2004-12-27 2012-06-13 三菱レイヨン株式会社 Carbon fiber and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194271A (en) * 1985-02-22 1986-08-28 川崎製鉄株式会社 Surface treatment of carbon fiber
JPS61275470A (en) * 1985-05-28 1986-12-05 三菱化学株式会社 Surface treatment of carbon fiber

Also Published As

Publication number Publication date
JPH0192471A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
EP0965679B1 (en) Carbon fibers and process for the production thereof
CN105908489B (en) A kind of graphene nanobelt interface modification pbo fiber and preparation method thereof
KR930011306B1 (en) Surface-improved carbon fiber and production thererof
JP2592294B2 (en) Post-processing method of carbon fiber
JPS62276075A (en) Carbon fiber and its production
KR910003351B1 (en) Method for after-treatment of carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
JPH1025627A (en) Acrylic carbon fiber
EP0252985B1 (en) Carbon fiber for composite materials
JP2006183173A (en) Carbon fiber and method for producing the same
JP2943073B2 (en) Method for producing surface-modified carbon fiber
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
JPS6385167A (en) Surface modified carbon fiber and its production
JPH0544155A (en) Surface treatment of carbon fiber
JP2002180379A (en) Carbon fiber and method for producing the same
JPS62268873A (en) Surface treatment of carbon fiber
JPH0192470A (en) Surface treatment of carbon fiber
JPH02210059A (en) Highly elastic carbon yarn having modified surface and production thereof
JP3057493B2 (en) Method for producing surface-modified carbon fiber
JP2002121295A (en) Carbon fiber-reinforced plastic and method for producing the same
JPS62263375A (en) Surface treatment of carbon fiber
JPS63190025A (en) High-performance acrylic carbon fiber and production thereof
JPS63205328A (en) Prepreg for composite material
JPH0478747B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees