JPS6139751B2 - - Google Patents

Info

Publication number
JPS6139751B2
JPS6139751B2 JP52139661A JP13966177A JPS6139751B2 JP S6139751 B2 JPS6139751 B2 JP S6139751B2 JP 52139661 A JP52139661 A JP 52139661A JP 13966177 A JP13966177 A JP 13966177A JP S6139751 B2 JPS6139751 B2 JP S6139751B2
Authority
JP
Japan
Prior art keywords
nitride film
film
thermal
ion implantation
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52139661A
Other languages
Japanese (ja)
Other versions
JPS5472668A (en
Inventor
Takashi Ito
Shinpei Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13966177A priority Critical patent/JPS5472668A/en
Publication of JPS5472668A publication Critical patent/JPS5472668A/en
Publication of JPS6139751B2 publication Critical patent/JPS6139751B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はイオン注入工程を含む半導体装置の製
造方法に関し、特にMIS型FETのチヤネル部の
不純物濃度をイオン注入により制御する所謂チヤ
ネルドープに適用して有効な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device including an ion implantation step, and particularly to a method that is effective when applied to so-called channel doping in which the impurity concentration in a channel portion of a MIS type FET is controlled by ion implantation.

MIS型集積回路(IC)においてはMIS FETの
ゲート閾値を調整するためチヤネル部へ不純物イ
オンを注入する所謂チヤネルドープ技術が一般に
採用されており、特にエンハンスメント型FET
をドライバー,デプレツシヨン型FETを負荷と
するE/DモードMIS型ICの如く、相異なるゲー
ト閾値を持つ複数種類のFETを含むICでは上記
技術は不可欠のものとなつている。通常このチヤ
ネルドープ工程は、ゲート絶縁膜としての熱酸化
膜を介してイオン注入する工程により実施されて
いるが、本工程後のイオン注入損傷アニールや熱
拡散等高温加熱を伴う工程程中において不純物の
再分布が起こり、特に多用されているボロン注入
の場合には熱硬化膜中へのボロンの分配系数が大
きいため、基板表面の不純物濃度が予測した値よ
り著しく低下し、設計値通りのゲート閾値が得ら
れないという問題があつた。
In MIS type integrated circuits (ICs), a so-called channel doping technique is generally adopted in which impurity ions are implanted into the channel part in order to adjust the gate threshold of MIS FETs, and this technique is especially used for enhancement type FETs.
The above technology is indispensable for ICs that include multiple types of FETs with different gate thresholds, such as E/D mode MIS type ICs that use a depletion type FET as a driver and a depletion type FET as a load. Normally, this channel doping process is carried out by implanting ions through a thermal oxide film as a gate insulating film, but impurities are removed during processes that involve high-temperature heating such as ion implantation damage annealing and thermal diffusion after this process. Particularly in the case of boron implantation, which is frequently used, the distribution coefficient of boron into the thermoset film is large, so the impurity concentration on the substrate surface is significantly lower than the predicted value, and the gate is not as designed. There was a problem that the threshold value could not be obtained.

従つて本発明はかかるイオン注入工程において
注入後の熱処理による不純物の再分布、特に表面
濃度の低下を防ぐことができる方法を提供するも
のである。
Therefore, the present invention provides a method that can prevent redistribution of impurities, particularly a decrease in surface concentration, due to post-implantation heat treatment in such an ion implantation process.

本発明による半導体装置の製造方法は、シリコ
ン表面に形成した直接熱窒化膜を介してMIS型
FET形成領域へイオン注入した後、熱処理を施
す工程が含まれ、前記MIS型FET形成領域に前
記熱窒化膜を残してゲート絶縁膜の少なくとも一
部とすることを特徴とするものであり、以下これ
を詳細に説明する。
The method of manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device using a direct thermal nitride film formed on a silicon surface.
The method includes a step of performing heat treatment after ion implantation into the FET formation region, and is characterized in that the thermal nitride film is left in the MIS type FET formation region to form at least a part of the gate insulating film. This will be explained in detail.

直接熱窒化膜は、シリコン基体を窒素或いはア
ンモニア,ヒドラジン等の窒素化合物ガス雰囲気
中にて900〜1300℃程度の高温に加熱することに
よつて、直接反応させて成長させることにより形
成されるものである。この直接熱窒化によるシリ
コン窒化膜は不純物の拡散に対して優れたマスク
作用を持つことが確かめられている。本発明はこ
の直接熱窒化膜の性質を利用し、かかるシリコン
窒化膜を通してシリコン基体内に不純物イオンを
注入して、注入後の熱処理により不純物の再分
布、特にシリコン基体表面上の絶緑膜中へ再配置
することを防止するものである。これにより熱処
理中の表面濃度の低下を防止でき、チヤネルドー
プに適用した場合にはイオン注入量から期待され
る正確なゲート閾値を確保できるのである。また
さらに、上記熱窒化シリコン膜は表面汚染を防止
するパツシベーシヨン効果も著しく優れることが
確かめられており、イオン注入やその前後処理に
伴う表面汚染や不必要な反応等を防ぐ点でも、本
発明は熱酸化膜を介してのイオン注入よりはるか
に優れた効果を期待できる。
A direct thermal nitride film is formed by heating a silicon substrate to a high temperature of approximately 900 to 1300°C in an atmosphere of nitrogen or a nitrogen compound gas such as ammonia or hydrazine to cause a direct reaction and growth. It is. It has been confirmed that this silicon nitride film formed by direct thermal nitridation has an excellent masking effect against the diffusion of impurities. The present invention takes advantage of the properties of this direct thermal nitride film, implants impurity ions into the silicon substrate through the silicon nitride film, and performs post-implantation heat treatment to redistribute the impurities, particularly in the green-free film on the surface of the silicon substrate. This prevents relocation to. This makes it possible to prevent a decrease in surface concentration during heat treatment, and when applied to channel doping, it is possible to ensure an accurate gate threshold value expected from the amount of ion implantation. Furthermore, it has been confirmed that the thermal silicon nitride film has an extremely excellent passivation effect for preventing surface contamination, and the present invention is also effective in preventing surface contamination and unnecessary reactions associated with ion implantation and its pre- and post-treatments. Much better effects can be expected than ion implantation through a thermal oxide film.

以下本発明を適用したMIS型FETの製造工程
例につき図面に沿つて説明する。
An example of the manufacturing process of a MIS type FET to which the present invention is applied will be described below with reference to the drawings.

先ず第1図aの如く、P型シリコン基板1表面
の絶緑膜2のMIS型FET形成領域を除去して窓
開きする。次にこの基板を窒素或いはアンモニア
等の窒化雰囲気中において900〜1300程度に加熱
し、基板シリコンの露出面を直接熱窒化させてシ
リコン窒化膜を形成する。この直接窒化はシリコ
ンの露出部においてのみ生じ、絶緑膜2表面では
起らない。従つて第1図bの如く、絶緑膜2の窓
内において窒化シリコン膜3が形成される。その
厚さは例えば100Åとする。しかる後窒化シリコ
ン膜3を介してボロンイオンを基板1内へ注入す
る。
First, as shown in FIG. 1a, the MIS type FET forming region of the green-proofing film 2 on the surface of the P-type silicon substrate 1 is removed to open a window. Next, this substrate is heated to about 900 to 1300 ℃ in a nitriding atmosphere such as nitrogen or ammonia, and the exposed surface of the silicon substrate is directly thermally nitrided to form a silicon nitride film. This direct nitridation occurs only on the exposed portions of silicon and does not occur on the surface of the green-free film 2. Therefore, as shown in FIG. 1b, a silicon nitride film 3 is formed within the window of the anti-green film 2. Its thickness is, for example, 100 Å. Thereafter, boron ions are implanted into the substrate 1 through the silicon nitride film 3.

第4図bにおける矢印4はボロンイオンB+
ームを表わしている。注入エネルギは、シリコン
窒化膜3が極薄であるため、46KeV程度の比較的
低いエネルギで十分である。数1000Åの厚みを持
つ(フイールド)絶緑膜2はイオン注入に対して
マスク作用を示し、結果的に素子形成領域のみに
イオン注入層5が形成される。
Arrow 4 in FIG. 4b represents the boron ion B + beam. Since the silicon nitride film 3 is extremely thin, a relatively low implantation energy of about 46 KeV is sufficient. The field film 2 having a thickness of several thousand angstroms acts as a mask for ion implantation, and as a result, the ion implantation layer 5 is formed only in the element formation region.

次にこの基板に対して、熱処理を行なうが、こ
れは従来から行なわれているのと全く同様の工程
であり、注入損傷回復や注入不純物活性化等を目
的とし、1000℃前後の温度で30分間程度の加熱を
施すものである。
Next, this substrate is subjected to heat treatment, which is exactly the same process as conventionally performed, at a temperature of around 1000℃ for the purpose of recovering implantation damage and activating implanted impurities. Heating is performed for about a minute.

本実施例では後に高温の加熱を伴う熱拡散工程
があり、このような場合は上記熱処理を省略して
よい。
In this example, there is a thermal diffusion step that involves high-temperature heating, and in such a case, the above-mentioned heat treatment may be omitted.

かかる熱処理工程において、注入領域表面を覆
うシリコン窒化膜3は、不純物の拡散に対して強
いマスク性を示し、また熱酸化膜の如く不純物の
吸出しを生ずるようなこともないから、ボロン注
入領域5の表面濃度変化、特に低下を生じる問題
がない。また、上記イオン注入工程に前後して基
板表面に対する各種清浄化工程、例えば酸処理、
を施すのが実際的であるが、熱窒化反応によるシ
リコン窒化膜3とシリコン基板1の界面は処理液
や外気に晒されることが一切ないためCVDによ
る場合のような界面汚染の恐れは全くなく、さら
にシリコン窒化膜3自体の緻密性及び良好なマス
ク性によつてアルカリイオンのような汚染物の侵
入も完全に阻止できることも付随的な利点であ
る。
In such a heat treatment process, the silicon nitride film 3 covering the surface of the implanted region exhibits a strong masking property against the diffusion of impurities and does not suck out impurities unlike a thermal oxide film. There is no problem of surface concentration changes, especially decreases. Also, before and after the ion implantation process, various cleaning processes for the substrate surface, such as acid treatment,
However, since the interface between the silicon nitride film 3 and the silicon substrate 1 caused by the thermal nitriding reaction is never exposed to the processing solution or the outside air, there is no risk of interface contamination unlike in the case of CVD. Furthermore, an additional advantage is that the intrusion of contaminants such as alkali ions can be completely prevented due to the denseness and good masking properties of the silicon nitride film 3 itself.

次にゲート絶緑膜に必要な厚さを確保するため
CVD法により二酸化シリコンの如き絶緑膜6を
被着し、続いてゲート電極材料の多結晶シリコン
膜7を形成する(第1図c)。
Next, to ensure the necessary thickness for the gate insulation film
A green-proof film 6 such as silicon dioxide is deposited by the CVD method, and then a polycrystalline silicon film 7 as a gate electrode material is formed (FIG. 1c).

これ以降の工程は従来と同様であるので簡単に
説明すると、第1図dの如く、フオトエツチング
により多結晶シリコン膜7及びゲート絶緑膜6,
3を順次エツチングした後、n型不純物の拡散源
とする隣シリケートガラス(PSG)膜8を被着
し、全体を1000℃前後に加熱して、PSG膜8より
隣を基板1内に拡散し、n型のソース,ドレイン
領域9,10を形成する。しかる後、第1図eの
如く、PSG膜8に電極窓形成後、アルミニウムの
ような電極金属を蒸着、パターニングしてソー
ス,ドレイン電極11,12を形成し、素子を完
成する。
The subsequent steps are the same as the conventional ones, so to briefly explain, as shown in FIG.
After sequentially etching 3, a silicate glass (PSG) film 8 which serves as a diffusion source for n-type impurities is deposited, and the whole is heated to around 1000°C to diffuse the area adjacent to the PSG film 8 into the substrate 1. , n-type source and drain regions 9 and 10 are formed. Thereafter, as shown in FIG. 1e, after electrode windows are formed in the PSG film 8, an electrode metal such as aluminum is deposited and patterned to form source and drain electrodes 11 and 12, thereby completing the device.

本実施例によるMIS型FETではチヤネル部に
形成されたボロン注入領域5は熱窒化シリコン膜
に覆われているためボロン濃度変動が少なく、従
つてボロン注入量に応じた正確なゲート閾値を確
保できるのである。
In the MIS type FET according to this embodiment, since the boron implanted region 5 formed in the channel part is covered with a thermal silicon nitride film, there is little variation in boron concentration, and therefore an accurate gate threshold value can be secured according to the amount of boron implanted. It is.

実験によれば、3〜5Ωcmの(100)P型シリ
コン基板において膜厚100Åの熱窒化膜を夫々形
成し、その上からB+イオンを40KeVにて5×1013
cm-2注入して、夫々該注入領域に隣接するn+型拡
散領域を形成し、1100℃,30分のアニールを施し
たとき、このn+領域と基板のなすn+P接合のア
バランシエ降伏電圧は、熱窒化膜を用いた場合が
6.6V±0.2V,熱酸化膜を用いた場合が−8.7V±
0.5Vであつた。このように熱窒化膜を介しての
イオン注入後の降伏電圧がより低いことは、ボロ
ン注入領域の表面濃度がアニール後もあまり低下
していないことを意味している。また上記降伏電
圧は1枚のシリコン,ウエハ内で多数箇所測定し
た結果の値であり、熱窒化膜を介してのイオン注
入ではばらつきがより少なくなつていることが判
る。
According to experiments, a thermal nitride film with a thickness of 100 Å was formed on each (100) P-type silicon substrate of 3 to 5 Ωcm, and B + ions were irradiated with 5 × 10 13 at 40 KeV on top of the thermal nitride film.
cm -2 is implanted to form an n + type diffusion region adjacent to each implanted region, and annealed at 1100°C for 30 minutes, an avalanche breakdown occurs at the n + P junction between this n + region and the substrate. When using a thermal nitride film, the voltage is
6.6V±0.2V, −8.7V± when using thermal oxide film
It was 0.5V. The lower breakdown voltage after ion implantation through the thermal nitride film means that the surface concentration of the boron implanted region does not decrease much even after annealing. Further, the above breakdown voltage is a value obtained by measuring at multiple locations within a single silicon wafer, and it can be seen that the variation is smaller when ions are implanted through a thermal nitride film.

上記実験結果から、本発明の方法がイオン注入
による所期の注入濃度を最終工程まで確保するの
に有効であり、特に前記実施例の如くチヤネルド
ープ技術に適用したときに厳密にゲート閾値を設
定できる点で極めて有用であることが明白であ
る。
From the above experimental results, it is clear that the method of the present invention is effective in ensuring the desired implantation concentration by ion implantation until the final process, and is especially effective in strictly setting the gate threshold when applied to channel doping technology as in the above embodiment. It is clear that it is extremely useful in that it can be done.

そして本発明は上記効果に加えて前記実施例に
おいて述べた如く、表面の汚染や不必要な反応等
を直接熱窒化シリコン膜によつて阻止できる効果
を供するものであり、その実用効果は頗る大であ
る。
In addition to the above-mentioned effects, the present invention provides the effect of directly preventing surface contamination, unnecessary reactions, etc. by the thermal silicon nitride film, and its practical effects are extremely large. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明実施例の工程を示す基板
断面図である。 3……直接熱窒化膜、4……イオンビーム、5
……ボロン注入領域、7……多結晶シリコン膜。
FIGS. 1a to 1e are cross-sectional views of a substrate showing steps in an embodiment of the present invention. 3... Direct thermal nitride film, 4... Ion beam, 5
...Boron implanted region, 7...Polycrystalline silicon film.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン表面に形成した直接熱窒化膜を介し
てMIS型FET形成領域へイオン注入した後、熱
処理を施す工程が含まれ、前記MIS型FET形成
領域に前記熱窒化膜を残してゲート絶縁膜の少な
くとも一部とすることを特徴とする半導体装置の
製造方法。
1 Includes a step of performing heat treatment after ion implantation into the MIS type FET formation region through a direct thermal nitride film formed on the silicon surface, leaving the thermal nitride film in the MIS type FET formation region and forming the gate insulating film. A method for manufacturing a semiconductor device, characterized in that at least a part of the semiconductor device is manufactured.
JP13966177A 1977-11-21 1977-11-21 Manufacture for semiconductor device Granted JPS5472668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13966177A JPS5472668A (en) 1977-11-21 1977-11-21 Manufacture for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13966177A JPS5472668A (en) 1977-11-21 1977-11-21 Manufacture for semiconductor device

Publications (2)

Publication Number Publication Date
JPS5472668A JPS5472668A (en) 1979-06-11
JPS6139751B2 true JPS6139751B2 (en) 1986-09-05

Family

ID=15250459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13966177A Granted JPS5472668A (en) 1977-11-21 1977-11-21 Manufacture for semiconductor device

Country Status (1)

Country Link
JP (1) JPS5472668A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383712A3 (en) * 1989-02-13 1991-10-30 International Business Machines Corporation Method for fabricating high performance transistors with polycrystalline silicon contacts
JP3231645B2 (en) * 1997-01-16 2001-11-26 日本電気株式会社 Semiconductor device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148070A (en) * 1974-05-20 1975-11-27
JPS51148377A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Manufacturing method of mis type semiconductor device
JPS5255375A (en) * 1975-10-28 1977-05-06 Ibm Method of making semiconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148070A (en) * 1974-05-20 1975-11-27
JPS51148377A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Manufacturing method of mis type semiconductor device
JPS5255375A (en) * 1975-10-28 1977-05-06 Ibm Method of making semiconductor devices

Also Published As

Publication number Publication date
JPS5472668A (en) 1979-06-11

Similar Documents

Publication Publication Date Title
US5382533A (en) Method of manufacturing small geometry MOS field-effect transistors having improved barrier layer to hot electron injection
US4113515A (en) Semiconductor manufacturing method using buried nitride formed by a nitridation treatment in the presence of active nitrogen
JP3898770B2 (en) Method for growing high quality oxide films
EP0205613B1 (en) A process for forming nitrided silicon dioxide layers for semiconductor integrated circuits
US5234850A (en) Method of fabricating a nitride capped MOSFET for integrated circuits
US5397720A (en) Method of making MOS transistor having improved oxynitride dielectric
US5015593A (en) Method of manufacturing semiconductor device
CA1237537A (en) Method of making mosfets using silicate glass layer as gate edge masking for ion implantation
US20040126956A1 (en) Method of forming nitrogen enriched gate dielectric with low effective oxide thickness
JP3063898B2 (en) Method for manufacturing semiconductor device
JP2889295B2 (en) Semiconductor device and manufacturing method thereof
JPS6139751B2 (en)
US7015088B2 (en) High-K gate dielectric defect gettering using dopants
JPS62285470A (en) Manufacture of semiconductor device
US7005393B2 (en) Method of fabricating a semiconductor device containing nitrogen in an oxide film
GB2307790A (en) Method of removing defects from semiconductor devices.
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH0878682A (en) Manufacture of semiconductor integrated circuit device
US5646057A (en) Method for a MOS device manufacturing
JP2843037B2 (en) Method for manufacturing semiconductor device
JPH04251939A (en) Semiconductor device and manufacture thereof
JP3376305B2 (en) Method for manufacturing semiconductor device
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JP2685493B2 (en) Method for manufacturing semiconductor device