JPS62256457A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62256457A
JPS62256457A JP61100096A JP10009686A JPS62256457A JP S62256457 A JPS62256457 A JP S62256457A JP 61100096 A JP61100096 A JP 61100096A JP 10009686 A JP10009686 A JP 10009686A JP S62256457 A JPS62256457 A JP S62256457A
Authority
JP
Japan
Prior art keywords
film
resin film
low temperature
inorganic insulating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61100096A
Other languages
Japanese (ja)
Inventor
Shuichi Harajiri
原尻 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61100096A priority Critical patent/JPS62256457A/en
Publication of JPS62256457A publication Critical patent/JPS62256457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To reduce the breakdown of a passivation film by a method wherein a low temperature plasma grown inorganic insulating film is laid between a coating resin film coated and solidified on a semiconductor element and a mold resin film. CONSTITUTION:A low temperature plsma grown inorganic insulating film 10 e.g. a silicon oxide film or silicon nitride film is laid between a coating resin film 7 and a mold resin film 4. The low temperature plasma grown SiO2 film 10 is coated at the low substrate heating temperature of 100-200 deg.C. The purpose of coating the SiO2 film 10 at such a low temperature is to soften itself regardless of the slight deterioration in film quality thereof so that the mold resin film 4 in case of solidifying for contraction to become a buffer layer of stress thereof may not move the coating resin film 7. Through these procedures, the cracking in a passivation film 6 during molding process can be eliminated to improve the reliability of a semiconductor device.

Description

【発明の詳細な説明】 [概要コ 塗布したコーティング樹脂膜とモールド樹脂との間に、
低温プラズマ成長させた無機絶縁膜、例えば、酸化シリ
コン膜、または、窒化シリコン膜を介在させる。そうす
ると、その介在させた絶縁膜がストレスの緩衝層となり
、半導体素子を被覆した保護膜の破壊が減少して、半導
体装置が高信頼化される。
[Detailed Description of the Invention] [Summary] Between the applied coating resin film and the mold resin,
An inorganic insulating film grown by low-temperature plasma, such as a silicon oxide film or a silicon nitride film, is interposed. In this case, the interposed insulating film becomes a stress buffer layer, reducing damage to the protective film covering the semiconductor element, and making the semiconductor device highly reliable.

[産業上の利用分野] 本発明は半導体装置、特にモールド樹脂封止型半導体装
置の保護構造に関する。
[Industrial Field of Application] The present invention relates to a protection structure for a semiconductor device, particularly a molded resin-encapsulated semiconductor device.

従前より、IC,LSIなどの半導体装置には、金属ケ
ースに半導体素子を収容したハーメチック封止型と、モ
ールド樹脂で固めたモールド樹脂封止型とがあり、後者
のモールド樹脂封止型半導体装置は廉価で大量生産でき
る特色があり、一般用として広く利用されている。
Traditionally, semiconductor devices such as ICs and LSIs have been divided into hermetic sealing types, in which semiconductor elements are housed in metal cases, and mold resin sealing types, in which semiconductor elements are hardened with mold resin. It has the advantage of being inexpensive and mass-produced, and is widely used for general purposes.

しかし、このようなモールド樹脂封止型半導体装置にお
いても、勿論、その信頼性について十分な配慮が望まれ
ている。
However, even in such a molded resin-encapsulated semiconductor device, sufficient consideration must be given to its reliability.

[従来の技術] 第2図はモールド樹脂封止型IC(モールド1C)の断
面概要図を示しており、1はリードフレ−ム、2は半導
体素子(チップ)、3はリードワイヤー、4はモールド
樹脂で、モールド樹脂4は加熱成形して固化させるエポ
キシ樹脂やシリコン樹脂等が用いられている。また、リ
ードフレーム1は、第2図に示すように整型された状態
では、半導体素子2を接着した部分がステージとなり、
モールド樹脂より外部に表出した部分がリードになるが
、本発明ではリードフレームと総称している。このリー
ドフレームは半導体素子の裏面を接着させるために、熱
膨張率が半導体に近位している金属材料、例えば、鉄ニ
ツケル合金材から成形されたものである。
[Prior Art] Fig. 2 shows a schematic cross-sectional view of a molded resin-sealed IC (mold 1C), in which 1 is a lead frame, 2 is a semiconductor element (chip), 3 is a lead wire, and 4 is a mold. The molding resin 4 is made of epoxy resin, silicone resin, etc., which is heated and solidified. Furthermore, when the lead frame 1 is shaped as shown in FIG. 2, the part to which the semiconductor element 2 is bonded becomes a stage.
The parts exposed to the outside from the mold resin become leads, which are collectively referred to as lead frames in the present invention. This lead frame is molded from a metal material having a thermal expansion coefficient close to that of the semiconductor, such as an iron-nickel alloy material, in order to bond the back side of the semiconductor element.

他方、半導体素子の表面は直接モールド樹脂4に接触さ
せると色々と悪影響があるため、第3図に示すモールド
tCの部分断面図のように、絶縁保護膜で被覆されてい
る。第3図において、1はリードフレーム、2は半導体
素子、5は素子上の配線層、6はパッシベーション膜、
7はコーティング樹脂膜、4はモールド樹脂で、パッシ
ベーション膜6は化学気相成長(CVD)法で被着した
燐シリケートガラス(P S G)膜やプラズマCVD
法で被着した窒化シリコン(Si3 N4 )膜が用い
られ、この膜6は半導体素子2べの水分やアルカリイオ
ンの侵入を防ぎ、優れた被覆性をもつ材質の膜が使用さ
れる。
On the other hand, if the surface of the semiconductor element is brought into direct contact with the mold resin 4, it will have various adverse effects, so it is covered with an insulating protective film as shown in the partial cross-sectional view of the mold tC shown in FIG. In FIG. 3, 1 is a lead frame, 2 is a semiconductor element, 5 is a wiring layer on the element, 6 is a passivation film,
7 is a coating resin film, 4 is a molding resin, and the passivation film 6 is a phosphorous silicate glass (PSG) film deposited by chemical vapor deposition (CVD) or plasma CVD.
A silicon nitride (Si3 N4) film deposited by a method is used, and this film 6 is made of a material that prevents moisture and alkali ions from entering the semiconductor element 2 and has excellent covering properties.

また、その上面のコーティング樹脂膜7も内部を保護す
るのが目的で、耐湿性をもたせ、且つ、塗布して表面を
平坦化させており、このコーティング樹脂膜として著名
なものに耐熱性・絶縁性の良いポリイミド膜がある。か
(してモールドICの表面は、第3図のような断面構造
にして半導体素子を保護し、モールド樹脂で封止しであ
る。
In addition, the coating resin film 7 on the top surface is also intended to protect the inside, and is made to have moisture resistance and is coated to flatten the surface.The most famous coating resin film is heat resistance and insulation. There is a polyimide film with good properties. (The surface of the molded IC is formed into a cross-sectional structure as shown in FIG. 3 to protect the semiconductor element, and is sealed with a molding resin.

[発明が解決しようとする問題点] ところが、上記のようにコーティング樹脂膜7、例えば
、ポリイミド膜を用いた場合、確かに耐湿性と平坦化と
が得られるが、ポリイミド膜とモールド樹脂とは同じ有
機樹脂であるから、両者は極めて密着性が良い。
[Problems to be Solved by the Invention] However, when the coating resin film 7, for example, a polyimide film is used as described above, moisture resistance and flatness can certainly be obtained, but the difference between the polyimide film and the molding resin is Since they are made of the same organic resin, both have extremely good adhesion.

そのため、パッシベーション膜にクランク(割れ)を与
えることがある。これは、モールド樹脂を加熱溶融して
成形し、次いで、冷却固化させる際、モールド樹脂は若
干収縮し、その時、凹凸あるパッシベーション膜に食い
込んだコーティング樹脂膜が、モールド樹脂によって引
っ張られて動き、その力(矢印で示す)によってパッシ
ベーション膜にクランクを与えるものである。
Therefore, the passivation film may be cracked. This is because when molding resin is heated and melted and then cooled and solidified, the molding resin contracts slightly, and at that time, the coating resin film that has bitten into the uneven passivation film is pulled and moved by the molding resin. The force (indicated by the arrow) applies a crank to the passivation film.

しかし、このように、パッシベーション膜にクラックが
生じると、半導体素子の保護効果が減退して、その信頼
性が低下する。
However, when cracks occur in the passivation film as described above, the protection effect of the semiconductor element is reduced and the reliability thereof is reduced.

本発明は、このようなパッシベーション膜のクランクを
減少させ゛て、信頼性を向上するためのモールド樹脂封
止型半導体装置を提案するものである。
The present invention proposes a molded resin-encapsulated semiconductor device for reducing such cranking of the passivation film and improving reliability.

F問題点を解決するための手段] その問題は、半導体素子上に塗布し固化させたコーティ
ング樹脂膜と、モールド樹脂との間に、低温プラズマ成
長させた無機絶縁膜、例えば、酸化シリコン膜や窒化シ
リコン膜が介在している半導体装置によって解決される
Measures to Solve Problem F] The problem is that an inorganic insulating film grown by low-temperature plasma, such as a silicon oxide film or This problem is solved by a semiconductor device in which a silicon nitride film is interposed.

[作用] 部ち、本発明は、コーティング樹脂膜とモールド樹脂と
の間に、低温プラズマ成長させた無機絶縁膜、例えば、
酸化シリコン膜、または、窒化シリコン膜を介在させる
。そうすると、その介在させた絶縁膜がストレスの緩衝
層となって、パッシベーション膜の破壊が減少し、半導
体装置が高僧転化される。
[Function] Firstly, the present invention provides an inorganic insulating film grown by low-temperature plasma between the coating resin film and the mold resin, for example,
A silicon oxide film or a silicon nitride film is interposed. Then, the interposed insulating film acts as a stress buffer layer, reducing breakdown of the passivation film and improving the semiconductor device.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかるモールドICの部分断面図を示
しており、10が低温プラズマ成長させた無機絶縁膜の
酸化シリコン(Si02)膜である。
FIG. 1 shows a partial cross-sectional view of a molded IC according to the present invention, and numeral 10 is a silicon oxide (Si02) film, which is an inorganic insulating film grown by low-temperature plasma.

その寵の部材は、第3図と同じく、1はリードフレーム
、2は半導体素子、5は素子上の配線層。
As in FIG. 3, the key components are a lead frame 1, a semiconductor element 2, and a wiring layer 5 on the element.

6はパッシベーション膜、7はコーティング樹脂膜、4
はモールド樹脂である。
6 is a passivation film, 7 is a coating resin film, 4
is mold resin.

低温プラズマ成長させる5i02膜10は、その基板加
熱温度を100〜200°Cと低くして被着する。
The 5i02 film 10 grown by low temperature plasma is deposited at a low substrate heating temperature of 100 to 200°C.

通常のCVD法による加熱温度は300〜400℃であ
るが、このような低温度で被着すると、膜質が若干悪く
なるが、軟らかくなる。そのため、モールド樹脂が固化
して収縮する時、その応力の緩衝層となって、コーティ
ング樹脂膜を動かすことがなくなる。その膜厚は0.2
〜0.6μmが適当であり、この無機絶縁膜はモールド
整型時にクランクが入っても構わない。このような構造
にすれば、モールド整型時のパンシベーション[6のク
ランクが解消し、半導体装置の信顛性が向上する。
The heating temperature in the usual CVD method is 300 to 400°C, but if the film is deposited at such a low temperature, the film quality will deteriorate slightly, but it will become softer. Therefore, when the mold resin solidifies and contracts, it acts as a stress buffer layer and prevents the coating resin film from moving. Its film thickness is 0.2
~0.6 μm is appropriate, and this inorganic insulating film may be cranked during mold shaping. With such a structure, the cranking of pansivation [6] during mold shaping is eliminated, and the reliability of the semiconductor device is improved.

次に、これらの保護膜の形成方法の概要を説明すると、
まず、基板加熱温度を300〜400℃にして、膜厚8
000人のPSG膜(パッシベーション膜6)を被着し
、その上に、膜厚2μm程度のポリイミド膜(コーティ
ング樹脂膜7)を塗布して、約400℃でキュアさせる
。次いで、上記のような5i02膜(無機絶縁膜10)
を、基板加熱温度100〜200℃と低くしてプラズマ
CVD法で膜厚4000人程度に被着する。なお、リー
ドワイヤー3 (第2図参照)をポンディングするポン
ディングバンドの窓開けは、その後に、フォトプロセス
を適用して保護膜全部を同時におこなう。
Next, the outline of the method for forming these protective films will be explained as follows.
First, the substrate heating temperature is set to 300 to 400°C, and the film thickness is 8
000 PSG film (passivation film 6) is applied, and a polyimide film (coating resin film 7) with a thickness of about 2 μm is applied thereon and cured at about 400°C. Next, a 5i02 film (inorganic insulating film 10) as described above is formed.
The substrate is heated to a low temperature of 100 to 200° C., and the film is deposited to a thickness of about 4,000 by plasma CVD. Incidentally, the opening of the bonding band for bonding the lead wire 3 (see FIG. 2) is then performed simultaneously on all the protective films by applying a photo process.

上記は、低温プラズマ成長させる無機絶縁膜10として
SiO2膜で説明しているが、Si3N4膜を用いる場
合も、同様に低温プラズマ成長させて、形成方法も略同
様で、同様の効果が得られる。
In the above description, a SiO2 film is used as the inorganic insulating film 10 grown by low-temperature plasma, but when using a Si3N4 film, low-temperature plasma growth is similarly performed, the formation method is substantially the same, and similar effects can be obtained.

[発明の効果] 以上の説明から明らかなように、本発明による保護膜の
構造にすれば、パッシベーション膜の破壊が減少して、
半導体装置の高信転化に顕著な効果があるものである。
[Effects of the Invention] As is clear from the above explanation, the structure of the protective film according to the present invention reduces the destruction of the passivation film.
This has a remarkable effect on improving the reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるモールドICの部分断面図、 第2図はモールド【Cの断面図、 第3図は従来のモールドICの部分断面図である。 図において、 1はリードフレーム、  2は半導体素子、3はリード
ワイヤー、  4はモールド樹脂、5は配線層、   
   6はパッシベーション膜、7はコーティング樹脂
膜、 10は低温プラズマ成長させた無機絶縁膜を示している
。 m1l1片浄か3七→レドエCの湾状l介面図第1図 七−ルgICの由γ面圓 第 2 図
FIG. 1 is a partial sectional view of a molded IC according to the present invention, FIG. 2 is a sectional view of a mold [C], and FIG. 3 is a partial sectional view of a conventional molded IC. In the figure, 1 is a lead frame, 2 is a semiconductor element, 3 is a lead wire, 4 is a molding resin, 5 is a wiring layer,
6 is a passivation film, 7 is a coating resin film, and 10 is an inorganic insulating film grown by low-temperature plasma. m1l1Katajika 37->Bay l-interface view of Redoe C Figure 1 Figure 7-G IC diagram Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子上に塗布し固化させたコーティング樹
脂膜と、モールド樹脂との間に、低温プラズマ成長させ
た無機絶縁膜が介在していることを特徴とする半導体装
置。
(1) A semiconductor device characterized in that an inorganic insulating film grown by low-temperature plasma is interposed between a coating resin film applied and solidified on a semiconductor element and a molding resin.
(2)上記低温プラズマ成長させた無機絶縁膜が酸化シ
リコン膜、または、窒化シリコン膜であることを特徴と
する特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the inorganic insulating film grown by low-temperature plasma is a silicon oxide film or a silicon nitride film.
JP61100096A 1986-04-29 1986-04-29 Semiconductor device Pending JPS62256457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61100096A JPS62256457A (en) 1986-04-29 1986-04-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61100096A JPS62256457A (en) 1986-04-29 1986-04-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62256457A true JPS62256457A (en) 1987-11-09

Family

ID=14264870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61100096A Pending JPS62256457A (en) 1986-04-29 1986-04-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62256457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183431A (en) * 1993-12-24 1995-07-21 Nec Corp Semiconductor device and its manufacture
JP2005508763A (en) * 2001-11-09 2005-04-07 3デー プリュー Device for hermetic encapsulation of components protected from arbitrary stress
CN105914188A (en) * 2015-02-24 2016-08-31 丰田自动车株式会社 Semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183431A (en) * 1993-12-24 1995-07-21 Nec Corp Semiconductor device and its manufacture
JP2005508763A (en) * 2001-11-09 2005-04-07 3デー プリュー Device for hermetic encapsulation of components protected from arbitrary stress
CN105914188A (en) * 2015-02-24 2016-08-31 丰田自动车株式会社 Semiconductor module

Similar Documents

Publication Publication Date Title
TWI337374B (en) Semiconductor structure, semiconductor wafer and method for fabricating the same
US6028347A (en) Semiconductor structures and packaging methods
JPS62256457A (en) Semiconductor device
JPH0345542B2 (en)
JPH08148485A (en) Manufacture of semiconductor device
JPS58166748A (en) Semiconductor device
JP2727605B2 (en) Semiconductor device and manufacturing method thereof
JPH0648836Y2 (en) Semiconductor device
JPH0428254A (en) Semiconductor device
JP2865224B2 (en) Resin-sealed semiconductor device
JPH01183836A (en) Manufacture of semiconductor device
GB2366078A (en) Semiconductor device retaining a resist layer as a buffer layer
JPH03296250A (en) Semiconductor device sealed with resin
JPS5974651A (en) Semiconductor device
JPS63151054A (en) Semiconductor device
JPS6263449A (en) Manufacture of semiconductor device
JPS6066836A (en) Sealed semiconductor device
JPH01135052A (en) Semiconductor device and manufacture thereof
JPH0810672B2 (en) Flat plate bonding method
JPS6190437A (en) Semiconductor device
JPS62173744A (en) Ceramic substrate for semiconductor device
JPS6190450A (en) Semiconductor device
JPH06120284A (en) Semiconductor device
JPS62113434A (en) Manufacture of resin sealed type semiconductor device
JPS6244690B2 (en)