JPS6225612B2 - - Google Patents

Info

Publication number
JPS6225612B2
JPS6225612B2 JP54107463A JP10746379A JPS6225612B2 JP S6225612 B2 JPS6225612 B2 JP S6225612B2 JP 54107463 A JP54107463 A JP 54107463A JP 10746379 A JP10746379 A JP 10746379A JP S6225612 B2 JPS6225612 B2 JP S6225612B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
water
microwaves
crystal structure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54107463A
Other languages
Japanese (ja)
Other versions
JPS5632332A (en
Inventor
Konosuke Ikeda
Hiroshi Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10746379A priority Critical patent/JPS5632332A/en
Publication of JPS5632332A publication Critical patent/JPS5632332A/en
Publication of JPS6225612B2 publication Critical patent/JPS6225612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は二酸化マンガンの処理法に関し、その
要旨とするところはマイクロ波を吸収して発熱す
る部材を二酸化マンガンに密接せしめ、マイクロ
波を照射して二酸化マンガン中の水分を除去する
と同時に上記部材の発熱により二酸化マンガンの
結晶構造を選択的に転移させるようにすることに
あり、非水電解液電池用の正極活物質として電池
性能の向上が期待しうる無水又は無水に近い二酸
化マンガンの作成を可能にすると同時に二酸化マ
ンガンの結晶構造については選択的に所望の構造
のものを得る方法を提案するものである。 さて、近年においてリチウム、ナトリウムの如
き水との反応性に富む軽金属を負極活物質とし、
高電圧、高エネルギー密度を有するとして注目さ
れている非水電解液電池の出現に至り、且その正
極活物質として従来の乾電池に常用されている二
酸化マンガンを用いるものが実用化されている。
この場合、即ち非水電解液電池に用いる二酸化マ
ンガンとしては乾電池の場合とは異なり極力水分
を除去したものでなければならない。 然しながら、従来より水分の除去には加熱処理
法が適用されており、結晶水の除去と同時に結晶
構造の変化も生じているものと考えられている。 一般に二酸化マンガンには付着水の他に多くの
結晶水を含んでいることが知られており、これら
の水分を除去するために熱処理した場合、処理温
度に対する二酸化マンガンの構造をX線解析によ
り検討すると200℃程度では所謂γ型と思われる
結晶構造(γ−MnO2)を示し、この時付着水は
除かれているが結晶水はまだ多く含んでいる。そ
して所謂γ−MnO2が徐々にβ型二酸化マンガン
(β−MnO2)に変化していくにつれて結晶水も
徐々に除かれ約250〜350℃の温度範囲においては
所謂γ−β型の状態となり、更に350℃程度から
450℃の温度範囲ではβ−MnO2になると云われ
ている。そして450℃近辺からは二酸化マンガン
の分解が始まると云われている。このように二酸
化マンガンの結晶構造の転移は処理温度の影響を
受けるものであると考えられ、電気炉等による熱
処理では残存水分量と結晶構造とは密接な関係に
あり両者を分離させて制御することは不可能であ
ると云える。 そこで、本発明者等は二酸化マンガンの脱水方
法について種々実験検討した結果、二酸化マンガ
ンにマイクロ波を照射すると温度上昇を生じるこ
となく短時間で大巾に水分を除去しうることを見
出した。 その実験例を示す。 100gのγ型電解二酸化マンガンをガラス製受
皿に入れ、これを電子レンジ内に置いて、2450±
50メガヘルツのマイクロ波を15分間照射した。こ
のように処理した電解二酸化マンガンの結晶構造
は処理前と同様にγ型であることが確認され、且
残存水分量は0.9%であつた。 この結果から理解されるように二酸化マンガン
にマイクロ波を照射することにより二酸化マンガ
ン全体の温度上昇が生じることなく大巾に水分を
除去することができる。 従つて二酸化マンガンにマイクロ波を照射する
に際して二酸化マンガンに、マイクロ波を吸収し
て発熱する部材を密接させておけば、水分除去と
同時にマイクロ波の出力を適宜調整して上記部材
の発熱温度を制御することにより、残存水分量を
大巾に減じ、且所望の結晶構造を有する二酸化マ
ンガンを得ることができることになる。 尚、マイクロ波を吸収して発熱する部材として
はフエライト、導電性ゴム材、或いは導電性が悪
く誘電体に近い金属薄膜等が考えられ、因みにフ
エライトの場合を例にとると、フエライト製受皿
を単独で電子レンジ内に置き、出力約300ワツ
ト、周波数2450±50メガヘルツで5分間照射した
ところ、フエライト製受皿の温度は500℃まで昇
温したことを確認した。依つて、出力及び照射時
間を適宜調整することにより所望の温度、云いか
えば二酸化マンガンの結晶構造を所望のものに制
御しうることは理解されるであろう。 又、上記部材を受皿として利用するか、或いは
ガラスのようにマイクロ波を透過する物質よりな
る受皿に充填した二酸化マンガン粉末に上記部材
の片を分散或いは棒状に形成して位置させる等の
方法で二酸化マンガンに密接させておけば良い。 以下本発明の実施例について詳述する。 約100gの電解二酸化マンガンを入れたフエラ
イト製受皿を電子レンジ内に置き、出力約300ワ
ツト、周波数2450±50メガヘルツでマイクロ波を
所定時間照射した時の結果を下表に示す。
The present invention relates to a method for treating manganese dioxide, and its gist is that a member that absorbs microwaves and generates heat is brought into close contact with manganese dioxide, and that the water in the manganese dioxide is removed by irradiation with microwaves. The purpose is to selectively transform the crystal structure of manganese dioxide through heat generation, making it possible to create anhydrous or nearly anhydrous manganese dioxide that can be expected to improve battery performance as a positive electrode active material for non-aqueous electrolyte batteries. At the same time, we propose a method for selectively obtaining a desired crystal structure of manganese dioxide. Now, in recent years, light metals that are highly reactive with water, such as lithium and sodium, have been used as negative electrode active materials.
BACKGROUND ART Non-aqueous electrolyte batteries have been attracting attention as having high voltage and high energy density, and batteries using manganese dioxide, which is commonly used in conventional dry batteries, as a positive electrode active material have been put into practical use.
In this case, the manganese dioxide used in the non-aqueous electrolyte battery must be free of moisture as much as possible, unlike in the case of dry batteries. However, heat treatment methods have conventionally been applied to remove water, and it is thought that a change in crystal structure occurs at the same time as the removal of crystal water. It is generally known that manganese dioxide contains a large amount of crystallized water in addition to attached water, and when heat treated to remove this water, the structure of manganese dioxide depending on the treatment temperature was investigated using X-ray analysis. Then, at about 200°C, it exhibits a so-called γ-type crystal structure (γ-MnO 2 ), and although the attached water has been removed, it still contains a large amount of crystal water. As the so-called γ-MnO 2 gradually changes to β-type manganese dioxide (β-MnO 2 ), the water of crystallization is gradually removed, and in the temperature range of about 250 to 350°C, it becomes the so-called γ-β type state. , furthermore from around 350℃
It is said that it becomes β-MnO 2 in the temperature range of 450°C. It is said that decomposition of manganese dioxide begins at around 450℃. In this way, the transition of the crystal structure of manganese dioxide is thought to be influenced by the treatment temperature, and in heat treatment using an electric furnace, etc., the residual moisture content and the crystal structure are closely related, and the two should be controlled by separating them. It can be said that this is impossible. Therefore, the present inventors have conducted various experiments on dehydration methods for manganese dioxide, and have discovered that by irradiating manganese dioxide with microwaves, water can be removed to a large extent in a short period of time without causing a temperature rise. An experimental example is shown below. Put 100g of γ-type electrolytic manganese dioxide into a glass saucer, place it in the microwave, and heat it to 2450±.
A 50 MHz microwave was irradiated for 15 minutes. It was confirmed that the crystal structure of the electrolytic manganese dioxide treated in this manner was the same as before treatment, and the residual water content was 0.9%. As can be understood from this result, by irradiating manganese dioxide with microwaves, water can be removed to a large extent without causing an increase in the temperature of the entire manganese dioxide. Therefore, when manganese dioxide is irradiated with microwaves, if a member that absorbs microwaves and generates heat is placed in close contact with the manganese dioxide, the output of the microwave can be adjusted appropriately to reduce the heat generation temperature of the member at the same time as moisture removal. By controlling this, it is possible to greatly reduce the amount of residual water and obtain manganese dioxide having a desired crystal structure. The material that absorbs microwaves and generates heat may be ferrite, conductive rubber material, or a metal thin film with poor conductivity that is close to dielectric material. When placed alone in a microwave oven and irradiated for 5 minutes at an output of approximately 300 watts and a frequency of 2450±50 MHz, it was confirmed that the temperature of the ferrite saucer rose to 500°C. Therefore, it will be understood that the desired temperature, or in other words, the crystal structure of manganese dioxide, can be controlled to a desired value by appropriately adjusting the output power and irradiation time. Alternatively, the above member may be used as a saucer, or pieces of the member may be dispersed or formed into rod shapes and placed in manganese dioxide powder filled in a saucer made of a material that transmits microwaves such as glass. It is best to keep it in close contact with manganese dioxide. Examples of the present invention will be described in detail below. The table below shows the results when a ferrite saucer containing approximately 100 g of electrolytic manganese dioxide was placed in a microwave oven and irradiated with microwaves at an output of approximately 300 watts and a frequency of 2450 ± 50 MHz for a specified period of time.

【表】【table】

【表】 残存水分量は処理後の二酸化マンガンを昇温し
ていき、出てきた水分をカールフイツシヤーで定
量し、400℃まで昇温したときを残存水分量0%
として算出した。中心部と表面部の平均を示して
いる。 結晶構造についてはX線回折(Fe管球)で同
定し、28゜のピークを有するものをγ型、36゜の
ピークを有するものをβ型とした。中心部と表面
部の2個所からサンプリングを行つた。 本発明による処理法によれば二酸化マンガンに
マイクロ波を照射した場合、二酸化マンガン中に
含まれている水分(付着水及び結晶水)の分極状
態にある水分子が励起されて回転運動を起し、そ
の摩擦熱により蒸発して瞬時に脱水されるもので
あり、例えば電気炉中における熱処理の場合とは
異なり極端な温度上昇を生ずることなく大巾に水
分を除去することができると共に二酸化マンガン
に密接させた、マイクロ波を吸収して発熱する部
材の存在により、マイクロ波の出力及び時間を適
宜調整することにより部材の発熱温度を制御して
所望の結晶構造の二酸化マンガンを得ることがで
きるものであり、特に水分の存在が致命的な問題
となる非水電解液電池においてその正極活物質と
して適用される二酸化マンガンの処理法としてそ
の工業的価値は極めて大である。
[Table] The residual moisture content is determined by increasing the temperature of manganese dioxide after treatment and quantifying the moisture that comes out using a Karl Fischer.When the temperature is raised to 400℃, the residual moisture content is 0%.
It was calculated as The average of the center and surface areas is shown. The crystal structure was identified by X-ray diffraction (Fe tube), and those with a peak at 28° were designated as γ type, and those with a peak at 36° were designated as β type. Sampling was conducted from two locations: the center and the surface. According to the treatment method of the present invention, when manganese dioxide is irradiated with microwaves, water molecules in the polarized state of water (adhered water and crystal water) contained in manganese dioxide are excited and cause rotational movement. The frictional heat evaporates and instantly dehydrates the water. Unlike heat treatment in an electric furnace, for example, it is possible to remove a large amount of water without causing an extreme temperature rise, and it also reduces manganese dioxide. Manganese dioxide with a desired crystal structure can be obtained by controlling the heat generation temperature of the member by appropriately adjusting the output and time of the microwave due to the presence of a member that absorbs microwaves and generates heat in close contact with each other. Therefore, its industrial value is extremely great, especially as a method for treating manganese dioxide, which is applied as a positive electrode active material in non-aqueous electrolyte batteries, where the presence of moisture is a fatal problem.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波を吸収して発熱する部材を二酸化
マンガンに密接せしめ、マイクロ波を照射して二
酸化マンガン中の水分を除去すると同時に前記部
材の発熱により二酸化マンガンの結晶構造を選択
的に転移させることを特徴とする二酸化マンガン
の処理法。
1. A member that absorbs microwaves and generates heat is brought into close contact with manganese dioxide, irradiated with microwaves to remove water in the manganese dioxide, and at the same time selectively transforms the crystal structure of the manganese dioxide by the heat generated by the member. Characteristic method of processing manganese dioxide.
JP10746379A 1979-08-22 1979-08-22 Treatment of manganese dioxide Granted JPS5632332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10746379A JPS5632332A (en) 1979-08-22 1979-08-22 Treatment of manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10746379A JPS5632332A (en) 1979-08-22 1979-08-22 Treatment of manganese dioxide

Publications (2)

Publication Number Publication Date
JPS5632332A JPS5632332A (en) 1981-04-01
JPS6225612B2 true JPS6225612B2 (en) 1987-06-04

Family

ID=14459814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10746379A Granted JPS5632332A (en) 1979-08-22 1979-08-22 Treatment of manganese dioxide

Country Status (1)

Country Link
JP (1) JPS5632332A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605215A (en) * 1983-06-22 1985-01-11 Mitsui Mining & Smelting Co Ltd Filter material for purifying water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475535A (en) * 1977-11-30 1979-06-16 Hitachi Ltd Cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475535A (en) * 1977-11-30 1979-06-16 Hitachi Ltd Cell

Also Published As

Publication number Publication date
JPS5632332A (en) 1981-04-01

Similar Documents

Publication Publication Date Title
Ein‐Eli et al. Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes
JPH0368507B2 (en)
JPH0368506B2 (en)
JPS6225612B2 (en)
JPS60225358A (en) Nonaqueous electrolyte battery
JPH07142067A (en) Cathode for electrochemical battery and its preparation and electrochemical battery
EP0037053A1 (en) Method of producing active cathode material for non-aqueous cells
JPH01235158A (en) Nonaqueous secondary battery
JPS59158073A (en) Nonaqueous electrolyte battery
US3288695A (en) Piezoelectric quartz crystal units
JPS5632331A (en) Manufacture of anhydrous of almost anhydrous manganese dioxide
JPH10310425A (en) Production of anhydrous lithium chloride
KR20200041505A (en) Layered cathode material for sodium ion battery
Rosenberg et al. In situ carbon-coated LiCoPO4 synthesized via a microwave-assisted path
JPH01234330A (en) Manganese dioxide and its production
Sastry et al. Dielectric Studies on HgCl2: 2 KCl Crystals
JPS5673865A (en) Manufacture of positive active material for nonaqueous battery
US3520781A (en) Method for lowering dark conductivity of thin semiconducting films
US1749819A (en) Dry-charged battery plate
US1439994A (en) Process of stabilizing storage-battery electrodes
Bonino et al. Lithium copper molybdate and lithium—copper Tungstate organic solvent batteries
JP2024130473A (en) Processing method and processing device
JPS56126261A (en) Production of positive electrode active material for nonaqueous electrolyte battery
JPS56159063A (en) Lead acid battery
JPS59112569A (en) Nonaqueous electrolyte battery