JPS62254432A - Surface treatment and device therefor - Google Patents

Surface treatment and device therefor

Info

Publication number
JPS62254432A
JPS62254432A JP9684186A JP9684186A JPS62254432A JP S62254432 A JPS62254432 A JP S62254432A JP 9684186 A JP9684186 A JP 9684186A JP 9684186 A JP9684186 A JP 9684186A JP S62254432 A JPS62254432 A JP S62254432A
Authority
JP
Japan
Prior art keywords
substrate
gas
surface treatment
treated
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9684186A
Other languages
Japanese (ja)
Inventor
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9684186A priority Critical patent/JPS62254432A/en
Publication of JPS62254432A publication Critical patent/JPS62254432A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the formation of an excellent thin film possible by a method wherein raw gas is introduced into a reaction chamber, ions are grown by projecting a light having the energy more than the ionizing potential of gas on the region located in the vicinity of the substrate to be treated, and said ions are made incident on the surface of the substrate to be treated using an electric field. CONSTITUTION:Oxygen gas is introduced from a gas introducing hole 14, the gas is electrically discharged by performing a microwave discharge, and the generated activating species of oxygen is introduced into a reaction chamber. Silicon is used as the substrate to be treated, and the temperature of substrate is set at about 300 deg.C. Also, an electric field is generated on the surface of the substrate to be treated, and the light having the photo-beam energy of about 15 eV or above is made to irradiate thereon. The light of a lamp using lean gas discharge or SOR and the like is used as the source of light 6. As a result, the substrate surface is oxidized, and an oxide film of high quality can be formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野〕 本発明は、半導体集積回路の製造等に用いられる薄膜形
成のための表面処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a surface treatment method and apparatus for forming a thin film used in the manufacture of semiconductor integrated circuits and the like.

(従来の技術) 半導体集積回路の製造において半導体、絶縁膜。(Conventional technology) Semiconductors and insulating films in the manufacture of semiconductor integrated circuits.

金属の薄膜形成は極めて重要なプロセスである。Metal thin film formation is an extremely important process.

例えば、絶縁膜の形成方法としてSt衣表面StO!膜
を形成する方法を例にとると、基板を800 〜100
0℃に加熱し、炉の内でO,ガスを流しSi表面−!i
−酸化する方法が一般的である。このように高温状態で
表面を酸化、窒化することにより薄膜を形成する方法、
また、単結晶Siのエピタキシャル成長、多結晶Slの
気相堆積性等熱分解反応による薄膜形成方法が従来から
多く用いられてきた。しかし、近年素子の微細化が進み
、微細な不純物プロファイルが、高温のプロセスにより
乱されることなどがあり□、高温プロセスが微細化の限
界を決定してしまうということも生じ、薄膜形成時のプ
ロセス温度を低くしたいという強い要望がある。
For example, as a method for forming an insulating film, the St coated surface StO! Taking the method of forming a film as an example, the substrate is 800 to 100
Heating to 0°C, flowing O and gas in the furnace, the Si surface-! i
-The most common method is oxidation. A method of forming a thin film by oxidizing and nitriding the surface at high temperatures,
Furthermore, thin film formation methods based on thermal decomposition reactions, such as epitaxial growth of single crystal Si and vapor phase deposition of polycrystalline Sl, have been widely used in the past. However, in recent years, the miniaturization of devices has progressed, and the fine impurity profile is sometimes disturbed by high-temperature processes. This has led to the fact that the high-temperature process determines the limits of miniaturization. There is a strong desire to lower process temperatures.

この要望に応えて、放電化学を利用したプラズマCVD
技術または、光を用−た光CVD技嘗の開発が行われて
いる。例えば8i01.8i3N4 、アモルファス8
i等のプラズマCVD法や8i0.。
In response to this demand, plasma CVD using discharge chemistry
The development of optical CVD techniques using light is underway. For example, 8i01.8i3N4, amorphous 8
Plasma CVD method such as i, 8i0. .

5isN、−アモルファスSi−金属膜の光励起CVD
法などがある。これらの方法は、いずれも低温で膜を形
成することができる。しかし、プラズマCVD法による
薄膜では荷電粒子の照射による被処理基体へのダメージ
の問題等があり、良質の薄膜を形成できない。例えば、
プラズマCVD法により形成される8i0を膜は電気的
、物理的特性とも熱酸化により形成されたStO,膜よ
膜質が悪く良質な膜が要求される例えばMO8素子のゲ
ート酸化膜等には用いることができない。このことは他
の薄膜(8’IN4等)についても同様のことが言える
。また、従来行われている光CVD法においてもそれで
形成される薄膜は300〜400℃の低温で形成される
ものの、プラズマCVD法と同様にその膜質は高温で形
成する薄膜に、はるかにおよばないという問題がある。
5isN, -Amorphous Si-Photoexcitation CVD of metal film
There are laws, etc. All of these methods can form films at low temperatures. However, thin films formed by plasma CVD have problems such as damage to the substrate to be processed due to irradiation with charged particles, and it is not possible to form a thin film of good quality. for example,
The 8i0 film formed by the plasma CVD method has poor electrical and physical properties compared to StO films formed by thermal oxidation, and cannot be used for gate oxide films of MO8 devices, etc., where a high quality film is required. I can't. The same can be said of other thin films (8'IN4, etc.). Furthermore, although thin films formed using the conventional photo-CVD method are formed at a low temperature of 300 to 400°C, the quality of the film is far inferior to that of thin films formed at high temperatures, similar to the plasma CVD method. There is a problem.

更に従来の方法による薄膜形成方法においては表面に選
択的に薄膜を堆積させることが困難でおりた。従って表
面上に薄膜のパターンを形成する場合、一度全面に膜を
形成し、レジスト等でその上にパターニングした後にエ
ツチングを行いパターンを形成するという複雑な方法が
とられていた。
Furthermore, in the conventional thin film forming method, it is difficult to selectively deposit a thin film on the surface. Therefore, when forming a thin film pattern on the surface, a complicated method has been used in which a film is once formed on the entire surface, patterned with resist or the like, and then etched to form the pattern.

製造工程の簡略化は製造コストの低下につながシ。Simplifying the manufacturing process leads to lower manufacturing costs.

強く望まれている。9度の良い選択堆積法として光照射
による金属膜の形成方法がある。しかしこの場合光を集
光させ、その光ビームを走査させることにより膜を形成
してゆくものであシ、製造のスループットが1めで悪く
コストの低下は望めない。
Highly desired. A method of forming a metal film by irradiation with light is a good selective deposition method of 9 degrees. However, in this case, the film is formed by condensing light and scanning the light beam, and the manufacturing throughput is poor at the first stage, and no reduction in cost can be expected.

〔発明の構成〕[Structure of the invention]

(発明が解決しようとする問題点) 本発明は、上述の欠点を除去しするためになされたもの
で、その目的は低温でかつ良質の薄膜を形成でき、更に
、大面積にわたって9度良く基板材料との化合物を形成
する表面処理方法および装。
(Problems to be Solved by the Invention) The present invention was made in order to eliminate the above-mentioned drawbacks, and its purpose is to be able to form a thin film of good quality at a low temperature, and to provide a substrate with a good 90° angle over a large area. A surface treatment method and device for forming a compound with a material.

置を提供することにある。The aim is to provide a

(問題点を解決するための手段) 本発明の骨子は、被処理基板材料を槽底材料とする化付
物からなる薄膜形成のために、光励起によりイオンを生
成し、そのイオンに電界により方向性を待たせることに
より薄膜形成を行うことにある。
(Means for Solving the Problems) The gist of the present invention is to generate ions by optical excitation and to direct the ions by an electric field in order to form a thin film made of a chemical substance using the substrate material to be processed as the bottom material of the bath. The purpose of this method is to form a thin film by waiting for the properties to develop.

即ち、反応容器内に原料ガスを含むガスを導入し、例え
ば被処理基体近傍にガスのイオン化ポテンシャル以上の
エネルギーを有する光を照射し。
That is, a gas containing a source gas is introduced into a reaction vessel, and, for example, light having an energy higher than the ionization potential of the gas is irradiated near the substrate to be processed.

被処理基体近傍にイオンを生成し、そのイオンを電界に
より被処理基体表面に入射させることに薄膜形成を行う
Thin film formation is performed by generating ions near a substrate to be processed and making the ions incident on the surface of the substrate to be processed using an electric field.

電界は被処理基体表面近くの気相中のみではなく、表面
から内部に向う電界でも良く、この場合には気相中ある
いは表面に吸着した粒子をイオン化し、そのイオンを表
面から内部へ引き込むことになる。
The electric field is not limited to the gas phase near the surface of the substrate to be processed, but may also be an electric field directed from the surface to the inside. In this case, particles adsorbed in the gas phase or on the surface are ionized and the ions are drawn from the surface to the inside. become.

ここで薄膜形成とは、表面の酸化、窒化等によるもので
ある。
Formation of a thin film here refers to oxidation, nitridation, etc. of the surface.

マス、シリコンの酸化伊窒化の場合について述べる。酸
素又は窒素分子は%  20eV以上の光にょクイオン
化する。このrR素イオン(0處+又は0+)又は窒素
イオン(Nl+又はN+)を電界により加速し、シリコ
ン表面に入射させることによりリコン表面は酸素又は蟹
累と反広し、酸化又は窒化され、シリコン表面に酸化膜
又は窒化膜が形成される。このとき、!I!素、窒′1
gVc塩累原子を混合させることにより、塩素原子はシ
リコンを反応し、エツチング生成物を作り、そのエツチ
ング生成物と酸素、窒素イオンとの反応により酸化又は
窒化を行う方法もある。この場合、基板の鎖度は300
℃以下で良く、低温で膜形成が行える。また、電界によ
るイオンの加速は、イオンの入射により結晶性等へダメ
ージを与えない程度に抑える必要がある。
We will discuss the case of oxidizing and nitriding of mass and silicon. Oxygen or nitrogen molecules are ionized by light of 20 eV or more. By accelerating these rR elementary ions (0+ or 0+) or nitrogen ions (Nl+ or N+) by an electric field and making them incident on the silicon surface, the silicon surface is oxidized or nitrided, and the silicon surface is oxidized or nitrided. An oxide film or nitride film is formed on the surface. At this time,! I! element, nitrogen'1
There is also a method in which chlorine atoms react with silicon by mixing gVc salt atoms to form an etching product, and the etching product is reacted with oxygen or nitrogen ions to perform oxidation or nitridation. In this case, the chain degree of the substrate is 300
℃ or lower, and film formation can be performed at low temperatures. Further, the acceleration of ions due to the electric field must be suppressed to a level that does not damage crystallinity or the like due to ion incidence.

(作用) 本発明によれば、生成するイオンが被処理基板に引き寄
せられてイオンを構成する元素と基板材料の化合物が形
成される。
(Function) According to the present invention, the generated ions are attracted to the substrate to be processed, and a compound of the elements constituting the ions and the substrate material is formed.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

lX1図に示すのは本発明の実施例を示す装置の概略図
である。
FIG. 1X1 is a schematic diagram of an apparatus illustrating an embodiment of the present invention.

1は接地された反応容器であシ真空びきできるようにな
っている。反応容器lの内には試料台2があり、被処理
基体3は、試料台2の上に設置される。また、試料台2
には電界を印加する電源4が接続されており、この電源
により被処理基体30表面に垂直方向の゛電界を発生さ
せる。更に、試料台2は、被処理基体を昇温する装置5
を有している。また、反応容器lはイオン化光TA6と
真空光路7で連結されており、光路7は反応容器と光源
との差動排気を行う真空系8を有している。5′f:源
6からの光9は光路7を通9反応容器内に導入され、被
処理基体30表面上方の気相中を照射する。更に、反応
容器1は放電管10と接続されており、該放電管はマイ
クロ波導波管11中のキャビティ12とカップリングさ
れておシ、マイクロ波電波13からのパワーの供給を行
う。放電管の他の一端14からは原料ガス等を供給でき
るようになっている。また1反応容器lは他のガス供給
系からのガスを反応容器に導入する丸めの導入口15を
有している。
1 is a grounded reaction vessel that can be vacuum pumped. There is a sample stage 2 inside the reaction vessel 1, and the substrate 3 to be processed is placed on the sample stage 2. In addition, sample stage 2
A power source 4 for applying an electric field is connected to the source 4, and this power source generates an electric field in the vertical direction on the surface of the substrate 30 to be processed. Furthermore, the sample stage 2 is equipped with a device 5 for raising the temperature of the substrate to be processed.
have. Further, the reaction vessel 1 is connected to the ionization light TA6 by a vacuum optical path 7, and the optical path 7 has a vacuum system 8 that performs differential pumping between the reaction vessel and the light source. 5'f: Light 9 from the source 6 is introduced into the reaction vessel 9 through the optical path 7, and irradiates the gas phase above the surface of the substrate 30 to be processed. Furthermore, the reaction vessel 1 is connected to a discharge tube 10 , which is coupled to a cavity 12 in a microwave waveguide 11 and supplies power from a microwave radio wave 13 . Raw material gas and the like can be supplied from the other end 14 of the discharge tube. Moreover, one reaction vessel l has a round inlet port 15 for introducing gas from another gas supply system into the reaction vessel.

また1反応容器は光学窓16を有しており、他の元[1
7からの光18を反応容器内に導入でき、被処理基体に
垂直に光を照射できる。
Moreover, one reaction vessel has an optical window 16, and the other element [1
Light 18 from 7 can be introduced into the reaction vessel, and the light can be irradiated perpendicularly to the substrate to be processed.

上述の装置を用いてシリコン酸化膜を形成する方法につ
いて述べる。まず、酸素ガスをガス導入口14から導入
し、マイクロ波放電により放電させ、そこで生じた酸素
の活性種(励起種)を反応容器内へ導入する。被処理基
体としてはシリコン(単債晶又は多結晶又はアモルファ
ス)を用い基板温度は約300℃にしている。また、被
処理基体表面には電界を生じさせておき、酸素の活性種
をイオン化できる約15eV以上の光子エネルギーを有
する光を図中9に示すように照射する。光源6としては
、希ガス放電によるランプ又は80R等からの光を用い
れば良い。これにより基体表面は酸化され、高品質な酸
化膜が形成される。この場合、酸素は放電で励起しなく
でも酸化は生じる。
A method of forming a silicon oxide film using the above-mentioned apparatus will be described. First, oxygen gas is introduced through the gas inlet 14 and discharged by microwave discharge, and the active species (excited species) of oxygen generated therein are introduced into the reaction vessel. Silicon (single crystal, polycrystal, or amorphous) is used as the substrate to be processed, and the substrate temperature is approximately 300°C. Further, an electric field is generated on the surface of the substrate to be processed, and light having a photon energy of about 15 eV or more capable of ionizing active species of oxygen is irradiated as shown at 9 in the figure. As the light source 6, a lamp using a rare gas discharge or light from an 80R or the like may be used. As a result, the surface of the substrate is oxidized and a high quality oxide film is formed. In this case, oxidation occurs even if oxygen is not excited by the discharge.

酸素を放電により励起しない場合には光の光子エネルギ
ーとしては* 20eV以上のエネルギーを有するもの
が望ましい。すなわち、励起粒子のイオン化を有うより
基底状態の粒子をイオン化する#1つが大きなエネルギ
ーを必要とするためである。
When oxygen is not excited by discharge, it is desirable that the photon energy of light is *20 eV or more. That is, this is because #1, which ionizes particles in the ground state, requires greater energy than ionization of excited particles.

ここで言うイオン化とは、光の吸収による1次反応とし
てのイオン化のみではなく、2次反応としてイオンが生
成されるもの等、光照射によりイオンが生成されるもの
であれば何でも良い。また。
The ionization referred to herein is not limited to ionization as a primary reaction due to absorption of light, but may be anything in which ions are generated as a result of light irradiation, such as ions being generated as a secondary reaction. Also.

酸化を行う場合、t!R素に塩素を混合し、酸化を行う
こともできる。塩素の混合によりシリコンがエツチング
面が酸化されて行く方法である。この場合には、酸素、
塩素のいづれかを放電させても良く、両方とも放′眞さ
せても良論。また1両方とも放電させなくても良い。た
だし、照射する光としては、少なくとも酸素、塩素のい
ずれか一方をイオン化するエネルギーを有する光を照射
中れば良い。
When oxidizing, t! Oxidation can also be carried out by mixing chlorine with the R element. This is a method in which the etched surface of silicon is oxidized by mixing chlorine. In this case, oxygen,
It would be a good idea to discharge either of the chlorine or both. Moreover, it is not necessary to discharge both. However, as the light to be irradiated, it is sufficient that the light has energy to ionize at least either oxygen or chlorine.

また、上述した方法において基体表面に垂直方向から、
光源17として紫外光光源(H11ランプ。
In addition, in the above method, from the direction perpendicular to the substrate surface,
The light source 17 is an ultraviolet light source (H11 lamp).

エキシマレーザ等)を用い光を照射することにより、基
体表面を励起、または、基体表面での粒子のマイグレー
シランを促進させることができ、更に高品質の酸化膜を
形成できる。また%酸素ガスの代わりとして酸素を含む
、N!O,NO,、Co。
By irradiating light using an excimer laser or the like, it is possible to excite the surface of the substrate or promote migration of particles on the surface of the substrate, and it is possible to form a higher quality oxide film. It also contains oxygen as a substitute for % oxygen gas, N! O, NO,, Co.

Co、 、O,、等を用いても良い。Co, O, etc. may also be used.

シリコン窒化膜を形成する場合には、上述の酸化とまり
たく同様の方法で1行うことができる。
When forming a silicon nitride film, a method similar to the above-mentioned oxidation process can be used.

ただし、酸素を含むガスの代シに、窒素を含むガスを用
いれば良く、そのガスとしては、 N、 、N、O。
However, instead of the oxygen-containing gas, a nitrogen-containing gas may be used, such as N, , N, and O.

No、 、NH,等Nを含むガスであれば良い。Any gas containing N, such as No, NH, etc., may be used.

更に、酸化膜中に不純物元素を導入する方法として酸素
または酸素とハロゲンガス(例えば塩素)ガス混合の導
入ガスに不純物を含むガスを導入することによりネ軸物
元素を含む酸化膜を形成することができる。
Furthermore, as a method of introducing impurity elements into the oxide film, it is possible to form an oxide film containing a negative element by introducing a gas containing impurities into the introduction gas of oxygen or a mixture of oxygen and halogen gas (for example, chlorine). can.

例えば、Pを添加しようとする場合には、PCj、。For example, when adding P, PCj.

POCl、 、 PH,、等のガスを導入し、Bを添加
しようとする場合には、 BCIs =BtHs等のガ
スを導入すれば良い。
When attempting to add B by introducing a gas such as POCl, PH, etc., it is sufficient to introduce a gas such as BCIs=BtHs.

$1図の装置において、ガスのイオン化を行う光として
主に、被処理基体表面上方に照射する光9を主に述べて
きたが、基体表面に垂直に照射する元18がイオン化を
行う光であっても良いことは明らかである。9,18が
共にイオン化を行う光であっても良く、またはいづれか
一方でも良い。
In the apparatus shown in Figure 1, we have mainly described the light 9 that irradiates above the surface of the substrate to be processed as the light that ionizes the gas, but the light 9 that irradiates perpendicularly to the substrate surface is the light that ionizes. It is clear that it is possible. Both of 9 and 18 may be lights that perform ionization, or either one of them may be used.

18がイオン化を行う光であれば、特に9の光を必要と
しない。また、光源6と光源17の配置が入れ換った場
合も同様の考え方で1表面処理が行えることは明らかで
ある。
If the light 18 is for ionization, the light 9 is not particularly required. Furthermore, it is clear that even when the positions of the light source 6 and the light source 17 are exchanged, one surface treatment can be performed using the same concept.

第2図は発明の他の実施例を説明するための装置の概略
図を示す。第1図と同一部分については同一符号を付し
である。第1図の場合と異なるのは、イオン化を行う光
9が、基体3の表面に垂直に入射し、また、基体温度を
昇温と冷却の相方が行える温度調整装置5′があること
である。
FIG. 2 shows a schematic diagram of an apparatus for explaining another embodiment of the invention. The same parts as in FIG. 1 are given the same reference numerals. What is different from the case in FIG. 1 is that the ionizing light 9 is perpendicularly incident on the surface of the substrate 3, and that there is a temperature adjustment device 5' that can raise and cool the substrate temperature. .

まず、イオン化する光を基体表面に平行に入射させる場
合と、垂直に入射させる場合の特徴について第3図を用
いて説明する。第3図(a)に示すのは基体表面に光を
平行に入射させる場合にっ−て示しである。平行入射の
場合には、イオン化は気相中でおこり、基体表面から気
相中に向う電界耳型により引きよせられ基体表面に入射
し1反応又は堆積を生じる。しかし%第3図(b)に示
すように。
First, the characteristics when the ionizing light is made incident parallel to the substrate surface and when it is made perpendicular to the substrate surface will be explained with reference to FIG. FIG. 3(a) shows the case where light is made parallel to the surface of the substrate. In the case of parallel incidence, ionization occurs in the gas phase and is attracted by the electric field ears from the substrate surface into the gas phase and impinges on the substrate surface to cause a reaction or deposition. However, as shown in Figure 3(b).

光が基体表面に重直に入射するS合には、気相中のイオ
ン化の#1かに、基体表面でのイオン化がある。この基
体表面でイオン化した粒子は基体内部に発生する電界ル
、により内部に引き込まれる。
In the S case where light is incident perpendicularly to the substrate surface, there is ionization at the substrate surface in #1 of ionization in the gas phase. Particles ionized on the surface of the substrate are drawn into the substrate by an electric field generated inside the substrate.

さらに、基体表面に光を入射させたS合、元により基体
表面の励起が生じ1反応の活性化、マイグレーシコンの
促進等の効果を生じさせる。@2図に示したのはこのよ
うな基体表面に光を照射するための装置である。
Further, when light is incident on the surface of the substrate, the S reaction causes excitation of the surface of the substrate, resulting in effects such as activation of a reaction and promotion of migration. What is shown in Figure 2 is a device for irradiating light onto the surface of such a substrate.

図中31は基体下地、32は表面反応層又は堆積物、3
3はイオン化を行う光であり、33は光により生成され
たイオン、34は中性粒子を示す。
In the figure, 31 is the base substrate, 32 is the surface reaction layer or deposit, and 3
3 is light that performs ionization, 33 is ion generated by the light, and 34 is neutral particle.

第2図の装置を用いて薄膜を形成し、不純物の拡散を行
う方法について述べる。まず1反応容器内の基体を冷却
しておき、ガス導入口14から不純物元素を含むガスを
導入する。このガスは、放電され励起されたガスが反応
容器内に導入される。
A method for forming a thin film and diffusing impurities using the apparatus shown in FIG. 2 will be described. First, the substrate in one reaction vessel is cooled, and a gas containing an impurity element is introduced from the gas inlet 14. This gas is discharged and excited and introduced into the reaction vessel.

この励起ガスは、冷却された基体表面に吸着し。This excited gas is adsorbed on the cooled substrate surface.

基体表面には不純物元素を含んだ基板材料とガス構成元
素からなる薄膜が形成される。そこに同時にイオン化を
行う光を照射し、吸着層中の不純物元素をイオン化する
。基体には、反応容器内で放電を生じない程度の電界が
印加されている。表面で生じたイオンは、表面から内部
へ向う電界により、内部方向へ引き込まれることにより
基体内部に拡散層を形成する。この場合、光が基体表面
に照射されているため表面自体も光により励起され、不
純物元素の拡散を助ける。この方法による拡散では、電
界はさほど強くなく、かつ低温であるために、その深さ
は極めて浅い。この方法では原料ガスを放電させるのは
吸着をしやすくするためであシ、吸着能の高いガスを用
いる場合には、特に放電を行わなくても良い。例えばシ
リコン中にn型の不純物を添加するJjI合にはガスと
してPctIPH@ 、AsHl 、AsC1B等かあ
J、P型不純物源としてはBCl3.BP、、B、H・
等がある。
A thin film made of a substrate material containing impurity elements and gas constituent elements is formed on the surface of the substrate. At the same time, ionizing light is irradiated onto the adsorption layer to ionize impurity elements in the adsorption layer. An electric field is applied to the substrate to an extent that no discharge occurs within the reaction vessel. Ions generated at the surface are drawn inward by an electric field directed from the surface to the inside, thereby forming a diffusion layer inside the substrate. In this case, since the surface of the substrate is irradiated with light, the surface itself is also excited by the light, helping to diffuse the impurity elements. In diffusion using this method, the electric field is not very strong and the temperature is low, so the depth is extremely shallow. In this method, the purpose of discharging the raw material gas is to facilitate adsorption, and when using a gas with high adsorption capacity, it is not necessary to perform discharging. For example, when adding n-type impurities into silicon, the gas is PctIPH@, AsHl, AsC1B, etc., and the P-type impurity source is BCl3. B.P., B.H.
etc.

示す、基体表面に光を照射する方法において、光路中に
光学マスクを置き、そのマスク像を基体表面に結儂させ
、光照射部分のみに薄膜形成を行う転写によるパターン
形成方法が用いられる。第4図中、41は光学マスク、
42は基体、43は光であシ、マスク像に対応した堆積
が生じていることを示す概略図である。
In the method of irradiating the substrate surface with light, an optical mask is placed in the optical path, and the mask image is condensed onto the substrate surface to form a thin film only on the light irradiated portions, using a pattern forming method by transfer. In Fig. 4, 41 is an optical mask;
42 is a substrate, 43 is a light beam, and is a schematic diagram showing that deposition corresponding to a mask image is occurring.

第5図は拡散の様子を示すもので1図中51は基体42
0表面上に結像した光学像の明暗部を示すものであシ、
黒い部分が暗部である。第5図は光照射が行われてhる
部分だけで、酸化又は窒化が行われていることを示して
−る。一般に、イオン化を起こす光の波長は100OA
以下と短くパターン転写にこの光を用いる場合1回折効
果等が小さく、微細パターン形成に向いている。さらに
Figure 5 shows the state of diffusion, and 51 in Figure 1 is the base 42.
0 indicates the bright and dark parts of an optical image formed on the surface,
The black part is the dark part. FIG. 5 shows that oxidation or nitridation occurs only in the portions exposed to light. Generally, the wavelength of light that causes ionization is 100OA.
When this light is used for pattern transfer, the single diffraction effect and the like are small, making it suitable for forming fine patterns. moreover.

生成したイオンKffi界により方向性を待たせるため
に、微細加工性に極めてすぐれている。
Since the directionality is determined by the generated ion Kffi field, the microfabricability is extremely excellent.

〔発明の効果〕〔Effect of the invention〕

本発明を用いることにより、低温で薄膜形成メコ F;
  A  P L  −A? 71 番   M  t
y −シJ−11?  )−k  Th #  JP 
 J/l  f  #鰍高品質である。更に、イオンの
入射により薄膜形成を行うため微細加工性にすぐれ、ま
た短波長の光照射を行うために、その選択性にすぐれて
おり、VLSI製造に用いるのに適している。tた。
By using the present invention, a thin film can be formed at a low temperature.
APL-A? No. 71 Mt
y-shi J-11? )-k Th # JP
J/l f # Mackerel is of high quality. Furthermore, since the thin film is formed by the injection of ions, it has excellent microfabrication properties, and because it uses short wavelength light irradiation, it has excellent selectivity, making it suitable for use in VLSI manufacturing. It was.

低速のイオンを用いるために、基体に与えるダメージは
ない。また選択的膜形成を行うことにより。
Since slow ions are used, there is no damage to the substrate. Also by performing selective film formation.

従来の製造プロセスを大幅短縮にでき、製造コス′トは
大幅に低下する。
The conventional manufacturing process can be significantly shortened, and manufacturing costs will be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一実施例を示す概略構成図
、@2図は同地の実施例を示す概略構成図、第3図は光
イオン化反応の原理を示す説明図。 第4図は本発明による方法の一実施例を示す説明図、第
5図は酸化の原理を説明するための図である。 1・・・反応容器、2・・・試料台、3・・・被処理基
体。 4・・・電@、6・・・イオン化光源。 代理人 弁理士   則 近 憲 重 量     竹 花 喜久男 第2図 3ヨ 第3図
FIG. 1 is a schematic block diagram showing an embodiment of the apparatus according to the present invention, @2 is a schematic block diagram showing an embodiment of the same device, and FIG. 3 is an explanatory diagram showing the principle of photoionization reaction. FIG. 4 is an explanatory diagram showing one embodiment of the method according to the present invention, and FIG. 5 is a diagram for explaining the principle of oxidation. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Sample stand, 3... Substrate to be processed. 4...Electric @, 6...Ionization light source. Agent Patent Attorney Nori Chika Kikuo Takehana Figure 2, Figure 3

Claims (21)

【特許請求の範囲】[Claims] (1)被処理基体を収納する容器内に原料ガスを供給し
、前記被処理基体内で光を照射すると共に前記被処理基
体と垂直な方向の電界を与えてイオンを前記被処理基体
に引き寄せて前記イオンを構成する元素と前記被処理基
体材料の化合物を形成することを特徴とする表面処理方
法。
(1) Supplying a raw material gas into a container that houses a substrate to be processed, irradiating light inside the substrate and applying an electric field in a direction perpendicular to the substrate to attract ions to the substrate to be processed. A surface treatment method comprising: forming a compound of an element constituting the ion and the substrate material to be treated.
(2)化合物の生成は酸化もしくは窒化であることを特
徴とする特許請求の範囲第1項記載の表面処理方法。
(2) The surface treatment method according to claim 1, wherein the compound is generated by oxidation or nitridation.
(3)前記ガスとして少なくとも酸素、または、少なく
とも酸素およびハロゲンを含む各々のガスの混合ガスを
用い、被処理基体表面に酸化膜を形成することを特徴と
する特許請求の範囲第1項記載の表面処理方法。
(3) An oxide film is formed on the surface of the substrate to be processed by using at least oxygen or a mixed gas of each gas containing at least oxygen and halogen as the gas. Surface treatment method.
(4)前記被処理基体が単結晶、多結晶、又は非晶質の
シリコンであり、シリコン酸化膜を形成することを特徴
とする特許請求の範囲第3項記載の表面処理方法。
(4) The surface treatment method according to claim 3, wherein the substrate to be treated is single crystal, polycrystal, or amorphous silicon, and a silicon oxide film is formed.
(5)前記被処理基体がシリコン以外の半導体材料であ
ることを特徴とする特許請求の範囲第3項記載の表面処
理方法。
(5) The surface treatment method according to claim 3, wherein the substrate to be treated is a semiconductor material other than silicon.
(6)前記ハロゲンを含むガスとしてCl_2を用い、
酸素を含むガスとしてO_2を用い、被処理基体として
シリコンを用い、シリコン酸化膜を形成する特許請求の
範囲第3項記載の表面処理方法。
(6) Using Cl_2 as the halogen-containing gas,
4. The surface treatment method according to claim 3, wherein O_2 is used as the oxygen-containing gas, silicon is used as the substrate to be treated, and a silicon oxide film is formed.
(7)前記ガスとして、酸素、または、少なくとも酸素
およびハロゲンを含む各々のガスの混合ガスの他に、不
純物を含むガスを添加し、被処理基体表面に不純物を含
む酸化膜を形成することを特徴とする特許請求の範囲第
3項記載の表面処理方法。
(7) As the gas, in addition to oxygen or a mixed gas of each gas containing at least oxygen and halogen, a gas containing impurities is added to form an oxide film containing impurities on the surface of the substrate to be processed. A surface treatment method according to claim 3, characterized in that:
(8)前記ガスとして少なくとも窒素、または、少なく
とも窒素および塩素を含むガスの混合ガスを用い、前記
被処理基体表面は単結晶シリコン、又は多結晶シリコン
、又は非晶質シリコンであり、シリコンと窒素の反応に
より表面上にシリコン窒化膜を形成することを特徴とす
る特許請求の範囲第1項記載の表面処理方法。
(8) As the gas, at least nitrogen or a mixed gas containing at least nitrogen and chlorine is used, and the surface of the substrate to be treated is single crystal silicon, polycrystalline silicon, or amorphous silicon, and silicon and nitrogen are used. 2. The surface treatment method according to claim 1, wherein a silicon nitride film is formed on the surface by the reaction.
(9)前記ガスとして、少なくとも不純物元素を含むガ
スを用い被処理基体に不純物の拡散層を形成することを
特徴とする特許請求の範囲第1項記載の表面処理方法。
(9) The surface treatment method according to claim 1, wherein a gas containing at least an impurity element is used as the gas to form an impurity diffusion layer on the substrate to be treated.
(10)前記不純物元素を含むガスとして、PCl_3
、POCl_3、PH_3、AsCl_3もしくはAs
H_3を用い、被処理基体としてシリコンを用いてシリ
コン表面にn型不純物を導入することを特徴とする特許
請求の範囲第9項記載の表面処理方法。
(10) As the gas containing the impurity element, PCl_3
, POCl_3, PH_3, AsCl_3 or As
10. The surface treatment method according to claim 9, wherein n-type impurities are introduced into the silicon surface using silicon as a substrate to be treated using H_3.
(11)前記不純物元素を含むガスとして、BCl_3
、B_2H_6、を用い、被処理基体としてシリコンを
用い、シリコン表面にP型不純物を導入することを特徴
とする特許請求の範囲第9項記載の表面処理方法。
(11) As the gas containing the impurity element, BCl_3
, B_2H_6, silicon is used as the substrate to be processed, and P-type impurities are introduced into the silicon surface.
(12)前記被処理基体上には、レジスト、酸化膜、金
属膜等でマスクがパターニングされているか、あるいは
、被処理基体表面に明暗のコントラストを持つパターニ
ングされた像を結像させることにより、被処理基体上に
選択的に拡散処理を行い、パターンを形成することを特
徴とする特許請求の範囲第1項記載の表面処理方法。
(12) A mask is patterned with a resist, an oxide film, a metal film, etc. on the substrate to be processed, or a patterned image having a contrast of light and dark is formed on the surface of the substrate to be processed, 2. The surface treatment method according to claim 1, wherein a pattern is formed by selectively performing a diffusion treatment on a substrate to be treated.
(13)前記ガスに不活性ガスを添加することを特徴と
する特許請求の範囲第1項記載の表面処理方法。
(13) The surface treatment method according to claim 1, characterized in that an inert gas is added to the gas.
(14)前記不活性ガスとしてKr、Ne、He、Ar
の少なくとも一種を用いることを特徴とする特許請求の
範囲第13項記載の表面処理方法。
(14) Kr, Ne, He, Ar as the inert gas
14. The surface treatment method according to claim 13, characterized in that at least one of the following is used.
(15)被処理基体を収納する反応容器と、該反応容器
内に原料ガスを含むガスを導入する手段と、前記ガスに
光を照射する手段と、前記被処理基体表面に垂直方向の
電界を発生させる手段とを具備し、前記ガスを構成する
元素と前記被処理基体材料の化合物を形成する表面処理
装置。
(15) A reaction vessel for storing a substrate to be processed, a means for introducing a gas containing a raw material gas into the reaction vessel, a means for irradiating the gas with light, and a means for applying an electric field in a direction perpendicular to the surface of the substrate to be processed. A surface treatment apparatus comprising a means for generating a gas and forming a compound of an element constituting the gas and the substrate material to be treated.
(16)前記ガスを反応容器と真空で連結された別の真
空容器内であらかじめ解離する手段とを具備しているこ
とを特徴とする特許請求の範囲第15項記載の表面処理
装置。
(16) The surface treatment apparatus according to claim 15, further comprising means for dissociating the gas in a separate vacuum container connected to the reaction container in a vacuum state.
(17)前記ガスのイオン化を起こさせる光以外の波長
域の光を被処理基体に垂直に照射する手段を具備するこ
とを特徴とする特許請求の範囲第15項記載の表面処理
装置。
(17) The surface treatment apparatus according to claim 15, further comprising means for perpendicularly irradiating the substrate to be treated with light in a wavelength range other than the light that causes ionization of the gas.
(18)前記光を垂直方向から照射する手段を具備して
いることを特徴とする特許請求の範囲第15項記載の表
面処理装置。
(18) The surface treatment apparatus according to claim 15, further comprising means for irradiating the light from a vertical direction.
(19)前記被処理基体表面に発生させる電界は、反応
容器内で放電が起こるしきい値電界以下であることを特
徴とする特許請求の範囲第15項記載の表面処理装置。
(19) The surface treatment apparatus according to claim 15, wherein the electric field generated on the surface of the substrate to be treated is equal to or lower than a threshold electric field at which discharge occurs within the reaction vessel.
(20)前記被処理基体を昇温する手段を具備している
ことを特徴とする特許請求の範囲第15項記載の表面処
理装置。
(20) The surface treatment apparatus according to claim 15, further comprising means for raising the temperature of the substrate to be treated.
(21)前記被処理基体上に、明暗のコントラストを持
つパターニングされた光学像を結像させる手段を有する
ことを特徴とする特許請求の範囲第15項記載の表面処
理装置。
(21) The surface treatment apparatus according to claim 15, further comprising means for forming a patterned optical image having a contrast between brightness and darkness on the substrate to be treated.
JP9684186A 1986-04-28 1986-04-28 Surface treatment and device therefor Pending JPS62254432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9684186A JPS62254432A (en) 1986-04-28 1986-04-28 Surface treatment and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9684186A JPS62254432A (en) 1986-04-28 1986-04-28 Surface treatment and device therefor

Publications (1)

Publication Number Publication Date
JPS62254432A true JPS62254432A (en) 1987-11-06

Family

ID=14175740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9684186A Pending JPS62254432A (en) 1986-04-28 1986-04-28 Surface treatment and device therefor

Country Status (1)

Country Link
JP (1) JPS62254432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368647A (en) * 1991-06-26 1994-11-29 Canon Kabushiki Kaisha Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
US5425811A (en) * 1991-10-30 1995-06-20 Kabushiki Kaisha Toshiba Apparatus for manufacturing a nitrogen containing compound thin film
JP2011119747A (en) * 2000-03-13 2011-06-16 Foundation For Advancement Of International Science Method for forming nitride film, method for forming oxynitride film, method for sputtering nitride film, and method for forming gate insulation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368647A (en) * 1991-06-26 1994-11-29 Canon Kabushiki Kaisha Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
US5425811A (en) * 1991-10-30 1995-06-20 Kabushiki Kaisha Toshiba Apparatus for manufacturing a nitrogen containing compound thin film
JP2011119747A (en) * 2000-03-13 2011-06-16 Foundation For Advancement Of International Science Method for forming nitride film, method for forming oxynitride film, method for sputtering nitride film, and method for forming gate insulation film

Similar Documents

Publication Publication Date Title
US20190013211A1 (en) Tantalum-containing material removal
JP3048749B2 (en) Thin film formation method
US7645709B2 (en) Methods for low temperature oxidation of a semiconductor device
US20050186789A1 (en) Photo-assisted method for semiconductor fabrication
US6734518B2 (en) Surface treatment of DARC films to reduce defects in subsequent cap layers
JP2005033055A (en) Surface wave plasma processor using multi-slot antenna for which circular arcuate slot is provided together with radial slot
JP4252749B2 (en) Substrate processing method and substrate processing apparatus
KR20110104001A (en) Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures
KR20100014557A (en) Method for forming silicon nitride film, method for manufacturing nonvolatile semiconductor memory device, nonvolatile semiconductor memory device and plasma processing apparatus
JP2007088199A (en) Processing equipment
JPS62254432A (en) Surface treatment and device therefor
US6551947B1 (en) Method of forming a high quality gate oxide at low temperatures
KR100699290B1 (en) Production method and production device for semiconductor device
JPS61228633A (en) Formation of thin film
JP2003142469A (en) Method and apparatus for radical oxidation of silicon
US5990006A (en) Method for forming materials
US20120234491A1 (en) Plasma processing method and plasma processing apparatus
JPS6269613A (en) Hardening resist pattern
JP2005123389A (en) Plasma treatment method, plasma film forming method, plasma etching method and plasma treatment device
JPH06124959A (en) Manufacture of semiconductor device
JP2007081341A (en) Processing apparatus
JPS62254421A (en) Method and device for surface treatment
JPH07118475B2 (en) Substrate surface treatment method
JP2001176870A (en) Method for forming nitride film
JPH03248420A (en) Manufacture of semiconductor device