JPS6225451A - Manufacture of complementary semiconductor device - Google Patents

Manufacture of complementary semiconductor device

Info

Publication number
JPS6225451A
JPS6225451A JP60164612A JP16461285A JPS6225451A JP S6225451 A JPS6225451 A JP S6225451A JP 60164612 A JP60164612 A JP 60164612A JP 16461285 A JP16461285 A JP 16461285A JP S6225451 A JPS6225451 A JP S6225451A
Authority
JP
Japan
Prior art keywords
film
type
substrate
contact hole
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60164612A
Other languages
Japanese (ja)
Other versions
JPH0248146B2 (en
Inventor
Masaki Sato
正毅 佐藤
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60164612A priority Critical patent/JPS6225451A/en
Priority to US06/813,142 priority patent/US4743564A/en
Publication of JPS6225451A publication Critical patent/JPS6225451A/en
Publication of JPH0248146B2 publication Critical patent/JPH0248146B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable a contacting hole to be tapered without increasing a contacting resistance by forming P-type, N-type diffused layers and a high melting point metal film or a high melting point metal silicide layer on a gate electrode. CONSTITUTION:After an N-type well is formed on a P-type Si substrate 11, a gate electrode 18, N<-> type layers 19a, 19b and P<-> type layers 20a, 20b are formed. Then, W films 28 are formed on the electrode 18, the layers 19a, 19b the layers 20a, 20b. Then, after an SiO2 film 29 is formed on the entire surface, a PSG film 30 is formed. Thereafter, films 30, 29 on the layers 19a, 19b and 20a, 20b are selectively opened, and a contacting hole 31 is formed. Then, a light is emitted to the film 30 to heat at low temperature to form a taper on the film 30 at the periphery of the hole 31. Thereafter, the hole 31 is wired. A W silicide film may be formed instead of the film 28 in the above configuration. According to this method, when the light is emitted to the film 30, the light is reflected on the film 28 to prevent the temperature in the substrate 11 from rising, thereby preventing the contacting resistance from increasing.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型半導体装置の製造方法ンこ関し、特にコ
ンタクトホールと配線の形成に改良を加えた相補型半導
体装置の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary semiconductor device, and more particularly to a method for manufacturing a complementary semiconductor device in which the formation of contact holes and interconnections is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、半導体装置の高速化、高集積化が進んで素
子の小型化が行われているに従い、配線用のコンタクト
ホールのサイズも著しい縮小を行なうことが必要とされ
ている。ところで、コンタクトホールのサイズを縮小す
る場合、素子の縦方向の寸法も比例して、縮小されると
は限らない。一般には、素子の微細化に従って例えばコ
ンタクトホール部の絶縁膜の膜厚とコンタクトホールの
サイズとの比は大きくなり、深いコンタクト窓を形成す
ることが必要とされる。
As is well known, as semiconductor devices become faster and more highly integrated, and their elements become smaller, it is necessary to significantly reduce the size of contact holes for wiring. By the way, when reducing the size of the contact hole, the vertical dimension of the element is not necessarily reduced in proportion. Generally, as elements become finer, the ratio of the thickness of an insulating film in a contact hole portion to the size of the contact hole increases, and it becomes necessary to form a deep contact window.

このように、深いコンタクトホールを形成し、そこに配
線用金属を被着形成し配線を形成した、局舎、コンタク
トホール内において配線に局部的に薄い部分が形成する
等の不都合が生じ、配線の信頼性が著しく低下する。
In this way, when a deep contact hole is formed and a wiring metal is deposited thereon to form a wiring, problems such as the formation of a locally thin part of the wiring within the contact hole occur. reliability is significantly reduced.

このようなことから、コンタクトホールの上部にチー・
ぐを付け、コンタクトホール内への金属の被着特性を向
上させるため、次の技術が提案されている(特公昭5B
−4817)。即ち、これは、第2図に示す如くまず半
導体基板1上の絶縁膜2の上部に予め低温溶融絶縁膜と
してリンをドープしたガラス膜(PSG) 3を形成し
た後、コンタクトホール4を開孔し、更に基板1全部を
高温に加熱してPSG 3を流動化させテーパを形成す
る方法である。なお、図中の5はNuの拡散層である。
For this reason, it is necessary to place a chi on the top of the contact hole.
The following technology has been proposed in order to improve the adhesion characteristics of metal inside the contact hole.
-4817). That is, as shown in FIG. 2, a phosphorus-doped glass film (PSG) 3 is first formed as a low-temperature melting insulating film on top of an insulating film 2 on a semiconductor substrate 1, and then a contact hole 4 is opened. In this method, the entire substrate 1 is further heated to a high temperature to fluidize the PSG 3 and form a taper. Note that 5 in the figure is a Nu diffusion layer.

しかしながら、この方法全相補型半導体装置に適用した
場合、 ■、  PSG中に不純物として含まれるリンが高温状
態でP型拡散層中に拡散すること、■、N型拡散層中の
n型不純物がP型拡散層中に拡散、あるいはP型拡散層
中のp型不純物がN型拡散層中に拡散すること、 等の理由により、半導体基板表面のN型あるいはP散拡
散層の表面不純物濃度が低下し、次工程で配線とのコン
タクトを形成しだい時にコンタクト抵抗の増大をもたら
す。
However, when this method is applied to a fully complementary semiconductor device, (1) Phosphorus contained as an impurity in PSG diffuses into the P-type diffusion layer at high temperatures; (2) N-type impurities in the N-type diffusion layer Due to reasons such as diffusion into the P-type diffusion layer, or diffusion of p-type impurities in the P-type diffusion layer into the N-type diffusion layer, the surface impurity concentration of the N-type or P-diffusion layer on the surface of the semiconductor substrate may decrease. This results in an increase in contact resistance when contact with wiring is formed in the next process.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、コンタクト
抵抗の増大をもたらすことなく、コンタクトホールにテ
ーノ2を形成して配線の信頼性を増大できるとともに、
微細化して素子の高集積が可能な相補型半導体装置の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to form the tenor 2 in the contact hole without increasing the contact resistance, thereby increasing the reliability of the wiring.
It is an object of the present invention to provide a method for manufacturing a complementary semiconductor device that can be miniaturized and highly integrated with elements.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上にNを拡散層、P型拡散層及び
ゲート電極を形成する工程と、前記N型拡散層、P型拡
散I−及びゲート’aw上に夫夫高融点金属又はこのシ
リサイドからなる金属層の少なくとも一方を形成する工
程と、全面に絶縁膜を形成する工程と、前記N型拡散層
、P型拡散層及びダート電極上の前記絶縁膜を選択的ニ
エノチング除去しコンタクトホールを形成する工程と、
前記絶縁膜を低温で加熱することにより前記コンタクト
ホール周辺部の絶縁膜にテーパを形成する工程と、前記
コンタクトホールに配線を形成する工程とを具備するこ
とを特徴とする。
The present invention includes a step of forming an N diffusion layer, a P type diffusion layer, and a gate electrode on a semiconductor substrate, and a process of forming an N diffusion layer, a P type diffusion I-, and a gate 'aw with a high melting point metal or A step of forming at least one of the metal layers made of silicide, a step of forming an insulating film on the entire surface, and a step of selectively etching and removing the insulating film on the N-type diffusion layer, the P-type diffusion layer and the dirt electrode to form a contact hole. a step of forming;
The method is characterized by comprising a step of forming a taper in the insulating film around the contact hole by heating the insulating film at a low temperature, and a step of forming a wiring in the contact hole.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図(,1〜(h)(実施例
1)及び第3図(a)〜(C)(実施例2)を夫々参照
して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1(, 1 to 1h) (Example 1) and FIGS. 3(a) to 3C (Example 2), respectively.

実施例1 (1)マず、例えばP型の(100)のシリコン基板1
1表面にN型のウェル12を形成した後、同基板11表
面に素子分離領域13を形成した。つづいて、前記基板
11全面を900℃、02雰囲気中で酸化し、厚さ30
0Xのダート酸化膜14を形成した。次いで、nChト
ランジスタ並びにpch)ランジスタ形成領域の81表
面にしきい値電圧(Vth )調整用にゾロンをイオン
注入法によりドープした。更に、前記基板11全面に多
結晶シリコン膜を気相成長法により形成した後、ヒ素又
はリンをイオン注入法又はpact。
Example 1 (1) First, for example, a P-type (100) silicon substrate 1
After forming an N-type well 12 on one surface of the substrate 11, an element isolation region 13 was formed on the surface of the same substrate 11. Subsequently, the entire surface of the substrate 11 was oxidized at 900°C in a 02 atmosphere to a thickness of 30°C.
A dirt oxide film 14 of 0X was formed. Next, the surface of the nCh transistor and pch) transistor formation region 81 was doped with zolon for threshold voltage (Vth) adjustment by ion implantation. Furthermore, after forming a polycrystalline silicon film on the entire surface of the substrate 11 by vapor phase growth, arsenic or phosphorus is ion-implanted or pact.

による拡散法を用いてドープした。なお、このドーピン
グ工程は後の工程で行うことも可能である。しかる後、
前記多結晶シリコン膜上に熱酸化膜、シリコン窒化膜を
形成した。この後、フォトリソグラフィー技術により所
望形状のレジストパターン15を形成し、これをマスク
として前記シリコン窒化膜、熱酸化膜及び多結晶シリコ
ン膜を異方性ドライエツチングし、窒化II/”ターン
16、熱酸化膜パターン17、多結晶シリコンからなる
ダート電極18を夫々形成した。ひきつづき、Pチャン
ネル領域をレゾストマスクで被覆し、nch)ランジス
タ領域側に前記レジストパターン15をマスクとしてリ
ンを加速電圧60 keV、ドーズi 1 X 10 
”cm−2の条件で基板11表面にイオン注入し、N−
型層19h、19bを形成した。この後、前記と同様に
してNウェル12にP−型層20a、20bを形成した
(第1図(、)図示)。
doped using the diffusion method. Note that this doping step can also be performed in a later step. After that,
A thermal oxide film and a silicon nitride film were formed on the polycrystalline silicon film. Thereafter, a resist pattern 15 having a desired shape is formed by photolithography, and using this as a mask, the silicon nitride film, thermal oxide film, and polycrystalline silicon film are anisotropically dry etched, and the nitride II/'' turn 16 and thermal An oxide film pattern 17 and a dirt electrode 18 made of polycrystalline silicon were formed respectively.Subsequently, the P channel region was covered with a resist mask, and phosphorus was applied to the transistor region side using the resist pattern 15 as a mask at an acceleration voltage of 60 keV and a dose. i 1 x 10
Ions were implanted into the surface of the substrate 11 under the condition of "cm-2", and N-
Mold layers 19h and 19b were formed. Thereafter, P-type layers 20a and 20b were formed in the N well 12 in the same manner as described above (as shown in FIG. 1(,)).

(2)  次に、前記レノストマスク及びレノスト・ぐ
ターン15を除去した後、基板11全体を洗浄処理した
。つづいて、900℃、酸素雰囲気中で酸化し、基板1
1表面に厚さ300Xのシリコン酸化膜(図示せず)を
形成した後、基板11全而に減圧気相成長法により厚さ
3000XのSiO2膜21全21した(第1図(b)
図示)。次いで、このS+02[21を異方性ドライエ
ツチング技術によりエツチングし、この5102膜21
を前記r−h電極18の側壁に残存させた。この際、エ
ツチングガスはCF4とH2の混合ガスヲ使用し、10
mTorrで実施した。史に、基板11表面を洗浄した
後、pchトラン・ソスタ領域をレノストマスクで覆い
、基板11全面にヒ素を加速電圧40 keV、ドーズ
量2X10  cm  の条件でイオン注入し、N+型
層22h 、22bを形成した。
(2) Next, after removing the Renost mask and the Renost pattern 15, the entire substrate 11 was cleaned. Subsequently, the substrate 1 is oxidized at 900°C in an oxygen atmosphere.
After forming a silicon oxide film (not shown) with a thickness of 300X on the surface of the substrate 11, a SiO2 film 21 with a thickness of 3000X was formed on the entire substrate 11 by low pressure vapor phase epitaxy (Fig. 1(b)).
(Illustrated). Next, this S+02[21 is etched using an anisotropic dry etching technique to form this 5102 film 21.
was left on the side wall of the rh electrode 18. At this time, a mixed gas of CF4 and H2 was used as the etching gas.
It was performed at mTorr. In history, after cleaning the surface of the substrate 11, the PCH trans/soster region was covered with a renost mask, and arsenic was ion-implanted into the entire surface of the substrate 11 at an acceleration voltage of 40 keV and a dose of 2×10 cm to form N+ type layers 22h and 22b. Formed.

しかる後、同様にしてNウェル12にボロンを加速電圧
40 keV、ドーズ1HIX10  L:rn の条
件でイオン注入し、P型層23*、23bを形成した(
第1図(C)図示)、ここで、同図(C)において、前
記N−型層19a、N+型層22aを総称してソース領
域24、N−型層19 b 、 N’型層22bを総称
して同トランジスタのドレイン領域25、P−型層20
h、P+型層23&を総(へしてpchトランノスタの
ソース領域26、P−型層20b。
Thereafter, boron ions were similarly implanted into the N well 12 at an acceleration voltage of 40 keV and a dose of 1 HIX 10 L:rn to form P-type layers 23* and 23b (
(Illustrated in FIG. 1C), here, in the same figure (C), the N- type layer 19a and the N+ type layer 22a are collectively referred to as the source region 24, the N- type layer 19b, and the N'-type layer 22b. are collectively referred to as the drain region 25 and P-type layer 20 of the same transistor.
h, the P+ type layer 23&, the source region 26 of the pch transistor, and the P- type layer 20b.

P+型層23bを総称して同トランジスタのドレイン領
域27と呼ぶ。
The P+ type layer 23b is collectively referred to as the drain region 27 of the transistor.

(3) 次に、前記窒化膜・ギターン16をCF4+0
2ガスのプラズマエツチング法を用いて除去した後、前
記シリコン酸化膜を周知のバッフアートHF水溶液で除
去し、前記r−ト’に’A113衣面とソース・ドレイ
ン領域24〜27の表面を露出させた。つづいて、露出
したr−トii(極18、ソース・ドレイン領域24〜
27の表面にのみ、減圧気相成長法により厚さ200X
のタングステン(W)膜28を形成した(第1図(d)
図示)。
(3) Next, the nitride film Gitan 16 is coated with CF4+0
After removing the silicon oxide film using a two-gas plasma etching method, the silicon oxide film is removed using a well-known buffart HF aqueous solution to expose the 'A113 coating surface and the surfaces of the source/drain regions 24 to 27 to the r-t'. I let it happen. Next, the exposed r-toe ii (pole 18, source/drain region 24~
Only on the surface of No. 27, a thickness of 200
A tungsten (W) film 28 was formed (FIG. 1(d)).
(Illustrated).

この際、反応ガスはW6を主成分としキャリアガスとし
てアルゴンガスを使用j−だ。なお、ゲート電唖18の
側壁には5IO2膜21が残存しているため、W膜28
は形成されない。また、St基板11表面には、厚さ数
Xのタングステンシリサイド膜(図示せず)が形成され
た。次いで、全面に厚さ201JOλの5102膜29
を気相成長法により形成した佼、リン・ケイ酸ガラス(
PSG)嘆3θを形成した(第1図(、)図示)。なお
、PSG膜の代りに高4度にリンとボロンをドープした
プラス膜でもよい。しかる後、リングラフイー技術を用
いて前記ソース・ドレイン領域24〜27上のPSG膜
30 、8102膜29金異方性ドライエツチング技・
、ホエ(ζより選択的に開口し、例えば1.2μmX1
.2μmのコンタクトホール3)を形成した(第1凶(
f)図示)。しかる後、前記psc膜30’lC光を短
時間照射して溶融し、コンタクトホール31の周辺部の
PSG膜30にテーパを形成すると同時に、′基板表面
の絶縁いの上層を平滑化した(第1図(g)図示Lyi
に、全面にAt合金を蒸右した後、・り汐−ユングしで
前記コンタクトホール31に配f、<332を形成し、
CMO8半導体装置を製造した()π1図(h)図示)
At this time, the main component of the reaction gas is W6, and argon gas is used as the carrier gas. Note that since the 5IO2 film 21 remains on the side wall of the gate electrode 18, the W film 28
is not formed. Further, a tungsten silicide film (not shown) having a thickness of several times X was formed on the surface of the St substrate 11. Next, a 5102 film 29 with a thickness of 201 JOλ is applied to the entire surface.
phosphorus silicate glass (
PSG) 3θ was formed (illustrated in Figure 1 (,)). Note that a plus film doped with phosphorus and boron to a high degree of 4 may be used instead of the PSG film. Thereafter, the PSG film 30 and the 8102 film 29 on the source/drain regions 24 to 27 are etched using the phosphorography technique and the gold anisotropic dry etching technique.
, whey (ζ), for example, 1.2μm×1
.. A 2 μm contact hole 3) was formed (first hole (
f) As shown). Thereafter, the PSC film 30 was irradiated with IC light for a short period of time to melt it, forming a taper in the PSG film 30 around the contact hole 31, and at the same time smoothing the upper layer of the insulating layer on the substrate surface ( Figure 1 (g) Illustrated Lyi
After evaporating At alloy on the entire surface, forming a distribution f<332 in the contact hole 31 by .
A CMO8 semiconductor device was manufactured ()π1 diagram (h) shown)
.

しかして、実施例1によれば、以下に示す効果を有する
According to Example 1, the following effects can be obtained.

■、コンタクトホール3ノから露出するソース領域24
..26やドレイン領25.27上にタングステンシリ
サイド膜(図示せず)とW1漠28の複合膜を形成する
ため、PSG膜30に光を照射してこれを溶融する際、
照射された光は前記複合膜で反射され、実質的に基板1
1の内部に入いるのを防止できる。従って、基45.1
z内の温度上昇を抑制できる。才だ、前記と同様な理由
により、前記ソース・ドレイン領域24〜27から該領
域を構成する不鵜物がコンタクトホール3ノを介して基
板1ノの外・\消失する速度を低減できる。更に、前記
複合膜が存在すること並びに基板温度が800℃以下に
保たれることから、PSG膜30からリンが基板11表
面のソース・ドレイン領域、? 4−27へ拡散する速
度を低下芒せる。以上より、これら領域24〜27の異
面#度の低下を回渾し、コンタクト抵抗の増大を防止で
きる。
■ Source region 24 exposed from contact hole 3
.. .. In order to form a composite film of a tungsten silicide film (not shown) and the W1 film 28 on the drain region 26 and the drain region 25, 27, when the PSG film 30 is irradiated with light and melted,
The irradiated light is reflected by the composite film, and is substantially exposed to the substrate 1.
1 can be prevented from entering inside. Therefore, group 45.1
Temperature rise within z can be suppressed. For the same reason as mentioned above, it is possible to reduce the rate at which impurities constituting the source/drain regions 24 to 27 disappear out of the substrate 1 through the contact holes 3. Furthermore, since the composite film is present and the substrate temperature is kept below 800°C, phosphorus from the PSG film 30 is transferred to the source/drain region on the surface of the substrate 11, ? The speed of spread to 4-27 can be reduced. As described above, it is possible to reverse the decrease in the degree of different surface roughness of these regions 24 to 27 and prevent an increase in contact resistance.

■、光がコンタクトホール31から露出する前記複合膜
(特にW膜28)で反射され、この反射光がコンタクト
ホール31の周縁のPSG膜30に達するため、この部
分でのPSG膜30が緩やかなテーパが形成される。従
って、次の工程でコンタクトホール31に配線32を形
成する隙、従来のように局部的に膜厚が薄い部分がでさ
ることなく一様な厚みにでき、配線35の信頼性を向上
できる。一方、基板表面の絶縁膜の上層は数秒間100
0〜1200℃に上昇させることができ、平滑化できた
(2) Light is reflected by the composite film (particularly the W film 28) exposed from the contact hole 31, and this reflected light reaches the PSG film 30 at the periphery of the contact hole 31, so that the PSG film 30 in this part is loose. A taper is formed. Therefore, when the wiring 32 is formed in the contact hole 31 in the next step, the thickness can be made uniform without locally thinning parts as in the conventional method, and the reliability of the wiring 35 can be improved. On the other hand, the upper layer of the insulating film on the surface of the substrate was
It was possible to raise the temperature to 0 to 1200°C and smooth the surface.

(■、前記複合膜の存在により、ソース・ドレイン領域
24〜27を浅く形成でき、素子の微細化が可能となる
(■) Due to the presence of the composite film, the source/drain regions 24 to 27 can be formed shallowly, making it possible to miniaturize the device.

実施例2 2g 3図(a)〜(c)はNウェルCMO87’Oセ
スによる0MO8EPROM装置への適用例を示す。な
お、周辺回路は実施例1に示した工程で同様に形成し、
メモリーセル部のみの形成方法を説明する。
Example 2 2g 3 Figures (a) to (c) show an example of application to an 0MO8 EPROM device using an N-well CMO87'O process. Note that the peripheral circuit was formed in the same manner as in the process shown in Example 1,
The method of forming only the memory cell portion will be explained.

(1)  まず、P型の(100)のシリコン基板41
上にウェルを形成した(周辺回路用)後、素子分離領域
(図示せず)を形成した。つづいて、前記基板全面に第
1のr−ト酸化膜42を形成した後、セルトランジスタ
vth制御用にボロンをイオン注入した。次いで、全面
に第1層目の多結晶シリコン膜43を形成した後、これ
を所望の形状に・やターニングした。この際、隣接する
セル間に第1層目の多結晶シリコン膜43の隙間を形成
する(図示せず)と同時に、周辺回路領域の多結晶シリ
コン膜43を全て除去した。更に、セル周辺部の前記ゲ
ート酸化膜42を除去した後、基板全面を酸化して周辺
部の前記基板41上にシリコン酸化膜を形成し、かつセ
ル部の前記多結晶シリコン膜43上に第2のダート酸化
膜44を形成した。しかる後、基板全面に第2層目の多
結晶シリコン膜45を形成し、この上にシリコン酸化膜
46、シリコン窒化膜47を順次形成した。ひきつづき
、周辺部のゲート電極配線を形成した後、低濃度拡散層
を形成し、セル部の前記多結晶シリコン膜43゜45を
所望形状に加工した。この後、周辺部及びセル部に90
0℃、酸素中で酸化し基板41表面に厚さ300 Xの
5102膜を形成し、更に厚さ1500久の5IO2膜
48を気相成長法により形成した。次いで、異方性エツ
チングによりこの5102膜48をエツチングし、多結
晶シリコン膜4.3 、45の側壁にこれを残存させた
(第3図(a)図示)。
(1) First, a P-type (100) silicon substrate 41
After forming a well on top (for peripheral circuitry), an element isolation region (not shown) was formed. Subsequently, after forming a first r-type oxide film 42 on the entire surface of the substrate, boron ions were implanted for controlling cell transistor vth. Next, after forming a first layer polycrystalline silicon film 43 on the entire surface, this was slightly turned into a desired shape. At this time, a gap between the first layer polycrystalline silicon film 43 was formed between adjacent cells (not shown), and at the same time, the entire polycrystalline silicon film 43 in the peripheral circuit area was removed. Furthermore, after removing the gate oxide film 42 in the cell peripheral area, the entire surface of the substrate is oxidized to form a silicon oxide film on the substrate 41 in the peripheral area, and a silicon oxide film is formed on the polycrystalline silicon film 43 in the cell area. A second dirt oxide film 44 was formed. Thereafter, a second layer polycrystalline silicon film 45 was formed over the entire surface of the substrate, and a silicon oxide film 46 and a silicon nitride film 47 were sequentially formed thereon. Subsequently, after forming gate electrode wiring in the peripheral area, a low concentration diffusion layer was formed, and the polycrystalline silicon film 43.degree. 45 in the cell area was processed into a desired shape. After this, apply 90% to the peripheral area and cell area.
A 5102 film with a thickness of 300× was formed on the surface of the substrate 41 by oxidation at 0° C. in oxygen, and a 5IO2 film 48 with a thickness of 1500× was further formed by vapor phase growth. Next, this 5102 film 48 was etched by anisotropic etching to leave it on the side walls of the polycrystalline silicon films 4.3 and 45 (as shown in FIG. 3(a)).

(2)次に、セル部にヒ素をイオン注入してN+型のソ
ース・ドレイン領域49.50を形成すると同時に、周
辺部にN+拡散層(図示せず)を形成した。つづいて、
周辺部にP+拡散層(図示せず)を形成した後、セル部
及び周辺部のシリコン窒化膜47、シリコン酸化膜46
を除去した。次いで、露出したソース・ドレイン領域4
9゜50上及び第21−目の多結晶シリコン膜45上に
減圧気相成長法により、W膜5I及びタングステンシリ
サイド膜(U示せず)からなる複合膜を形成した(第3
図(b)図示)。更に、基板全体に厚さ3000Xのシ
リコンへχ化膜52を気相成長法により形成した後、厚
さ5oooiのPSG膜53を形成した。しかる後、前
記ソース・ドレイン領域49.50及び第2層目の多結
晶シリコン膜45上のシリコン酸化膜52及びPSG膜
53を選択的に開口し、コンタクトホール54を形成し
た。ひきつづき、実施例1と同様、基板全面に光を照射
してコンタクトホール54周辺部のPSG膜53を溶融
することにより、チー・ぞを形成した。この後、コンタ
クトホール54に配線55を形成して0MO8EPRO
M装置を製造した(第3図(C)図示)。
(2) Next, arsenic was ion-implanted into the cell portion to form N+ type source/drain regions 49,50, and at the same time, an N+ diffusion layer (not shown) was formed in the peripheral portion. Continuing,
After forming a P+ diffusion layer (not shown) in the peripheral area, silicon nitride film 47 and silicon oxide film 46 in the cell area and peripheral area are formed.
was removed. Next, the exposed source/drain region 4
A composite film consisting of a W film 5I and a tungsten silicide film (U not shown) was formed on the 9°50 and the 21st polycrystalline silicon film 45 by low pressure vapor phase epitaxy.
Figure (b) shown). Furthermore, after forming a 3000× thick silicon film 52 on silicon by vapor phase growth over the entire substrate, a 500× thick PSG film 53 was formed. Thereafter, the silicon oxide film 52 and PSG film 53 on the source/drain regions 49, 50 and the second layer polycrystalline silicon film 45 were selectively opened to form a contact hole 54. Subsequently, in the same manner as in Example 1, the entire surface of the substrate was irradiated with light to melt the PSG film 53 around the contact hole 54, thereby forming a chip. After this, a wiring 55 is formed in the contact hole 54 and the 0MO8EPRO
An M device was manufactured (as shown in FIG. 3(C)).

しかして、実施例2によれば、以下に示す効果を有する
According to the second embodiment, the following effects can be obtained.

(v、第3図(c) (7) 0MO8EFROM装置
ノセル部ニオいては、多結晶シリコン膜43.45から
なる二層多結晶シリコン構造が存在するため、他の部分
に比べて表面の段差形状が厳しくコンタクトホール54
が深くなる。従って、配線55の加工の困難度が他の周
辺回路あるいは他の半導体装置に比べて高いが、本方法
を用いれば特に有効に配線55を形成できる。
(v, Figure 3(c)) (7) In the cell part of the 0MO8EFROM device, there is a two-layer polycrystalline silicon structure consisting of a polycrystalline silicon film 43.45, so the surface step shape is smaller than in other parts. is strictly contact hole 54
becomes deeper. Therefore, although the degree of difficulty in processing the wiring 55 is higher than that of other peripheral circuits or other semiconductor devices, the wiring 55 can be formed particularly effectively using this method.

(わ、コンタクトホール内にW膜51等からなる複合膜
を利用することにより、特に高電圧を印加するメモIJ
−8込み時の安定性を増すことができる。即ち、EPR
OMメモリーの書込み時には、例えばコントロールゲー
トであるワード線に125■が印加され、選択ピントを
含むビット線には〜8vの高電圧が印加され、通常の5
V系読出し時に比べ一本のビット線並びにソース線に1
mAに近い電流が流れる。この際、素子の高集積化のた
め、コンタクトホールの開口径の寸法を例えば1.2μ
mX1.2μmとした本実施例の場合、ドレイン領域用
のコンタクトホール底部の配線−ドレイン領域間に局所
的に電流の集中が発生し、配線の信頼性を低下させる。
(By using a composite film made of W film 51 etc. in the contact hole, a particularly high voltage can be applied to the memo IJ.
- It is possible to increase the stability when including 8. That is, EPR
When writing to OM memory, for example, 125V is applied to the word line which is the control gate, and a high voltage of ~8V is applied to the bit line containing the selected pin, which is compared to the normal 5V.
One bit line and one source line compared to V system readout.
A current close to mA flows. At this time, in order to achieve high integration of the device, the opening diameter of the contact hole is set to 1.2 μm, for example.
In the case of the present embodiment where m×1.2 μm, current concentration occurs locally between the wiring at the bottom of the contact hole for the drain region and the drain region, reducing the reliability of the wiring.

特に、本発明法を取らない配線の形成方法では、コンタ
クトホールの段差部分低部において配線蒸着のシャドー
効果により、配線の膜厚が1/10になることが多く、
配線の抵抗の増大又は切断事故を誘起しがちである。そ
れ故、本発明法は、CMO3EPr(0M装置の配線形
成に特に有効な手段である。
In particular, in the wiring formation method that does not use the method of the present invention, the film thickness of the wiring is often reduced to 1/10 at the bottom of the stepped portion of the contact hole due to the shadow effect of the wiring vapor deposition.
This tends to increase the resistance of the wiring or cause a disconnection accident. Therefore, the method of the present invention is a particularly effective means for forming wiring for CMO3EPr (0M devices).

なお、上記実施例では、ソース・ドレイン領域及び多結
晶シリコン膜上にタングステン膜、タングλテンシリサ
イド膜からなる複合膜を気相成長法によシ自己整合的に
形成する場合に述べたが、これに限らない。例えば、1
ずトランジスタのソース・ドレイン領域及びケ°−ト多
結晶シリコンパターンを形成した後、チタン膜蒸着する
。つづいて、Si原子をイオン注入した後600℃、N
2中で加熱し、$1−チタン膜に反応を起こしチタンシ
リサイド膜を形成する。次いで、未反応のチタン膜のみ
をエツチング除去することによりチタンシリサイド膜を
ソース・ドレイン領域及びゲート多結晶シリコンパター
ン上に自己整合的に形成する。
In the above embodiment, a composite film consisting of a tungsten film and a tunglambda tensilicide film was formed on the source/drain region and the polycrystalline silicon film in a self-aligned manner by vapor phase growth. It is not limited to this. For example, 1
First, after forming the source/drain regions of the transistor and the gate polycrystalline silicon pattern, a titanium film is deposited. Next, after ion-implanting Si atoms, the temperature at 600°C was
2 to cause a reaction in the titanium film to form a titanium silicide film. Next, by etching away only the unreacted titanium film, a titanium silicide film is formed on the source/drain regions and the gate polycrystalline silicon pattern in a self-aligned manner.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、コンタクト抵抗の増
大をもたらすことなく、コンタクトホールにテーパを形
成して配線の信頼性を向上できるとともに、微細化して
素子の高集積化が可能な相補型半導体装置の製造方法を
提供できる。
As described in detail above, according to the present invention, it is possible to form a taper in a contact hole to improve the reliability of wiring without causing an increase in contact resistance. A method for manufacturing a semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(h)は本発明の実施例1に係るCMO
8半導体装置の製造方法を工程順に示す断面図、第2図
は従来の半導体装置の断面図、第3図(,1〜(C)は
本発明の実施例2に係るCMO8EPROM装置の製造
方法を工程順に示す断面図である。 11.41・・・シリコン基板、12・・・ウェル、1
4.42.44・・・ケ°−ト酸化膜、16・・・窒化
[”ターン、17・・・熱酸化膜パターン、18・・・
ダート電極、19 a 、 19 b ・=N−型層、
20a。 20b・・・P−型層、21,29.48・・・5ho
2膜、22&、22b・・・N+型層、231L、23
b・・・r型層、24,26.4’9・・・ソース領域
、25゜27.50・・・ドレイン領域、28・・・W
膜、3゜・・・PSG 膜、31.54・・・コンタク
トホール、32.55・・・配線、43.45・・・多
結晶シリコン膜、47・・・シリコン窒化膜。
FIG. 1(,) to (h) are CMOs according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of a conventional semiconductor device, and FIGS. It is a sectional view shown in order of steps. 11.41...Silicon substrate, 12...Well, 1
4.42.44...Kate oxide film, 16...Nitriding['' turn, 17...Thermal oxide film pattern, 18...
Dart electrode, 19a, 19b ・=N-type layer,
20a. 20b...P-type layer, 21,29.48...5ho
2 film, 22&, 22b...N+ type layer, 231L, 23
br...r type layer, 24,26.4'9...source region, 25°27.50...drain region, 28...W
Film, 3°...PSG film, 31.54...Contact hole, 32.55...Wiring, 43.45...Polycrystalline silicon film, 47...Silicon nitride film.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上にN型拡散層、P型拡散層及びゲー
ト電極を形成する工程と、前記N型拡散層、P型拡散層
及びゲート電極上に夫々高融点金属又はこのシリサイド
からなる金属層の少なくとも一方を形成する工程と、全
面に絶縁膜を形成する工程と、前記N型拡散層、P型拡
散層及びゲート電極上の前記絶縁膜を選択的にエッチン
グ除去しコンタクトホールを形成する工程と、前記絶縁
膜を低温で加熱することにより前記コンタクトホール周
辺部の絶縁膜にテーパを形成する工程と、前記コンタク
トホールに配線を形成する工程とを具備することを特徴
とする相補型半導体装置の製造法。
(1) A step of forming an N-type diffusion layer, a P-type diffusion layer, and a gate electrode on a semiconductor substrate, and a metal made of a high-melting point metal or a silicide thereof on the N-type diffusion layer, P-type diffusion layer, and gate electrode, respectively. a step of forming at least one of the layers, a step of forming an insulating film on the entire surface, and a step of selectively etching away the insulating film on the N-type diffusion layer, the P-type diffusion layer and the gate electrode to form a contact hole. a step of heating the insulating film at a low temperature to form a taper in the insulating film around the contact hole; and forming a wiring in the contact hole. Method of manufacturing the device.
(2)金属層がタングステンシリサイド層とタングステ
ン層を積層したものであることを特徴とする特許請求の
範囲第1項記載の相補型半導体装置の製造方法。
(2) The method for manufacturing a complementary semiconductor device according to claim 1, wherein the metal layer is a laminate of a tungsten silicide layer and a tungsten layer.
(3)絶縁膜を低温で加熱する手段として光照射を用い
ることを特徴とする特許請求の範囲第1項記載の相補型
半導体装置の製造方法。
(3) A method for manufacturing a complementary semiconductor device according to claim 1, characterized in that light irradiation is used as a means for heating the insulating film at a low temperature.
JP60164612A 1984-12-28 1985-07-25 Manufacture of complementary semiconductor device Granted JPS6225451A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60164612A JPS6225451A (en) 1985-07-25 1985-07-25 Manufacture of complementary semiconductor device
US06/813,142 US4743564A (en) 1984-12-28 1985-12-24 Method for manufacturing a complementary MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164612A JPS6225451A (en) 1985-07-25 1985-07-25 Manufacture of complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS6225451A true JPS6225451A (en) 1987-02-03
JPH0248146B2 JPH0248146B2 (en) 1990-10-24

Family

ID=15796496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164612A Granted JPS6225451A (en) 1984-12-28 1985-07-25 Manufacture of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS6225451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170555A (en) * 1988-10-28 1990-07-02 American Teleph & Telegr Co <Att> Integrated circuit and manufacture thereof including low temperature method for forming silicide structure
US6524904B1 (en) 1999-04-20 2003-02-25 Matsushita Electric Industrial Co., Ltd. Method of fabricating semiconductor device
JP2004519092A (en) * 2000-10-30 2004-06-24 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Non-volatile memory with boron implanted on the source side

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170555A (en) * 1988-10-28 1990-07-02 American Teleph & Telegr Co <Att> Integrated circuit and manufacture thereof including low temperature method for forming silicide structure
US6524904B1 (en) 1999-04-20 2003-02-25 Matsushita Electric Industrial Co., Ltd. Method of fabricating semiconductor device
JP2004519092A (en) * 2000-10-30 2004-06-24 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Non-volatile memory with boron implanted on the source side

Also Published As

Publication number Publication date
JPH0248146B2 (en) 1990-10-24

Similar Documents

Publication Publication Date Title
JPS59138379A (en) Manufacture of semiconductor device
US4755863A (en) Semiconductor device having a semiconductor substrate with a high impurity concentration
JPS6225451A (en) Manufacture of complementary semiconductor device
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPS6150371A (en) Semiconductor memory device and manufacture thereof
JPH0481327B2 (en)
JPH0316150A (en) Manufacture of semiconductor element
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH04260331A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPS628028B2 (en)
JPS6140052A (en) Manufacture of complementary insulated gate field effect transistor
JPS60134469A (en) Manufacture of semiconductor device
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPH027441A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPS582047A (en) Manufacture of semiconductor device
JPS60217667A (en) Manufacture of semiconductor device
JPS60158659A (en) Manufacture of semiconductor device
JPS59204279A (en) Manufacture of metallic insulator semiconductor integrated circuit
JPH0273628A (en) Manufacture of semiconductor device
JPS6032990B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term