JPS61194271A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPS61194271A
JPS61194271A JP3402585A JP3402585A JPS61194271A JP S61194271 A JPS61194271 A JP S61194271A JP 3402585 A JP3402585 A JP 3402585A JP 3402585 A JP3402585 A JP 3402585A JP S61194271 A JPS61194271 A JP S61194271A
Authority
JP
Japan
Prior art keywords
treatment
carbon fibers
fiber
hydrogen peroxide
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3402585A
Other languages
Japanese (ja)
Inventor
嵯峨 三男
進 中井
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Kawasaki Steel Corp filed Critical Nitto Boseki Co Ltd
Priority to JP3402585A priority Critical patent/JPS61194271A/en
Publication of JPS61194271A publication Critical patent/JPS61194271A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は炭素繊維強化複合材料などとして利用される炭
素繊維の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for surface treatment of carbon fibers used as carbon fiber reinforced composite materials.

〈従来技術とその問題点〉 軽くて強くかつ、高い弾性率を特性に持った炭素繊維は
、プラスチック、金属、炭素あるいはセラミック等をマ
トリックスとする複合材料の性能強化材として注目を集
めているが、繊維表面の活性度が低くかつ濡れ性が悪い
ため、かかる特性を有効に活用し、より高い補強効果を
発揮させるには、マトリックスと強化材との接着もしく
は結合を強固にする改善策を講することが不可欠となる
。それ故、乾式法、湿式法等種々の改善方法が提案され
ている。以下にその一例を述べる。
<Prior art and its problems> Carbon fiber, which is lightweight, strong, and has a high modulus of elasticity, is attracting attention as a material that enhances the performance of composite materials with matrix materials such as plastics, metals, carbon, or ceramics. However, since the activity of the fiber surface is low and the wettability is poor, in order to effectively utilize these characteristics and exhibit a higher reinforcing effect, it is necessary to take measures to strengthen the adhesion or bond between the matrix and the reinforcing material. It is essential to do so. Therefore, various improvement methods such as dry methods and wet methods have been proposed. An example is described below.

(1)特公昭45−1287号 乾式酸化法で、空気中200℃以下の温度域で緩慢な酸
化を起こさせることを特徴とする特許200″C近い温
度域では炭素繊維が自己燃焼を起こす恐れが多分にあり
、再現性に乏しい。
(1) Patent No. 45-1287, which is characterized by a dry oxidation method that causes slow oxidation in the air at temperatures below 200°C. Carbon fibers may self-combust at temperatures close to 200"C. There are many cases, and reproducibility is poor.

(2)特公昭47−27000号 湿式酸化法でクロム酸あるいはマンガン酸系酸化剤を添
加した酸性溶液中に炭素繊維を浸漬して酸化せしめるこ
とを特徴としている0反応をコントロールし易く、再現
性も良いが1反応時間が長く、また反応後水洗、乾燥処
理が連続するため処理工程が複雑化し、実用上問題点が
多い。
(2) The wet oxidation method of Japanese Patent Publication No. 47-27000 is characterized by oxidizing carbon fibers by immersing them in an acidic solution containing an oxidizing agent based on chromic acid or manganic acid.The zero reaction is easy to control and reproducible. Although this method is good, it takes a long time for one reaction, and the processing steps are complicated because washing with water and drying are successive after the reaction, and there are many problems in practical use.

更に処理が長時間にわたると、反応が集中的に進行する
部位では過大な腐食孔の生成によって繊維自体の強度を
著しく低下せしめる。というように、処理方法それぞれ
に一長一短あり、いずれも実用的レベルに達し得ないの
が現状である。
Furthermore, if the treatment lasts for a long time, the strength of the fiber itself will be significantly reduced due to the formation of excessive corrosion pores in areas where the reaction progresses intensively. As mentioned above, each treatment method has its advantages and disadvantages, and the current situation is that none of them can reach a practical level.

〈発明の目的〉 本発明はかかる従来法の欠点を改善し、特にマトリック
スを対象とする強化材の接着力を簡潔な工程で短時間で
より向上せしめるよう表面を活性化処理した高性能炭素
繊維を得る方法を提供することを目的とする。
<Object of the Invention> The present invention improves the drawbacks of such conventional methods, and provides high-performance carbon fibers whose surfaces are activated in order to improve the adhesion of reinforcing materials, particularly to the matrix, in a short time using a simple process. The purpose is to provide a method to obtain.

〈発明の構成〉 上記目的は下記の本発明によって達成される。<Structure of the invention> The above objects are achieved by the present invention as described below.

すなわち1本発明の第1Q発明は、炭素繊維をアルカリ
性過酸化水素溶液に浸漬して酸化処理を施すことを特徴
とする炭素繊維の表面処理方法である。
That is, the first Q aspect of the present invention is a method for surface treatment of carbon fibers, characterized in that the carbon fibers are immersed in an alkaline hydrogen peroxide solution to undergo oxidation treatment.

本発明の第2の発明は、炭素繊維をアルカリ性過酸化水
素溶液に浸漬して超音波振動を与えつつ酸化処理を施す
ことを特徴とする炭素繊維の表面処理方法である。
A second invention of the present invention is a method for surface treatment of carbon fibers, characterized in that carbon fibers are immersed in an alkaline hydrogen peroxide solution and subjected to oxidation treatment while applying ultrasonic vibrations.

本発明の第3の発明は、炭素繊維をアルカリ性過酸化水
素溶液に浸漬して酸化処理を施し、その後比較的低温の
加熱処理を施すことを特徴とする炭素繊維の表面処理方
法である。
A third aspect of the present invention is a method for surface treatment of carbon fibers, characterized in that the carbon fibers are immersed in an alkaline hydrogen peroxide solution to undergo an oxidation treatment, and then subjected to a heat treatment at a relatively low temperature.

本発明の第4の発明は、炭素繊維をアルカリ性過酸化水
素溶液に浸漬して超音波振動を与えつつ酸化処理を施し
、その後比較的低温の加熱処理を施すことを特徴とする
炭素繊維の表面処理方法である。
A fourth aspect of the present invention is that the surface of the carbon fiber is immersed in an alkaline hydrogen peroxide solution, subjected to an oxidation treatment while applying ultrasonic vibration, and then subjected to a heat treatment at a relatively low temperature. This is a processing method.

以下、本発明の炭素a維の表面処理方法を更に詳細に説
明する。
Hereinafter, the method for surface treatment of carbon a fibers of the present invention will be explained in more detail.

炭素繊維は炭素化処理温度の上昇に伴って黒鉛結晶の繊
維軸方向への配列が改良され、機械的特性が向上する。
As the carbonization temperature of carbon fibers increases, the alignment of graphite crystals in the fiber axis direction is improved, and the mechanical properties of the carbon fibers are improved.

一方、高温処理を施すことによっ。On the other hand, by applying high temperature treatment.

てIam表面の活性点が減少し、複合化に際してマトリ
ックスとの接着性を低下させる原因になる。
This reduces the number of active sites on the surface of Iam, which causes a decrease in adhesion to the matrix during composite formation.

言換えると、炭素繊維は複合素材として多くのすぐれた
特性を有しているが、繊維表面は濡れ性が悪いために、
マトリックスと馴染みにくく、この性質が接着力を弱く
している唯一の欠点である。
In other words, carbon fiber has many excellent properties as a composite material, but the fiber surface has poor wettability.
It does not mix well with the matrix, and this property is the only drawback that weakens the adhesive strength.

それ故、該性質の改良を意図した種々の処理方法もしく
は処理剤が提案されている0本発明者らもこの事実に鑑
み、特に処理工程の簡素化と処理時間の短縮化を重視し
て、鋭意検討を重ねた。即ち、炭素tangの表面に付
着して残留する各種酸化剤(とくに、金属、金属塩化合
物)を用いずに短時間で酸化処理を施すか、または加熱
処理においく、かつ低温処理を施すかという問題点につ
いて鋭意検討を重ねた。その結果、該目的を十分に達し
得る表面処理方法を提起するに至った。
Therefore, various treatment methods or treatment agents intended to improve these properties have been proposed. In view of this fact, the present inventors also place particular emphasis on simplifying the treatment process and shortening the treatment time. After careful consideration. In other words, either perform the oxidation treatment in a short time without using various oxidizing agents (especially metals and metal salt compounds) that adhere to and remain on the surface of the carbon tang, or perform the heat treatment and low-temperature treatment. We have carefully considered this issue. As a result, we have proposed a surface treatment method that can fully achieve this objective.

本発明の処理方法は1次処理としての浸漬処理と2次処
理としての加熱処理を組み合わせたものである。即ち、
1次処理としての液相酸化において、繊維表面に酸性官
能基例えばカルボキシル基、カルボニル基、フェノール
性水酸基等の酸化物を形成させ、更に2次処理としての
加熱処理において繊維の表面積を増大せしめることによ
って接着効果の向上を可能ならしめる繊維表面の改質が
狙いである。
The treatment method of the present invention combines immersion treatment as a primary treatment and heat treatment as a secondary treatment. That is,
Forming oxides of acidic functional groups such as carboxyl groups, carbonyl groups, phenolic hydroxyl groups, etc. on the fiber surface in liquid phase oxidation as a primary treatment, and increasing the surface area of the fibers in a heat treatment as a secondary treatment. The aim is to modify the fiber surface to improve the adhesive effect.

詳しくは、1次処理として、アルカリ性とした純過酸化
水素溶液に炭素繊維を短時間浸漬して酸化処理を施した
後必要に応じて所定温度に調節された加熱炉に装入し、
空気雰囲気下で加熱酸化せしめる。
Specifically, as a primary treatment, the carbon fibers are immersed for a short time in an alkaline pure hydrogen peroxide solution to undergo oxidation treatment, and then charged into a heating furnace adjusted to a predetermined temperature as necessary.
Heat and oxidize in an air atmosphere.

過酸化水素は不純物の存在によって、自身の分解反応が
進行し、効能を低下せしめる。かつ、アする。
Due to the presence of impurities, hydrogen peroxide undergoes its own decomposition reaction, reducing its effectiveness. And a.

添加するアルカリ性化合物は熱分解しやすく、好ましく
は分解生成物が酸化剤として作用するものであればより
効果的である。何故なら、アルカリ金属等のように容易
に分解せずして繊維表面に残留し、複合化時にマトリッ
クスとの接着性を妨げるものであってはならない。
It is more effective if the alkaline compound to be added is easily thermally decomposed and preferably the decomposition product acts as an oxidizing agent. This is because, unlike alkali metals, it must not be easily decomposed and remain on the fiber surface, thereby interfering with the adhesion to the matrix during composite formation.

アルカリ性溶液の調整は純過酸化水素中に予めNH3ガ
スを注入するかもしくはアンモニア希薄溶液を添加する
ことにより、あるいはその他の方法により弱アルカリ性
(pH7〜9程度)となし得ればいかなるものでも良い
、純過酸化水素の濃度は50部以とであるが、好ましく
は80部以上でより良好な結果を得ることができる。液
温度は50〜90℃、好ましくは70℃以上とするのが
良い。
The alkaline solution may be prepared in any way as long as it can be made weakly alkaline (about pH 7 to 9) by injecting NH3 gas into pure hydrogen peroxide in advance or adding a dilute ammonia solution, or by other methods. The concentration of pure hydrogen peroxide is 50 parts or more, preferably 80 parts or more to obtain better results. The liquid temperature is preferably 50 to 90°C, preferably 70°C or higher.

浸漬処理時間は過酸化水素の濃度、液温度および炭素繊
維のカサ密度等によって定まるが、カサ密度20にg/
m″以上では過酸化水素濃度に関係なく、液温を50℃
以上に保つことが必要である。
The immersion treatment time is determined by the concentration of hydrogen peroxide, the liquid temperature, the bulk density of the carbon fiber, etc.
m″ or higher, the liquid temperature is set to 50°C regardless of the hydrogen peroxide concentration.
It is necessary to maintain the above level.

また、液温が90℃をこえると、過酸化水素およびアル
カリ成分の分解φ揮散がより著しくなり。
Furthermore, when the liquid temperature exceeds 90°C, the decomposition and volatilization of hydrogen peroxide and alkali components become more significant.

酸化効果を低下せしめる原因となるので好ましくない。This is not preferable because it causes a decrease in the oxidation effect.

本発明の処理方法においては、酸化処理繊維表面に形成
される官能基の総量(電導度滴定法による)が3 X 
10 ’ mol/g以上であることを必要とし、この
値を以って反応の終了点とする0例えば液濃度、温度及
び繊維のカサ密度を固定すれば、下限値である官能基総
量は10〜120分の処理で達せられるが、好ましくは
30〜60分が適当である。
In the treatment method of the present invention, the total amount of functional groups formed on the surface of the oxidized fiber (according to the conductivity titration method) is 3
For example, if the liquid concentration, temperature, and fiber bulk density are fixed, the lower limit of the total amount of functional groups is 10' mol/g or more, and this value is the end point of the reaction. This can be achieved in a treatment time of 120 minutes, preferably 30 to 60 minutes.

また、本発明の処理方法は過酸化水素と炭素繊維の接触
、さらには超音波発生装置等による振動を浸漬液及び液
中を通過する炭素繊維に与えることによって酸化反応が
より活発化するという過酸化水素の性質を効果的に活用
したものである。超音波振動の付与は、0.2〜0.4
 W/cm2の程度とするのがよい。
In addition, the treatment method of the present invention further activates the oxidation reaction by contacting hydrogen peroxide with carbon fibers and applying vibrations from an ultrasonic generator or the like to the immersion liquid and the carbon fibers passing through the liquid. This effectively utilizes the properties of hydrogen oxide. Application of ultrasonic vibration is 0.2 to 0.4
It is preferable to set it to about W/cm2.

従って2次処理工程における加熱処理は浸漬処理によっ
て目標が達せられる場合は炭素繊維の乾燥を兼ねた処理
及び酸化反応が十分もしくは均一に行われていない場合
の補充処理等いずれの目的にも適用でき、100〜35
0℃の温度域で10〜120分処理することで十分であ
る。この温度域および処理時間とする理由は実施例に示
した如く、所要の表面処理効果を達成することが可能だ
からである。
Therefore, the heat treatment in the secondary treatment process can be applied for both purposes, such as a treatment that also serves as drying of the carbon fibers when the target can be achieved by dipping treatment, and a replenishment treatment when the oxidation reaction is not carried out sufficiently or uniformly. , 100-35
It is sufficient to treat in a temperature range of 0°C for 10 to 120 minutes. The reason for using this temperature range and treatment time is that, as shown in the examples, it is possible to achieve the desired surface treatment effect.

更に、浸漬液中で微小な振動を繊維束に与えることによ
って繊維束の開繊及び浸漬液の浸透を促し、酸化反応の
均一化に大きな効果を発揮することがわかった。
Furthermore, it has been found that applying minute vibrations to the fiber bundle in the dipping solution promotes opening of the fiber bundle and penetration of the dipping fluid, which is highly effective in making the oxidation reaction uniform.

酸化処理繊維中に付着するアンモニアは加熱処理におい
て分解し、S化性ガスとして該繊維の2次的酸化反応に
寄与するため、水洗等により除去する必要は全くない。
Ammonia adhering to the oxidized fiber is decomposed during the heat treatment and contributes to the secondary oxidation reaction of the fiber as an S-forming gas, so there is no need to remove it by washing with water or the like.

しかるに1本発明による炭素繊維の表面処理方法を適用
しても、炭素繊維の特性に何ら悪影響を与えることなく
、該繊維を用いた複合材料においが可能であり、実用性
の優れた方法である。
However, even if the method for surface treatment of carbon fibers according to the present invention is applied, it is possible to odor a composite material using the fibers without any adverse effect on the properties of the carbon fibers, and it is a highly practical method. .

く実 施 例〉 本発明を実施例によってその効果を説明する。Practical example The effects of the present invention will be explained by examples.

(実施例1) 平均繊維径lO−のピッチ系炭素繊維を100+amに
切断し、その50gを純過酸化水素(a度32 wlv
%)をアンモニアアルカリ性(pH8)とした浸漬液5
00all中に浸漬し、80℃にて超音波振動(0,3
1+l/c+s2 )を与えながら1゜分、30分、9
0分保持したのち、水洗、乾燥し、電導度滴定法を用い
て繊維表面に形成された酸化物すなわち酸性官能基の総
量を求めた。その結果は表1の通りである。
(Example 1) Pitch-based carbon fiber with an average fiber diameter of 1O- was cut into 100+am pieces, and 50g of the cut was added to pure hydrogen peroxide (a degree of 32 wlv
%) to ammonia alkaline (pH 8) 5
00all and subjected to ultrasonic vibration (0,3
1+l/c+s2) for 1°, 30 minutes, 9
After holding for 0 minutes, the fibers were washed with water and dried, and the total amount of oxides, that is, acidic functional groups formed on the fiber surface was determined using a conductivity titration method. The results are shown in Table 1.

浸漬時間を長くとることによって酸化反応は繊維表面の
みにとどまらずして内部に進行する傾向を強くしている
が、電子顕微鏡観察では酸化反応の不均一さは特に認め
られず、浸漬時間を10分以、Eとることによって目標
とする官能基濃度を容易に確保できることがわかる。
By increasing the immersion time, the oxidation reaction tends to proceed not only on the fiber surface but also inside the fiber, but electron microscopic observation shows that no particular unevenness of the oxidation reaction is observed, and even when the immersion time is 10 It can be seen that the target concentration of functional groups can be easily secured by setting E from 1 to 5.

(実施例2) 実施例1と同様に処理した炭素m維を水洗せずに、管状
炉に装入し、空気を2!l/winの流速で供給しなが
ら、300℃にて10分、60分、120分酸化処理を
施した。
(Example 2) Carbon fibers treated in the same manner as in Example 1 were charged into a tube furnace without washing with water, and air was blown into the tube furnace for 2 hours. Oxidation treatment was performed at 300° C. for 10 minutes, 60 minutes, and 120 minutes while supplying at a flow rate of 1/win.

得られた繊維について、窒素吸着法により比表面積を測
定した。その結果は表2に示す通りである。
The specific surface area of the obtained fibers was measured by a nitrogen adsorption method. The results are shown in Table 2.

120分間処理したサンプルについては電子顕微鏡観察
の結果、エッチピット(腐食孔)の発生が数カ所に発生
していることが認められ、高温での長時間処置では、酸
化反応が不均一化し、繊維自体を損傷するおそれのある
ことが判明した。
As a result of electron microscopic observation of the sample treated for 120 minutes, it was observed that etch pits (corrosion holes) had occurred in several places. It was found that there is a risk of damage to the

しかし、120分未満の処理においては、該問題点を懸
念する必要はなく、特に静置浸漬に比し、酸化反応の均
一化への効果は明らかである。
However, in a treatment lasting less than 120 minutes, there is no need to be concerned about this problem, and the effect on uniformity of the oxidation reaction is clear, especially compared to static immersion.

(実施例3) 実施例1および実施例2と同様に処理して調製された炭
素繊維を用い、マトリックスとしてエポキシ樹脂(シェ
ル石油化学製エピコート82B)をメチルエチルケトン
に溶解した樹脂液に体積分率で0.5を占める比率で均
一に含浸させ、100℃にて30分間乾燥後180℃に
加熱しながら加圧成形し、テストピース(巾12X長さ
20X厚さ2.5 m/m)を得た。
(Example 3) Using carbon fibers prepared in the same manner as in Examples 1 and 2, an epoxy resin (Epicoat 82B manufactured by Shell Petrochemical Co., Ltd.) was added as a matrix to a resin solution in methyl ethyl ketone at a volume fraction. The test piece (width 12 x length 20 x thickness 2.5 m/m) was obtained by impregnating it uniformly at a ratio of 0.5, drying it at 100°C for 30 minutes, and then pressing it while heating it to 180°C. Ta.

このコンポジットを用い、ASTMD−2344方法に
準じて繊維軸方向における層間剪断強度を測定し、表3
(実施例1のもの)および表4(実施例2のもの)に示
すような結果を得た。
Using this composite, the interlaminar shear strength in the fiber axis direction was measured according to the ASTM D-2344 method, and Table 3
The results shown in Table 4 (for Example 1) and Table 4 (for Example 2) were obtained.

なお、同様炭素繊維を硝酸水溶液(68%濃度)に10
0℃で4時間浸漬処理したものについて実施例と同様に
処理したコンポジットのテスト結果を比較例として示し
た。
In addition, similarly carbon fiber was dissolved in nitric acid aqueous solution (68% concentration) for 10 minutes.
The test results of a composite treated in the same manner as in the example, which was immersed at 0° C. for 4 hours, are shown as a comparative example.

しかるに1本発明に基づく表面処理方法を施した炭素繊
維を強化材として用いることにより1強化材とマトリッ
クスとの接着性が改善され、補強効果すなわち、炭素繊
維を強化材とする複合材料の性能向上が計れることは明
らかである。
However, by using carbon fibers subjected to the surface treatment method according to the present invention as reinforcing materials, the adhesion between the reinforcing materials and the matrix is improved, and the reinforcing effect, that is, the performance of composite materials using carbon fibers as reinforcing materials is improved. It is clear that it can be measured.

〈発明の効果〉 本発明の処理方法によれば、炭素繊維の表面が活性化さ
れると同時に比表面積が大きくなるよう処理されている
ので、炭素繊維の唯一の欠点である表面特性を改良する
ことによる複合化時のマトリックスとの接着性を大幅に
向上させることができる。
<Effects of the Invention> According to the treatment method of the present invention, the surface of carbon fiber is activated and at the same time treated to increase the specific surface area, thereby improving the surface characteristics, which is the only drawback of carbon fiber. This can significantly improve the adhesion with the matrix during composite formation.

接着力が向上することによる複合材料の性能向上および
その強化基材として炭素繊維の用途が拡大する。
Improved adhesive strength will improve the performance of composite materials and expand the use of carbon fiber as a reinforcing base material.

表1 表面処理m雑の官能基濃度 (1)本発明方法による1次処理時間 10分(2) 
   同   上              30分
(3)    同   上             
 90分(4)硝酸酸化法による比較例 表2 表面処理繊維の比表面積 (1)本発明方法により1次処理した 繊維の2次処理時間      10分(2)    
同   上              30分(3)
    同   上              90
分(0硝酸酸化法による比較例 表3 コンポジットの層間剪断強度 (1)本発明方法による実施例1 (1)相当(2) 
   同   上         (2)相当(3)
   同  h      (3)相当(4)硝酸酸化
法による比較例 表4 コンポジットの層間剪断強度 (1)本発明方法による実施例2(1)相当(2)  
  同   上         (2)相当(3) 
   同   上         (3)相当(4)
硝酸酸化法による比較例
Table 1 Functional group concentration of surface treatment m Miscellaneous (1) Primary treatment time by the method of the present invention 10 minutes (2)
Same as above 30 minutes (3) Same as above
90 minutes (4) Comparative example using nitric acid oxidation method Table 2 Specific surface area of surface-treated fibers (1) Secondary treatment time of fibers primarily treated by the method of the present invention 10 minutes (2)
Same as above 30 minutes (3)
Same as above 90
(0 Comparative example by nitric acid oxidation method Table 3 Interlaminar shear strength of composite (1) Example 1 by the method of the present invention (1) Equivalent (2)
Same as above (2) equivalent (3)
Same h (3) equivalent (4) Comparative example by nitric acid oxidation method Table 4 Interlaminar shear strength of composite (1) Example 2 (1) equivalent (2) by the method of the present invention
Same as above (2) equivalent (3)
Same as above (3) equivalent (4)
Comparative example using nitric acid oxidation method

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維をアルカリ性過酸化水素溶液に浸漬して
酸化処理を施すことを特徴とする炭素繊維の表面処理方
法。
(1) A method for surface treatment of carbon fibers, which comprises immersing carbon fibers in an alkaline hydrogen peroxide solution to perform oxidation treatment.
(2)炭素繊維をアルカリ性過酸化水素溶液に浸漬して
超音波振動を与えつつ酸化処理を施すことを特徴とする
炭素繊維の表面処理方法。
(2) A method for surface treatment of carbon fibers, which comprises immersing carbon fibers in an alkaline hydrogen peroxide solution and subjecting them to oxidation treatment while applying ultrasonic vibrations.
(3)炭素繊維をアルカリ性過酸化水素溶液に浸漬して
酸化処理を施し、その後比較的低温の加熱処理を施すこ
とを特徴とする炭素繊維の表面処理方法。
(3) A method for surface treatment of carbon fibers, which comprises immersing the carbon fibers in an alkaline hydrogen peroxide solution to perform an oxidation treatment, and then subjecting the carbon fibers to a relatively low-temperature heat treatment.
(4)炭素繊維をアルカリ性過酸化水素溶液に浸漬して
超音波振動を与えつつ酸化処理を施し、その後比較的低
温の加熱処理を施すことを特徴とする炭素繊維の表面処
理方法。
(4) A method for surface treatment of carbon fibers, which comprises immersing carbon fibers in an alkaline hydrogen peroxide solution, subjecting them to oxidation treatment while applying ultrasonic vibrations, and then subjecting them to heat treatment at a relatively low temperature.
JP3402585A 1985-02-22 1985-02-22 Surface treatment of carbon fiber Pending JPS61194271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3402585A JPS61194271A (en) 1985-02-22 1985-02-22 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3402585A JPS61194271A (en) 1985-02-22 1985-02-22 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPS61194271A true JPS61194271A (en) 1986-08-28

Family

ID=12402831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3402585A Pending JPS61194271A (en) 1985-02-22 1985-02-22 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61194271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192471A (en) * 1987-06-16 1989-04-11 Mitsubishi Rayon Co Ltd Post-treatment of carbon fiber
CN103835117A (en) * 2012-11-22 2014-06-04 浙江昱辉碳纤维材料有限公司 Carbon fiber surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192471A (en) * 1987-06-16 1989-04-11 Mitsubishi Rayon Co Ltd Post-treatment of carbon fiber
CN103835117A (en) * 2012-11-22 2014-06-04 浙江昱辉碳纤维材料有限公司 Carbon fiber surface treatment method

Similar Documents

Publication Publication Date Title
US4844781A (en) Electrochemical method of surface treating carbon; carbon, in particular carbon fibers, treated by the method, and composite material including such fibers
JPS6262185B2 (en)
US4394224A (en) Treatment of titanium prior to bonding
JPS61194271A (en) Surface treatment of carbon fiber
US4814157A (en) Carbon fibers and method for producing same
US6521052B2 (en) Surface treatment
JPH1193078A (en) Carbon fiber and its production
US4230507A (en) Method for sulfurizing cast iron
JPH1025627A (en) Acrylic carbon fiber
US4363673A (en) Process for the removal of carbon from solid surfaces
JPS61124674A (en) Surface treatment of carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
US3876444A (en) Method of treating high strength carbon fibers
JPS62263375A (en) Surface treatment of carbon fiber
CA2012413A1 (en) Surface preparation for aluminium
JPS62174386A (en) Treating solution for forming oxalate film and chemical conversion treatment of stainless steel material with said solution
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPH0544155A (en) Surface treatment of carbon fiber
JPS6112967A (en) Treatment of carbon fiber
JPS63203869A (en) Carbonaceous fiber having acidic functional group
JPH02269868A (en) Method for treating surface of carbon fiber
JPH01146981A (en) Method for bvonding plural articles
JP2592294B2 (en) Post-processing method of carbon fiber
JPH02163386A (en) Aluminum or aluminum alloy material having high pitting corrosion resistance
US20020164425A1 (en) Method for treating iron based parts