JPS62256736A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS62256736A
JPS62256736A JP9894586A JP9894586A JPS62256736A JP S62256736 A JPS62256736 A JP S62256736A JP 9894586 A JP9894586 A JP 9894586A JP 9894586 A JP9894586 A JP 9894586A JP S62256736 A JPS62256736 A JP S62256736A
Authority
JP
Japan
Prior art keywords
layer
optical fiber
gas
base material
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9894586A
Other languages
Japanese (ja)
Other versions
JPH089488B2 (en
Inventor
Toshio Danzuka
彈塚 俊雄
Minoru Watanabe
稔 渡辺
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9894586A priority Critical patent/JPH089488B2/en
Publication of JPS62256736A publication Critical patent/JPS62256736A/en
Publication of JPH089488B2 publication Critical patent/JPH089488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/10Split ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/18Eccentric ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To enhance the yield of a raw material for a base material in case of producing the base material for optical fiber in a vapor phase axial deposition process (VAD process) by partitioning at least one annular jet port of a multiple combustion burner into two and above and independently controlling the flow rate of gas for partitioned respective flow paths. CONSTITUTION:In case of producing a base material for optical fiber in VAD process, a gaseous raw material such as SiCl4 is jetted through the first layer of an annular multiple combustion burner and gaseous fuel such as H2 and CH4 is jetted through the second layer and inert gas such as Ar and N2 is jetted through the third layer and autocombustion gas such as O2 is jetted through the fourth layer, and fine glass particles are produced by the hydrolysis reaction or the oxidation reaction of the gaseous raw material and the base material for optical fiber is stuck and grown on the tip of a starting rod. In this case, the partitioning pipes of the second layer and the third layer of the burner are eccentrically fitted and a partition is centrally provided to divide respective layers into two ports of A and B. Gases of respective layers are jetted in the optimum flow rate conditions by independently controlling the flow rate of gas of two ports of respective layers and the porous glass base material for optical fiber is produced in good yield of the raw material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ファイバ用母材の製造方法に関するもので
あり、更に詳述するならば、ovpo法(外付気相酸化
法)、■AD法(気相軸付法)等のスート生成法により
光ファイバ用多孔質ガラス母材を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an optical fiber base material, and more specifically, the OVPO method (external vapor phase oxidation method), AD method. The present invention relates to a method of manufacturing a porous glass preform for optical fibers by a soot generation method such as (vapor phase axial mounting method).

従来の技術 光ファイバ用多孔質ガラス母材を製造する1方法として
、燃焼バーナから燃焼ガスおよびガラス原料を混合噴出
し、火炎中での加水分解反応または酸化反応によりガラ
ス微粒子を生成し、このガラス微粒子を回転する出発材
の先端に堆積させ、ガラス多孔質ガラス母材の成長に合
わせて出発材をバーナと相対的に移動させることにより
多孔質ガラス母材を製造するVAD法がある。
Conventional Technology One method for manufacturing porous glass preforms for optical fibers is to eject a mixture of combustion gas and glass raw material from a combustion burner, generate glass fine particles through a hydrolysis reaction or oxidation reaction in a flame, and then produce glass particles. There is a VAD method in which a porous glass preform is produced by depositing fine particles on the tip of a rotating starting material and moving the starting material relative to a burner as the porous glass preform grows.

また、出発材の外周部に燃焼バーナにより生成したガラ
ス微粒子を堆積させ、出発材または燃焼バーナを1回以
上トラバースすることにより、多孔質ガラス母材を製造
する○■PO法(特開昭48−73522号)もある。
In addition, the ○■PO method (Japanese Patent Application Laid-open No. 48-1983) produces a porous glass base material by depositing glass particles generated by a combustion burner on the outer periphery of the starting material and traversing the starting material or the combustion burner one or more times. -73522) is also available.

従来VAD法においては、燃焼バーナとして、第2図(
a)に示すような断面丸型の噴出口を有する多重管バー
ナまたは第2図(b)に示すような断面角型の噴出口を
有する多重管バーナが用いられている。多重管バーナの
各環状噴射ポートすなわち各層からは、それぞれ原料ガ
ス、燃料ガス及び助燃ガス等が噴出される。例えば、第
2図に示す同心円状多重管バーナでは、第1層から原料
ガス、第2層から燃料ガス、第3層から不活性ガス、第
4層から助燃ガスがそれぞれ噴射される。一般に原料ガ
スとしては5IC14、燃料ガスとしてはN2、CH,
等、不活性ガスとしてはAr −、N2 、助燃ガスと
しては02が用いられる。また原料ガス中には、ドーパ
ントとしてGeCl4等が混合供給されることもある。
In the conventional VAD method, the combustion burner shown in Fig. 2 (
A multi-tube burner having a jet nozzle with a round cross section as shown in a) or a multi-tube burner having a jet nozzle with a square cross section as shown in FIG. 2(b) is used. Raw material gas, fuel gas, auxiliary combustion gas, etc. are ejected from each annular injection port, that is, from each layer of the multi-tube burner. For example, in the concentric multi-tube burner shown in FIG. 2, raw material gas is injected from the first layer, fuel gas from the second layer, inert gas from the third layer, and auxiliary combustion gas from the fourth layer. Generally, the raw material gas is 5IC14, and the fuel gas is N2, CH,
Ar -, N2 is used as the inert gas, and 02 is used as the auxiliary combustion gas. Further, GeCl4 or the like may be mixed and supplied as a dopant into the raw material gas.

光ファイバ用母材の製造においては、伝送損失を低(す
るために母材中に含まれる不純物を十分に低減させる必
要がある。従って、バーナは、そのような不純物を混入
させない材料で形成されていることが必要である。また
、バーナとしては、“ガラス原料として腐食性の原料を
用いるために、耐食性のすぐれた材質を用いる必要があ
る。このため、従来、燃焼バーナとして石英製のバーナ
が用いられていた。しかし、石英は加工性が悪いので、
石英製バーナの製造精度を向上させるには限界があった
。同心円状多重管バーナを用いる場合には、各層め同心
度の悪さおよびパイプの肉厚変動により、層のすきまが
円周方向に変動することが多い。
In manufacturing optical fiber base materials, it is necessary to sufficiently reduce impurities contained in the base material in order to reduce transmission loss.Therefore, burners are made of materials that do not contain such impurities. In addition, since a corrosive raw material is used as the raw material for glass, it is necessary to use a material with excellent corrosion resistance.For this reason, conventionally, quartz burners have been used as combustion burners. However, since quartz has poor workability,
There were limits to improving the manufacturing precision of quartz burners. When a concentric multi-tube burner is used, the gap between the layers often varies in the circumferential direction due to poor concentricity of each layer and variations in the wall thickness of the pipes.

このため、燃焼バーナにより形成される火炎および生成
されるガラス微粒子の流れは軸対称流とならず、原料の
付着効率が劣化するという問題があった。また、この燃
焼バーナの製造精度は各バーナによりバラツキがあり、
バーナを交換するたびに多孔質ガラス母材の製造状態が
変化するので、その都度多孔質ガラス母材の製造条件を
変更しなければならないという問題があった。更に、石
英製よりも寸法精度の良い金属製バーナにおいても、同
心度を良(するためには多大の時間と労力を要し、同心
度を常に一定に保つことは困難であった。
For this reason, the flame formed by the combustion burner and the flow of the generated glass particles do not flow axially symmetrically, resulting in a problem that the adhesion efficiency of the raw material deteriorates. In addition, the manufacturing accuracy of this combustion burner varies depending on the burner.
Since the manufacturing conditions of the porous glass base material change each time the burner is replaced, there is a problem in that the manufacturing conditions of the porous glass base material must be changed each time. Furthermore, even with metal burners that have better dimensional accuracy than quartz burners, it takes a great deal of time and effort to achieve good concentricity, and it is difficult to maintain constant concentricity.

発明が解決しようとする問題点 以上のように、環状多重管燃焼バーナを用いてスート法
により光ファイバ用多孔質ガラス母材を製造する従来の
方法では、燃焼バーナの各層のすきまが周方向に一定と
なっていないため、形成される火炎および生成されるガ
ラス微粒子の流れは軸対称流とはならず、原料の付着効
率が劣化するという問題があった。
Problems to be Solved by the Invention As mentioned above, in the conventional method of manufacturing a porous glass base material for optical fiber by the soot method using an annular multi-tube combustion burner, the gaps between each layer of the combustion burner are narrowed in the circumferential direction. Since the flow is not constant, the flame that is formed and the flow of the glass particles that are generated are not axially symmetrical, resulting in a problem that the adhesion efficiency of the raw material deteriorates.

そこで、本発明は、上記燃焼バーナにより形成される火
炎流および火炎中で生成されるガラス微粒子流が軸対称
な流れとなり、原料収率の良い光ファイバ用母材の製造
方法を提供せんとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a method for producing an optical fiber preform in which the flame flow formed by the combustion burner and the glass particle flow generated in the flame are axially symmetrical, and the raw material yield is high. It is something.

問題点を解決するた必の手段 すなわち、本発明によるならば、複数の環状噴射ポート
が同心状に設けられた多重管燃焼バーナから気体のガラ
ス原料を噴出させて火炎加水分解し、生成した粒状ガラ
スを回転する出発材に堆積させ、該粒状ガラスを回転軸
方向に成長させて多孔質ガラス母材を製造する方法にお
いて、前記多重管燃焼バーナの少なくとも1つの環状噴
射ポートを2つ以上に仕切り、その仕切られた各流路の
流量を独立して制御する。
According to the present invention, gaseous frit is injected from a multi-tube combustion burner in which a plurality of annular injection ports are concentrically provided and subjected to flame hydrolysis to generate granular particles. A method of manufacturing a porous glass preform by depositing glass on a rotating starting material and growing the granular glass in the direction of the rotation axis, wherein at least one annular injection port of the multi-tube combustion burner is partitioned into two or more. , independently controlling the flow rate of each partitioned flow path.

作用 上記した本発明の詳細な説明する前に、上述した問題を
図面を参照して説明する。
Operation Before detailed explanation of the present invention described above, the above-mentioned problem will be explained with reference to the drawings.

第3図(a)は、第2層と第3層の仕切パイプが偏心し
て取り付けられた4重管バーナの噴出口の断面を示す。
FIG. 3(a) shows a cross section of a jet outlet of a quadruple tube burner in which partition pipes of the second layer and the third layer are eccentrically attached.

図示のバーナでは、第2層は左側の隙間が狭く、右側の
隙間は広くなっている。また、第3層は逆に左側は広く
右側は狭くなっている。
In the illustrated burner, the second layer has a narrow gap on the left side and a wide gap on the right side. On the other hand, the third layer is wider on the left side and narrower on the right side.

このように偏心したバーナを用いた場合、第2層および
第3層のガスの流れは、バーナ内の圧損の関係から隙間
の広い方に偏って流れる。
When such an eccentric burner is used, the gas flows in the second and third layers are biased towards the wider gap due to the pressure drop within the burner.

従って、第3図(a)に示すような噴出口断面を有する
燃焼バーナの第1層に原料ガス、第2層に燃料ガス、第
3洲に不活性ガス、第4層に助燃ガスをそれぞれ流した
場合、第2層の燃焼ガスはすきまが広い右側に多く流れ
、第3層の不活性ガスはすきまの広い左側に多く流れる
ことになる。この結果、バーナの右側に形成される火炎
は大きく、左側に形成される火炎は小さくなる。さらに
不活性ガスの流量の少ない右側では、燃焼ガスと助熱ガ
スの混合が速くなり、バーナの出口のごく近傍で火炎が
形成されることになり、バーナ先端部の温度が上昇して
しまう。
Therefore, in a combustion burner having a cross section of the jet nozzle as shown in Fig. 3(a), the raw material gas is placed in the first layer, the fuel gas is placed in the second layer, the inert gas is placed in the third layer, and the auxiliary gas is placed in the fourth layer. If it flows, the combustion gas in the second layer will mostly flow to the right side where the gap is wide, and the inert gas in the third layer will mostly flow to the left side where the gap is wide. As a result, the flame formed on the right side of the burner is large and the flame formed on the left side is small. Further, on the right side where the flow rate of the inert gas is low, the combustion gas and the heat-assisting gas are mixed quickly, and a flame is formed very close to the burner outlet, resulting in an increase in the temperature at the burner tip.

従来、こうした場合には、第3層のガス流量を上げてバ
ーナの破損を避けていたので、ガラス微粒子生成の最適
なガス流量条件を実現することができなくなり、多孔質
ガラス母材を効率よく合成することができなかった。
Conventionally, in such cases, the gas flow rate in the third layer was increased to avoid damage to the burner, which made it impossible to achieve the optimal gas flow conditions for glass particle generation. could not be synthesized.

しかし、本発明による方法においては、第3ズ(b)の
噴出口断面図に示すように、例えば中央に仕切りが設け
られており、各席がA及びBの2つのポートに分かれて
いる。そして、各層の2つのポートの流量を独立して調
整する。その際、火炎が左右対称に形成されるように、
′Aボート及びBポートの流量を調整するならば、どの
ような偏心を持ったバーナに対しても最適な流量条件に
近い状態で、多孔質ガラス母材を合成することが可能と
なる。
However, in the method according to the present invention, as shown in the cross-sectional view of the jet port in the third case (b), a partition is provided in the center, for example, and each seat is divided into two ports A and B. Then, the flow rates of the two ports of each layer are adjusted independently. At that time, so that the flame is formed symmetrically,
'If the flow rates of the A boat and the B port are adjusted, it is possible to synthesize a porous glass preform under conditions close to the optimal flow rate for any burner with any eccentricity.

簡単のために4重管バーナについて、各層を2つのポー
トに仕切った例を説明したが、同心状の多重管の場合に
は、どのような場合も適用することができる。第2図に
示す角型環状多重管バーナの場合にも同様である。
For the sake of simplicity, an example in which each layer is partitioned into two ports has been described for a quadruple tube burner, but any case can be applied to the case of concentric multiple tubes. The same applies to the square annular multi-tube burner shown in FIG.

また、仕切りはバーナのすべての層に入れる必要はなく
、多孔質母材形成に重要な役割をはたす特定の層に限っ
て仕切りを入れる場合でも本発明の効果を損わない。
Furthermore, it is not necessary to include partitions in all layers of the burner, and even if partitions are provided only in specific layers that play an important role in forming the porous base material, the effects of the present invention will not be impaired.

更に、上記VAD法に限らず、多孔質ガラス母材を形成
するプロセスを含む製法であれば、本方法を適用するこ
とは可能である。
Furthermore, this method is applicable not only to the VAD method described above but also to any manufacturing method that includes a process of forming a porous glass base material.

実施例 以下添付図面を参照して、本発明による光ファイバ用母
材の製造方法の実施例を説明する。
EXAMPLES Hereinafter, examples of the method for manufacturing an optical fiber preform according to the present invention will be described with reference to the accompanying drawings.

第1図に示すような噴出口を有する石英製8重管バーナ
を用いて、多孔質母材の合成を行った。
A porous base material was synthesized using a quartz eight-tube burner having a spout as shown in FIG.

この8重管バーナ噴出口の中心から4層の各層は、4ボ
ートに等分に仕切られている。層の偏心を測定した結果
を第1表に示す。
Each of the four layers from the center of this eight-layer burner outlet is equally divided into four boats. Table 1 shows the results of measuring the eccentricity of the layers.

第1表 ここで言う偏心の定義を第2層の偏心について説明する
。第4図は、2つのパイプにより形成された第2層を模
式的に示す。第2層は、パイプ1の外周3とパイプ2の
内周4で画成されている。
Table 1 The definition of eccentricity here is explained for the eccentricity of the second layer. FIG. 4 schematically shows the second layer formed by two pipes. The second layer is defined by the outer circumference 3 of the pipe 1 and the inner circumference 4 of the pipe 2.

ここで言う第2層の偏心は外周3の円の中心に対する内
周4の円の中心のズレを示すものである。
The eccentricity of the second layer referred to here indicates the deviation of the center of the circle on the inner circumference 4 from the center of the circle on the outer circumference 3.

この測定結果より偏心の比較的大きな層、すなわらすき
まが円周方向に比較的大きく変化している層は、第2.
4.5及び6層であることがわかる。
From this measurement result, the layer with relatively large eccentricity, that is, the layer where the gap changes relatively greatly in the circumferential direction, is the second layer.
It can be seen that there are 4.5 and 6 layers.

まず、比較のために、4つに仕切られた各ポートから同
一流量のガスを流して多孔質母材を製造した。
First, for comparison, a porous base material was manufactured by flowing gas at the same flow rate from each of the four partitioned ports.

原料としては5IC14を第1層より供給し、燃焼 ゛
ガスとしては水素を第2層及び第6層から、助燃ガスと
しては酸素を第4層及び第8層から、°不活性ガスとし
てはアルゴンを第3層、5層及び第7層からそれぞれ供
給した。各ガスの流量は、SIC]4=1700cc/
m1nSH2=21A/min、 02=25β/mi
n。
5IC14 is supplied from the first layer as a raw material, and hydrogen is supplied as a combustion gas from the second and sixth layers, oxygen is supplied as a combustion assisting gas from the fourth and eighth layers, and argon is used as an inert gas. were supplied from the third, fifth and seventh layers, respectively. The flow rate of each gas is SIC]4=1700cc/
m1nSH2=21A/min, 02=25β/mi
n.

八r=15j2 /minとした。8r=15j2/min.

前記バーナにより形成される火炎およびガラス微粒子流
を観察したところ、ガラス微粒子流は軸対称とはjヨら
ず、流れが不均一で乱れが一部生じていた。多孔質母材
合成の原料収率は52%と悪かった。原料収率とは、バ
ーナより供給する原料投入量に対する、多孔質母材に付
着した原料の比を示している。
When the flame and glass particle flow formed by the burner were observed, it was found that the glass particle flow was not axially symmetrical, and the flow was non-uniform, with some turbulence occurring. The raw material yield for porous matrix synthesis was as low as 52%. The raw material yield indicates the ratio of the raw material attached to the porous base material to the raw material input amount supplied from the burner.

同一のバーナ及び同一のガス流量で火炎を形成し、火炎
を観察しながらガラス微粒子流の流れが軸対称で且つ乱
れが生じないように、4つに仕切られた各ボートの流量
を調整した。この仕切られた各ポートの流量調整は、例
えば、各ボートをそれぞれ独立した流量調整弁などを介
し供給源に接続し、それら流量調整弁を独立して調整す
ることにより容易に実現できる。
A flame was formed using the same burner and the same gas flow rate, and while observing the flame, the flow rate of each of the four partitioned boats was adjusted so that the flow of the glass particles was axially symmetrical and no turbulence occurred. Adjustment of the flow rate of each partitioned port can be easily realized, for example, by connecting each boat to a supply source through independent flow rate adjustment valves and adjusting the flow rate adjustment valves independently.

本実施例の場合には、第2層の各ポートのガス流量およ
び第4層の各ボートのガス流量を調整した。それにより
、火炎は軸対称に近い流れとすることができ、その結果
、製造された多孔質母材の原料収率は61%と高めるこ
とができた。
In the case of this example, the gas flow rate of each port in the second layer and the gas flow rate of each boat in the fourth layer were adjusted. As a result, the flame could be made to flow nearly axially symmetrically, and as a result, the raw material yield of the produced porous base material could be increased to 61%.

発明の詳細 な説明したように、本発明による光ファイバ用母材の製
造方法は、同心状多重管バーナの偏心している各層から
流れるガスの不均一な流れを、各層ごとに2つ以上に仕
切られた各ポートからのガスの流量を調節することによ
り均一な流れとし、軸対称な火炎流およびガラス微粒子
流を実現する。
As described in detail, the method for manufacturing an optical fiber preform according to the present invention involves dividing the non-uniform flow of gas flowing from each eccentric layer of a concentric multi-tube burner into two or more layers for each layer. By adjusting the flow rate of gas from each port, a uniform flow is achieved, and an axially symmetrical flame flow and glass particle flow are realized.

すなわら、原料の付着効率の劣化を防止して、光ファイ
バ用多孔質ガラス母材を原料収率よく製造することがで
きる。
In other words, it is possible to prevent the deterioration of the adhesion efficiency of raw materials and to produce a porous glass preform for optical fibers with a high raw material yield.

したがって、本発明による光ファイバ用母材の製造方法
は、広い範囲にわたって活用することができる。
Therefore, the method for manufacturing an optical fiber preform according to the present invention can be utilized over a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光ファイバ用母材の製造方法の
1実施例に使用した燃焼バーナの噴出口の概略断面図で
あり、 第2図(a)及びら)は、従来のVAD法により使用さ
れていた燃焼バーナの噴出口の概略断面図であり、 第3図(a)及び(b)は、本発明による光ファイバ用
母材の製造方法に使用するバーナの噴出口断面の構成を
説明する燃焼バーナ噴出口の概略断面図であり、 第4図は、同心多重管燃焼バーナにおける偏心の定義に
ついて説明する図である。 (主な参照番号) 1・・第1層と第2層を区切るパイプ、2・・第2層と
第3層を区切るパイプ、3・・バイブ1の外周円、 4・・バイブ2の内周円
FIG. 1 is a schematic cross-sectional view of the jet nozzle of a combustion burner used in one embodiment of the method for manufacturing an optical fiber preform according to the present invention, and FIG. FIGS. 3(a) and 3(b) are schematic cross-sectional views of the jet nozzle of a combustion burner used in the present invention; FIGS. FIG. 4 is a schematic cross-sectional view of a combustion burner nozzle for explaining. FIG. 4 is a diagram for explaining the definition of eccentricity in a concentric multi-tube combustion burner. (Main reference numbers) 1... Pipe that separates the first and second layers, 2... Pipe that separates the second and third layers, 3... Outer circumference of vibe 1, 4... Inside of vibe 2 circumference

Claims (3)

【特許請求の範囲】[Claims] (1)複数の環状噴射ポートが同心状に設けられた多重
管燃焼バーナから気体のガラス原料を噴出させて火炎加
水分解し、生成した粒状ガラスを回転する出発材に堆積
させ、該粒状ガラスを回転軸方向に成長させて多孔質ガ
ラス母材を製造する方法において、 前記多重管燃焼バーナの少なくとも1つの環状噴射ポー
トを2つ以上に仕切り、その仕切られた各流路の流量を
独立して制御することを特徴とする光ファイバ用母材の
製造方法。
(1) A gaseous glass raw material is ejected from a multi-tube combustion burner with a plurality of concentric injection ports, subjected to flame hydrolysis, and the resulting granular glass is deposited on a rotating starting material. In a method for manufacturing a porous glass preform by growing it in the direction of the rotation axis, at least one annular injection port of the multi-tube combustion burner is partitioned into two or more, and the flow rate of each partitioned flow path is independently controlled. 1. A method for manufacturing an optical fiber base material, the method comprising controlling the manufacturing method.
(2)上記2つ以上に仕切られた同一の環状噴射ポート
から、それぞれ同種のガスを流出させることを特徴とす
る特許請求の範囲第1項記載の光ファイバ用母材の製造
方法。
(2) The method for manufacturing an optical fiber preform according to claim 1, wherein the same type of gas is flowed out from the same annular injection port divided into two or more.
(3)上記2つ以上に仕切られた各環状噴射ポートの各
流路のガス流量を、燃焼バーナにより形成される火炎お
よび粒状ガラス流が軸対称または面対称に形成されるよ
う調整することを特徴とする特許請求の範囲第1項また
は第2項に記載の光ファイバ用母材の製造方法。
(3) Adjust the gas flow rate of each flow path of each annular injection port partitioned into two or more so that the flame and granular glass flow formed by the combustion burner are formed axially or plane symmetrically. A method for manufacturing an optical fiber preform according to claim 1 or 2.
JP9894586A 1986-04-28 1986-04-28 Method for manufacturing base material for optical fiber Expired - Lifetime JPH089488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9894586A JPH089488B2 (en) 1986-04-28 1986-04-28 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9894586A JPH089488B2 (en) 1986-04-28 1986-04-28 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS62256736A true JPS62256736A (en) 1987-11-09
JPH089488B2 JPH089488B2 (en) 1996-01-31

Family

ID=14233238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9894586A Expired - Lifetime JPH089488B2 (en) 1986-04-28 1986-04-28 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH089488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531086A (en) * 2000-04-14 2003-10-21 ヘレウス・テネボ・アクチェンゲゼルシャフト Method and apparatus for producing quartz glass bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745804B2 (en) * 2017-01-31 2020-08-18 Ofs Fitel, Llc Parallel slit torch for making optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531086A (en) * 2000-04-14 2003-10-21 ヘレウス・テネボ・アクチェンゲゼルシャフト Method and apparatus for producing quartz glass bodies

Also Published As

Publication number Publication date
JPH089488B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
EP0800490B1 (en) Process for producing preforms for optical fibres
WO2009107392A1 (en) Burner for manufacturing porous glass base material
US20140165656A1 (en) Method of fabricating an optical fiber preform and a burner therefor
RU2271341C2 (en) Multi-tubular burner and method of producing glass blank
JPS62256736A (en) Production of base material for optical fiber
EP1572593A1 (en) Burner for chemical vapour deposition of glass
JPH1095623A (en) Production of porous glass preform and burner for producing the same preform
JP3567574B2 (en) Burner for synthesis of porous glass base material
WO2018155036A1 (en) Multi-pipe burner for synthesizing porous materials, and porous material synthesis device
JPH02164733A (en) Production of glass fine particle deposited body
US8459063B2 (en) Burner for producing porous glass preform
EP1448486A1 (en) Burner for a vapour deposition process
US8312744B2 (en) Burner for producing glass fine particles and method for manufacturing porous glass base material using the same
JPH04228440A (en) Production of glass article
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JP2012041227A (en) Method for producing porous glass preform
JPH04228443A (en) Burner for producing optical fiber preform
KR20090092685A (en) Burner for producing porous glass preform
JPS6172645A (en) Manufacture of optical fiber preform
JP2002160934A (en) Method of producing optical fiber preform and burner used in the method
JPS6355135A (en) Production of optical fiber preform
JPH02133331A (en) Production of fine glass particle-deposited body
JPH04228442A (en) Production of optical preform
JPH0238336A (en) Multitubular burner for synthesizing porous silica glass form
JPH0416418B2 (en)