JPS62262461A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62262461A
JPS62262461A JP10468886A JP10468886A JPS62262461A JP S62262461 A JPS62262461 A JP S62262461A JP 10468886 A JP10468886 A JP 10468886A JP 10468886 A JP10468886 A JP 10468886A JP S62262461 A JPS62262461 A JP S62262461A
Authority
JP
Japan
Prior art keywords
oxide film
heat treatment
film
gate oxide
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10468886A
Other languages
Japanese (ja)
Inventor
Kiyomi Naruge
清実 成毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10468886A priority Critical patent/JPS62262461A/en
Publication of JPS62262461A publication Critical patent/JPS62262461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To inhibit the generation of a fixed charge in a gate oxide film against radiation irradiation by a method wherein, in the case of the formation of an MOS Tr on a substrate, all the treatment processes following the formation of the gate oxide film are executed at about 950 deg.C less. CONSTITUTION:A field oxide film 2 is formed on the surface of a P-type Si substrate 1 by a selective oxidation method and thereafter, a gate oxide film 3 is formed on the substrate surface which is used as an element region at about 900 deg.C by a dry oxidation method. Then, boron ions are implanted in a channel region 4 and after a poly Si film is deposited on the whole surface by a vapor growth method, an impurity diffusion of phosphorus is performed at about 900 deg.C. After a gate electrode 5 is formed, a source region 6 and a drain 7 are formed using this gate electrode as a mask, an interlayer insulating film 8 is deposited and a reflow is performed at 950 deg.C or less in an atmosphere of gas mixed with vapor. Then, electrodes 9, 10 and 11 are formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、MOS型(絶脈ゲート型)半導体装置の製造
方法に係り、特に耐放射線性が強化された半導体装置の
製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a MOS type (disconnected gate type) semiconductor device, and in particular to a method for manufacturing a semiconductor device with enhanced radiation resistance. Regarding the manufacturing method.

(従来の技術) 従来のMOS型集積回路の製造方法は、先ず、−大とえ
ばP形シリコン基板の表面に選択酸化法によってフィー
ルド酸化膜を形成した後、素子領域となる基板表面にド
ライ酸化法によりてグー)[化膜(S102膜)を形成
する。次に、上記素子領域に一穐゛成しようとするMO
S )ランジスタの閾値電圧を゛1:ノ□ 制御するためにチャネル領域に不純物イオンの注・−1
゛) :ミiを行なう。次に、酸化膜上の全面に気相成長法に
よって多結晶シリコン膜を堆積した後、900℃前後で
リンの不純物拡散を行なう。次に、・ぐターニングによ
ってダート電極を形成し、このダート電極をマスクとし
てたとえばヒ素イオンを注入することによりN+形のソ
ース領域およびドレイン領域を形成する。次に、全面に
層間絶縁膜を堆積した後、N2算囲気中で950℃以上
の熱処理によってリフ口を行なう。次に、コンタクトホ
ールを開孔し、全面にアルミニウム膜を蒸着した後、パ
ターニングによって電極および配線を形成する。
(Prior Art) The conventional method for manufacturing MOS integrated circuits is to first form a field oxide film on the surface of, for example, a P-type silicon substrate by selective oxidation, and then dry oxidize the surface of the substrate, which will become the element region. A thick film (S102 film) is formed by the method. Next, MO to be formed in the above element area
S) Injection of impurity ions into the channel region to control the threshold voltage of the transistor.
゛) : Do Mi i. Next, a polycrystalline silicon film is deposited on the entire surface of the oxide film by vapor phase growth, and then phosphorous impurity is diffused at around 900°C. Next, a dirt electrode is formed by turning, and using this dirt electrode as a mask, for example, arsenic ions are implanted to form an N+ type source region and a drain region. Next, after depositing an interlayer insulating film over the entire surface, refrigeration is performed by heat treatment at 950° C. or higher in a N2 atmosphere. Next, a contact hole is opened, an aluminum film is deposited on the entire surface, and then electrodes and wiring are formed by patterning.

このように、層間絶縁膜形成後の熱処理を950℃以上
の高温で行なうことによって眉間絶縁膜上面の平坦化の
向上を図っている。
In this way, the planarization of the upper surface of the glabella insulating film is improved by performing the heat treatment at a high temperature of 950° C. or higher after forming the interlayer insulating film.

ところで、MOS )ランジスタにガンマ線等の放射線
が照射されると、酸化膜中に固定電荷が蓄積し、表面準
位が形成されるのでダート閾値電圧が変動し、トランジ
スタの誤動作が生じ易くなるこてゲート酸化膜形成後の
熱処理を900℃前後以下の温度で行なっており、その
理由を以下に述べる。即ち、層間絶縁膜形成後のリフ口
工程を従来のように水素を含まないN2雰囲気中で行な
うと、酸化膜中および酸化膜・シリコン界面では隔は、
安定な結合角度(144°)をもって結合するには適合
しない距離にあるので、OH基をターミネータとして5
t−oH結合となりて安定な状態となっている。しかし
ながら、前述したような950℃以上の高温で、しかも
水素を含まない(あるいはその含有量が少ない)雰囲気
で処理が行なわれると、前式に示したように8l−0−
8t結合(これは、安定な結合角度をもった結合ではな
い)が形成されるので、放射線を浴びたときに結合が切
れ易くなっており、固定電荷の発生し易い酸化膜質に変
質してしまう。
By the way, when a MOS (MOS) transistor is irradiated with radiation such as gamma rays, fixed charges accumulate in the oxide film and surface levels are formed, causing the dirt threshold voltage to fluctuate and making the transistor more likely to malfunction. The heat treatment after forming the gate oxide film is performed at a temperature of around 900° C. or lower, and the reason for this will be described below. That is, if the re-opening process after forming the interlayer insulating film is performed in an N2 atmosphere that does not contain hydrogen as in the past, the distance in the oxide film and at the oxide film/silicon interface is
Since the distance is inappropriate for bonding with a stable bond angle (144°), 5
It forms a to-oH bond and is in a stable state. However, if the treatment is carried out at a high temperature of 950°C or higher as mentioned above and in an atmosphere that does not contain hydrogen (or has a low hydrogen content), as shown in the previous equation, 8l-0-
Since an 8t bond (this is not a bond with a stable bond angle) is formed, the bond is easily broken when exposed to radiation, resulting in deterioration into an oxide film that easily generates fixed charges. .

しかし、このようにMOS )ランジスタの耐放射線性
を強化しようとして、層間絶縁膜形成後のリフ口工程を
950℃以上の高温で行なわない場合には、層間絶縁膜
上面を十分に平坦化することができなくなり、金属電極
や金属配線は部分的に大きな段差が発生して切断が生じ
易くなるなどの問題が生じる。
However, in order to strengthen the radiation resistance of a MOS (MOS) transistor in this way, if the refrigeration process after forming the interlayer insulating film is not performed at a high temperature of 950°C or higher, the upper surface of the interlayer insulating film must be sufficiently flattened. This results in problems such as the metal electrodes and metal wiring having large step differences in parts, making them more likely to be cut.

(発明が解決しようとする問題点) 本発明は上記したような耐放射線性の強化のだめの熱処
理温度および金属配線形成前の最終熱処理工程による平
坦化のための熱処理温度に関する二律相反的な問題点を
解決すべくなされたもので、耐放射線性が強化され、且
つ金属配線および金属T&極形成前に絶縁膜が十分に平
坦化されたMOS トランジスタを製造し得る絶縁ケ゛
−ト型半導体装置の製造方法を提供することを目的とす
る。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned contradictory problems regarding the heat treatment temperature for enhancing radiation resistance and the heat treatment temperature for flattening in the final heat treatment step before metal wiring formation. This was developed to solve this problem, and it is an insulated gate type semiconductor device that can manufacture MOS transistors with enhanced radiation resistance and whose insulating film is sufficiently flattened before forming metal wiring and metal T & electrodes. The purpose is to provide a manufacturing method.

[発明の構成] (問題点を解決するための手段) 本発明のMO8型半導体装置の製造方法は、半導体基板
上にMO8型トランジスタを形成する際に、f−ト酸化
膜形成後の総ての熱処理工程を約950℃以下で行ない
、金属配線および金属電極形成前^JLり々勅浦旧〒印
もルπだもさJ−JJP呼C四甜出−行なうことを特徴
とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing an MO8 type semiconductor device of the present invention is such that when forming an MO8 type transistor on a semiconductor substrate, all steps after the formation of an oxide film are performed. The heat treatment process is carried out at a temperature of about 950° C. or lower, and is carried out before the formation of metal wiring and metal electrodes. be.

(作用) ダート酸化膜形成後の熱処理工程を約950℃以下で行
なうことによって、放射線照射に対して酸化膜中での固
定電荷の発生が少なくなり、最終熱処理工程である絶縁
膜のリフ口工程を約950℃’0.  <実施例) −・i 以下、図面を参照して本発明方法の一実施例−
蛋ついて第1図(、)乃至(d)に示すMO8型集積回
路の一フ 製造工程図に沿って詳細に説明する。先ず、たとえばP
形シリコン基板1の戒面に選択酸化法によってフィール
ド酸化膜2を形成した後、素子領域となる基板表面に膜
厚約250Xのダート酸化膜3を900℃前後でドライ
酸化法によって形成する。次に、上記素子領域に形成し
ようとするhrosトランジスタの閾値電圧を制御する
ためにチャネル領域4に、たとえばがロンイオ7Bを加
速電圧40 kaV 、ドーズ量4X10  cyn 
 の条件で注入する。次に、気相成長法によって全面に
多結晶シリコン膜を約4000X堆積した後、900℃
前後でリンの不純物拡散を行なう。次に、上記多結晶シ
リコン膜のパターニングによJfゲート電極5を形成し
、このダート電極5をマスクとしてたとえばヒ素イオン
As  を加速電圧50 k@V 、  ドーズ量5×
1015c!n−2の条件で注入してN+形のンース領
域6およびドレイン領域7を形成する。次に、気相30
分の熱処理によってリフ口を行なう。次に、7二 コンタクトホールを開孔し、全面にアルミニウム′膜を
蒸着した後、・リーニングによって電極9゜1jノ62
7.およ、ヶ、ようニオ、。
(Function) By performing the heat treatment process after forming the dirt oxide film at a temperature of about 950°C or lower, the generation of fixed charges in the oxide film due to radiation irradiation is reduced, and the final heat treatment process, which is the refrigeration process of the insulating film, is reduced. about 950℃'0. <Example) - i Hereinafter, an example of the method of the present invention with reference to the drawings -
This will be explained in detail with reference to the first manufacturing process diagram of the MO8 type integrated circuit shown in FIGS. 1(a) to (d). First, for example, P
After a field oxide film 2 is formed on the surface of a shaped silicon substrate 1 by selective oxidation, a dirt oxide film 3 having a thickness of about 250× is formed on the surface of the substrate, which will become an element region, by dry oxidation at about 900°C. Next, in order to control the threshold voltage of the hros transistor to be formed in the element region, for example, Ronio 7B is applied to the channel region 4 at an acceleration voltage of 40 kaV and a dose of 4×10 cyn.
Inject under the following conditions. Next, after depositing a polycrystalline silicon film about 4000X on the entire surface by vapor phase growth method,
Perform phosphorous impurity diffusion before and after. Next, a Jf gate electrode 5 is formed by patterning the polycrystalline silicon film, and using this dirt electrode 5 as a mask, for example, arsenic ions As are accelerated at a voltage of 50 k@V and a dose of 5×.
1015c! N+ type source region 6 and drain region 7 are formed by implantation under n-2 conditions. Next, the gas phase 30
A refrigeration process is performed by heat treatment for 30 minutes. Next, after opening 72 contact holes and depositing an aluminum film on the entire surface, the electrodes 9°1j and 62 are formed by leaning.
7. Oh, ga, yo-nio.

上記製造方法によれば、fゲート酸化膜形成後から金属
電極、金属配線形成前までの総ての熱処理のうち、層間
絶縁膜のリフ口工程以外は900℃前述したような不安
定な5t−o−sti合の発生−1が少なく、画定電荷
の発生によるMOS )ランジスタのゲート閾値電圧の
変動は抑制される。そして、上記リフ口工程を950℃
前後の高温で行なっているので、層間結縁膜上面を十分
に平坦化することができ、金属¥i、極や金属配線に発
生する段差が小さくなり、その切断が生じ難くなる。こ
の場合、リフ口工程をN20を含む雰囲気中で行なうの
で、前述したような安定な5l−OH結合の減少が抑え
られ、不安定な5i−o−st結合の増加が抑えられる
ことになり、ダート閾値電圧の変動が抑えられる。
According to the above manufacturing method, among all the heat treatments from after the formation of the f-gate oxide film to before the formation of metal electrodes and metal wiring, the temperature of 900° C., which is unstable at 5t- The number of occurrences of o-sti -1 is small, and fluctuations in the gate threshold voltage of the MOS transistor due to the generation of defined charges are suppressed. Then, the above refrigeration process was carried out at 950°C.
Since this is carried out at high temperatures before and after, the upper surface of the interlayer bonding film can be sufficiently flattened, and the steps that occur in the metal electrodes, poles, and metal wiring become smaller, making it difficult for them to be cut. In this case, since the refrigeration process is performed in an atmosphere containing N20, the decrease in stable 5l-OH bonds as described above is suppressed, and the increase in unstable 5i-o-st bonds is suppressed. Fluctuations in dart threshold voltage are suppressed.

をN2雰囲気中、950℃で行なう)により得られたM
OS )ランジスタとについて、それぞれダート電圧に
千5V1ソース電圧、ドレイン電圧、基板電圧にOvを
与えた状態で、たとえば1O−radのガンマ綜を照射
した場合におけるゲート閾値電圧の変動を調べた結果、
従来の方法によるものは1.2v程度の変動があったの
に対して本実施例の方法によるものVlo、 5 V程
度の小さな変動(従来のものに比べて半分以下)に抑え
られていた。
M obtained by
As a result of investigating the fluctuation of the gate threshold voltage when irradiating a gamma head of 1 O-rad, for example, with a source voltage of 1,500 V, a drain voltage, and a substrate voltage of Ov given to the dart voltage,
While the conventional method had a fluctuation of about 1.2 V, the method of this embodiment suppressed Vlo to a small fluctuation of about 5 V (less than half that of the conventional method).

tた、上記したよりな10  radのガンマ線照射に
よるゲート閾値電圧変動について前記リフ口工程での温
度(リフ口温度)に対する依存性を調べた結果を第2図
に示している。この図から、リフ口温度900℃〜10
00℃の範囲にわたって、従来の方法によるMOS )
ランジスタよりも本発明従来の方法あるいは前記実施例
の方法によるMOSトランジスタのリフロ工程前におけ
る特性と、前記実施例の方法によるN20を含む雰囲気
中での950℃、30分間の熱処理によるりフロ工程後
における特性と、従来の方法によるN2雰囲気中での9
50℃、30分間の熱処理によるリフロ工程後における
特性とを調べた結果を示している。この結果から、安定
な5t−OH結合の伸縮振動により生じる3 670c
In  の波数に現われる吸収ピークは、従来の方法に
おけるN2雰囲気中での熱処理による減少分よりも前記
実施例におけるN20 雰囲気中での熱処理による減少
分の方が小さいことが分る。この吸収ピークの減少は、
安定な5t−oH結合の減少、ひいては不安定な5i−
0−3i結合の増加を意味しており、上記吸収ピークの
減少分が小さいほどr−ト閾値電圧の変動が抑制される
ことになる。
Furthermore, FIG. 2 shows the results of investigating the dependence of gate threshold voltage fluctuations on the temperature in the refill process (refill port temperature) due to the above-mentioned 10 rad gamma ray irradiation. From this figure, the rift opening temperature is 900℃~10
MOS by conventional methods over a range of 00 °C)
Characteristics of MOS transistors before the reflow process according to the conventional method of the present invention or the method of the above embodiment, and after the reflow process by heat treatment at 950° C. for 30 minutes in an atmosphere containing N20 according to the method of the above embodiments, compared to transistors. 9 in N2 atmosphere by conventional method.
The results show the characteristics after a reflow process by heat treatment at 50° C. for 30 minutes. From this result, 3 670c caused by stretching vibration of stable 5t-OH bond
It can be seen that the absorption peak appearing at the wave number of In 2 decreases less due to the heat treatment in the N20 atmosphere in the above example than the decrease due to the heat treatment in the N2 atmosphere in the conventional method. This decrease in absorption peak is due to
Reduction of stable 5t-oH bonds and thus unstable 5i-
This means an increase in 0-3i coupling, and the smaller the decrease in the absorption peak, the more suppressed is the fluctuation in the r-to threshold voltage.

次に、本発明方法の他の実施例について第4図(、)乃
至(d)に示す製造工程図を参照して説明する。
Next, another embodiment of the method of the present invention will be described with reference to the manufacturing process diagrams shown in FIGS. 4(a) to 4(d).

この実施例が前記実施例に比べて異なるのは、(1)フ
ィールド酸化膜2の形成後に、素子領域の基板表面にド
ライ酸化法によってダミー酸化膜4oを形成し、このダ
ミー酸化膜4oを通してチャネル領域4に閾値電圧制御
のための不純物イオン注入を行ない、続いてN2雰囲気
中で900℃前後で約30分の熱処理を行ない、さらに
、たとえば■4F(濃化アンモニウム)液に浸漬するウ
ェットエツチングによって前記ダミー酸化膜40を除去
する点、(2)次に、前記実施例と同様に900℃前後
、30分のドライ酸化によって素子領域の基板表面に膜
厚約250Xのダート酸化膜3を形成した後、て閾値電
圧制御のための不純物イオン注入を行なうことをないの
で、このイオン注入に起因してダート酸化膜にダメージ
が残るという問題は生じなくなる。
This embodiment differs from the previous embodiments in that (1) after the field oxide film 2 is formed, a dummy oxide film 4o is formed on the substrate surface in the element region by a dry oxidation method, and a channel is passed through the dummy oxide film 4o. Impurity ions are implanted into region 4 for threshold voltage control, followed by heat treatment at around 900°C for about 30 minutes in a N2 atmosphere, and further, for example, by wet etching by immersion in 4F (concentrated ammonium) solution. Removal of the dummy oxide film 40 (2) Next, a dirt oxide film 3 with a thickness of about 250× was formed on the substrate surface in the element region by dry oxidation at around 900° C. for 30 minutes as in the above embodiment. Since impurity ion implantation for threshold voltage control is not performed afterwards, the problem of damage remaining on the dirt oxide film due to this ion implantation does not occur.

なお、本発明方法はMO8!集積回路に限らず、少数の
MOS )ランジスタを同一半導体基板上に有するMO
8型半導体装置の製造に際して適用可能である。
In addition, the method of the present invention is MO8! Not limited to integrated circuits, MOs with a small number of MOS transistors on the same semiconductor substrate
It is applicable to the manufacture of 8-type semiconductor devices.

[発明の効果] 上述したように本発明のMO8型半導体装置の製造方法
によれば、放射線の照射に対してゲート閾値電圧の変動
が小さく抑えられ、且つ金属配線および金属電極形成前
の絶縁膜の平坦化が十分に行なわれて金属配線等の切断
が生じ難いMOS )ランジスタを実現することができ
、耐放射触性が強化されたMO8型半導体装置を歩留り
良く製造することができる。
[Effects of the Invention] As described above, according to the method for manufacturing an MO8 type semiconductor device of the present invention, fluctuations in the gate threshold voltage are suppressed to a small level with respect to radiation irradiation, and the insulating film before metal wiring and metal electrodes are formed. It is possible to realize a MOS (MOS transistor) transistor in which the metal wiring is sufficiently planarized and the metal wiring etc. are not likely to be cut, and it is possible to manufacture an MO8 type semiconductor device with enhanced radiation resistance at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例に係るMO8型発明方法
と従来の方法とについて示チ特性図、第3図はMO8型
トランジスタのゲート酸化膜のフーリエ変換赤外分光ス
ペクトルについて本発明方法と従来の方法との層間絶縁
膜リフロ工程前後における変化の様子を示す特性図、第
4図は本発明方法の他の実施例に係る製造工程を示す図
である。 1・・・P形シリコン基板、2・・・フィールド酸化膜
、3・・・ダート酸化膜、5・・・ダート電極、6・・
・ソース領域、7・・・ドレイン領域、8・・・層間絶
縁膜、9゜10 、11−・・金属電極、40・・・ダ
ミー酸化膜。 工腋人 工末技皺)を九長  各タカ 違−第1図 第2図 第3図 −第4図
FIG. 1 is a characteristic diagram showing the MO8 type inventive method according to an embodiment of the present invention method and a conventional method, and FIG. 3 is a characteristic diagram showing the Fourier transform infrared spectrum of the gate oxide film of an MO8 type transistor according to the present invention method. FIG. 4 is a characteristic diagram showing the state of change before and after the interlayer insulating film reflow process between the conventional method and the conventional method, and FIG. 4 is a diagram showing the manufacturing process according to another embodiment of the method of the present invention. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 3... Dirt oxide film, 5... Dirt electrode, 6...
- Source region, 7... Drain region, 8... Interlayer insulating film, 9°10, 11-... Metal electrode, 40... Dummy oxide film. Engineer's armpit person, engineer's end technique wrinkle) to nine lengths, each taka difference - Figure 1 Figure 2 Figure 3 - Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上にMOS型トランジスタを形成する
際に、ゲート酸化膜形成後の総ての熱処理工程を約95
0℃以下で行ない、金属配線および金属電極形成前の最
終熱処理工程を水蒸気を含むガス雰囲気中で行なうこと
を特徴とする 半導体装置の製造方法。
(1) When forming a MOS transistor on a semiconductor substrate, all heat treatment steps after forming the gate oxide film are performed for approximately 95 minutes.
1. A method for manufacturing a semiconductor device, characterized in that the final heat treatment step before forming metal wiring and metal electrodes is carried out at 0° C. or lower in a gas atmosphere containing water vapor.
(2)前記ゲート酸化膜形成後の総ての熱処理工程のう
ち、最終熱処理工程である層間絶縁膜のリフロ工程を約
950℃で行ない、その他の熱処理工程を約900℃以
下で行なうことを特徴とする前記特許請求の範囲第1項
記載の半導体装置の製造方法。
(2) Among all the heat treatment steps after forming the gate oxide film, the final heat treatment step, the reflow step for the interlayer insulating film, is performed at about 950°C, and the other heat treatment steps are performed at about 900°C or lower. A method for manufacturing a semiconductor device according to claim 1.
(3)前記ゲート酸化膜形成前にダミー酸化膜を形成し
、このダミー酸化膜を通してMOS型トランジスタ閾値
電圧制御のためのチャネルイオン注入を行なったのちダ
ミー酸化膜を除去することを特徴とする前記特許請求の
範囲第1項または第2項記載の半導体装置の製造方法。
(3) A dummy oxide film is formed before the formation of the gate oxide film, channel ions are implanted through the dummy oxide film for controlling the threshold voltage of a MOS transistor, and then the dummy oxide film is removed. A method for manufacturing a semiconductor device according to claim 1 or 2.
JP10468886A 1986-05-09 1986-05-09 Manufacture of semiconductor device Pending JPS62262461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10468886A JPS62262461A (en) 1986-05-09 1986-05-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10468886A JPS62262461A (en) 1986-05-09 1986-05-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62262461A true JPS62262461A (en) 1987-11-14

Family

ID=14387405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10468886A Pending JPS62262461A (en) 1986-05-09 1986-05-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62262461A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086281A (en) * 1973-11-30 1975-07-11
JPS56118354A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Preparation of semiconductor device
JPS60103615A (en) * 1983-11-10 1985-06-07 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086281A (en) * 1973-11-30 1975-07-11
JPS56118354A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Preparation of semiconductor device
JPS60103615A (en) * 1983-11-10 1985-06-07 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4271582A (en) Process for producing a semiconductor device
US4273805A (en) Passivating composite for a semiconductor device comprising a silicon nitride (Si1 3N4) layer and phosphosilicate glass (PSG) layer
JPS6025894B2 (en) Method for manufacturing semiconductor devices using ion implantation
US4668973A (en) Semiconductor device passivated with phosphosilicate glass over silicon nitride
US4259779A (en) Method of making radiation resistant MOS transistor
JPS62262461A (en) Manufacture of semiconductor device
JPH1197683A (en) Semiconductor device and manufacture thereof
JPH05259115A (en) Manufacture of semiconductor device
US7005393B2 (en) Method of fabricating a semiconductor device containing nitrogen in an oxide film
JP2843037B2 (en) Method for manufacturing semiconductor device
KR100358128B1 (en) Method for forming gate electrode
JP3376305B2 (en) Method for manufacturing semiconductor device
USRE32351E (en) Method of manufacturing a passivating composite comprising a silicon nitride (SI1 3N4) layer and a phosphosilicate glass (PSG) layer for a semiconductor device layer
US20010053574A1 (en) Method for fabricating a semiconductor component having a wiring which runs piecewise in the substrate, and also a semiconductor component which can be fabricated by this method
JP2616034B2 (en) Semiconductor integrated circuit device
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
KR0140810B1 (en) Manufacturing method of mosfet
JP2685493B2 (en) Method for manufacturing semiconductor device
JPH07202191A (en) Vertical power mos semiconductor and manufacture thereof
JPH0697424A (en) Manufacture of semiconductor element
JP2990806B2 (en) Method for manufacturing semiconductor device
KR0179562B1 (en) Method of manufacturing protection layer of semiconductor device
JPS6139751B2 (en)
JPH08274332A (en) Semiconductor device and its manufacture
JPH05218423A (en) Manufacture of polysilicon thin film transistor