JPS62254421A - Method and device for surface treatment - Google Patents

Method and device for surface treatment

Info

Publication number
JPS62254421A
JPS62254421A JP9684286A JP9684286A JPS62254421A JP S62254421 A JPS62254421 A JP S62254421A JP 9684286 A JP9684286 A JP 9684286A JP 9684286 A JP9684286 A JP 9684286A JP S62254421 A JPS62254421 A JP S62254421A
Authority
JP
Japan
Prior art keywords
substrate
surface treatment
treated
gas
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9684286A
Other languages
Japanese (ja)
Inventor
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9684286A priority Critical patent/JPS62254421A/en
Publication of JPS62254421A publication Critical patent/JPS62254421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive the improvement in the accuracy of impurity diffusion by supplying a raw material gas into a container containing a substrate to be treated and projecting light into the substrate to be treated and applying an electric field in vertical direction to the treated substrate to introduce ions into the material of the treated substrate. CONSTITUTION:A light 9 from a light source 6 passes an optical path 7 and it is introduced into a reactor 1 where a vapor above a surface of a substrate 3 to be treated is irradiated. Furthermore, a discharge tube 10 connected with the reactor 1 is coupled with a cavity 12 in a microwave waveguide 11 and a power from a microwave source 13 is supplied. From another end 14 of the discharge tube, a material gas or the like can be supplied. The reactor 1 comprises an inlet 15 for introducing a gas from other gas supply systems into the reactor. Also the reactor comprises an optical window 16 thereby introducing a light 18 from another light source 17 and irradiating the treated substrate with the light vertically. Thus, the introduced gas is ionized by light irradiation and the generated ions are attracted by an electric field and introduced into the substrate 3 to be treated. Accordingly, the impurity diffusion into a semiconductor can be done with high accuracy at low temperature with few damages.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野〕 本発明は、半導体集積回路の製造等に用いられる表面処
理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a surface treatment method and apparatus used in the manufacture of semiconductor integrated circuits.

(従来の技術) 従来、半導体表面上に拡散層を形成する場合。(Conventional technology) Conventionally, when forming a diffusion layer on a semiconductor surface.

半導体上に不純物元素を含む薄膜をまず形成し。First, a thin film containing impurity elements is formed on a semiconductor.

その試料を500℃以上に昇温し、熱拡散を行う方法が
とられてきた。この熱拡散は、その拡散プロファイルを
コントロールすることが難しく、浅い場合、微小領域の
拡散等が行われない。この問題を解決する手段としてイ
オン打ち込みによる拡散層形成が行われるようになりた
が、不純物イオンを数十KeV程夏のエネルギーで打ち
込むために。
A method has been used in which the temperature of the sample is raised to 500° C. or higher and thermal diffusion is performed. It is difficult to control the diffusion profile of this thermal diffusion, and if the depth is shallow, diffusion in a minute area will not occur. As a means of solving this problem, formation of a diffusion layer by ion implantation has come to be performed, but impurity ions are implanted with an energy of several tens of KeV.

そのプロセスで結晶中にダメージが入ることからやはり
数100℃での熱アニールを行わなくてはならない。熱
拡散によるよシはその拡散プロファイルは良いものの、
現在要求が高まりつつある2000A以下の接合深さの
形成は極めて困難である。
Because this process causes damage to the crystal, thermal annealing at several hundred degrees Celsius must be performed. Although the diffusion profile is good due to thermal diffusion,
It is extremely difficult to form a junction depth of 2000 A or less, which is currently becoming an increasing demand.

〔発明の構成〕[Structure of the invention]

(発明が解決しようとする問題点) 本発明は上述の欠点を除去するためになされたもので、
その目的は低温でかつ大面積にわたり精度良く不純物拡
散が行える表面処理方法および装置を提供することにあ
る。
(Problems to be Solved by the Invention) The present invention has been made to eliminate the above-mentioned drawbacks.
The purpose is to provide a surface treatment method and apparatus that can perform impurity diffusion with high precision over a large area at low temperatures.

(問題点を解決する丸めの手段) 本発明では、不純物元素を含んだガスを反応容器内へ導
入し、光照射により不純物元素を含むイオンを生成する
。このイオンを被処理基体表面に入射させ、基体表面か
ら内部へ向う電界にょシイオンを基体内部へ導入する。
(Rounding Means for Solving Problems) In the present invention, a gas containing an impurity element is introduced into a reaction vessel, and ions containing the impurity element are generated by light irradiation. These ions are made incident on the surface of the substrate to be processed, and the ions are introduced into the interior of the substrate due to the electric field directed inward from the surface of the substrate.

この場合、不純物の拡散は浅く浅い場合を作る場合等に
適合する。
In this case, the diffusion of impurities is suitable for creating a shallow case.

〔作用〕[Effect]

光励起を用いるので低温でイオンを導入することができ
、又イオンを電界によシ垂直に基板に導入するので、精
度が高い。
Since optical excitation is used, ions can be introduced at low temperatures, and since ions are introduced into the substrate perpendicular to the electric field, accuracy is high.

〔実施例〕 以下1図面を用いて本発明の詳細な説明する。〔Example〕 The present invention will be described in detail below using one drawing.

第1図に示すのは本発明の実施例を示す装置の概略図で
ある。
FIG. 1 is a schematic diagram of an apparatus illustrating an embodiment of the present invention.

lは接地された反応容器であシ真空引きできるようにな
っている。反応容器10)内には試料台2があシ被処理
基体3は、試料台2の上に設置される。また、試料台2
には電界を印加する電R4が接続されており、この電源
により被処理基体3の表面に垂直方向の電界を発生させ
る。
1 is a grounded reaction vessel that can be evacuated. A sample stage 2 is placed inside the reaction vessel 10), and the substrate 3 to be processed is placed on the sample stage 2. In addition, sample stage 2
A power source R4 for applying an electric field is connected to , and this power source generates an electric field in the vertical direction on the surface of the substrate 3 to be processed.

更に、試料台2は、被処理基体を昇温する装置5を有し
ている。また、反応容器lはイオン出光$6と真空光路
7で連結されており、光路7は反6容器と光源との差動
排気を行う真空系8を有している。光源6からの光9は
光路フを逸〉反応容器内に導入され、被処理基体30表
面上方の気相中を照射する。更に1反応容器lは放電管
10と接続されて訃シ、該放4管はマイクロ彼導波管l
l中のキャビティ12とカップリングされておシ。
Further, the sample stage 2 includes a device 5 for heating the substrate to be processed. Further, the reaction vessel 1 is connected to the ion emitting device 6 by a vacuum optical path 7, and the optical path 7 has a vacuum system 8 that performs differential pumping between the 6 vessel and the light source. The light 9 from the light source 6 deviates from the optical path and is introduced into the reaction vessel, and irradiates the gas phase above the surface of the substrate 30 to be processed. Furthermore, one reaction vessel 1 is connected to a discharge tube 10, and the four discharge tubes are connected to a micro waveguide 10.
It is coupled with cavity 12 in l.

マイクロ波電源13からのパワーの供給を行う・放電管
の他の一端14からは原料ガス等を供給できるようにな
っている。また1反応容器lは他のガス供給系からのガ
スを反応容器に導入するための導入口15を有している
Power is supplied from a microwave power source 13. Raw material gas etc. can be supplied from the other end 14 of the discharge tube. Further, one reaction vessel l has an inlet 15 for introducing gas from another gas supply system into the reaction vessel.

また1反応容器は光学窓16を有しておシ、他の光源1
7からの光18を反応容器内に導入でき。
In addition, one reaction vessel has an optical window 16 and another light source 1.
Light 18 from 7 can be introduced into the reaction vessel.

被処理基体に垂直に光を照射できる。このように光照射
によシ導入ガスをイオン化し生成したイオンを電界によ
り引き寄せて被処理基板3内にイオン導入することがで
きる。
Light can be irradiated perpendicularly to the substrate to be processed. In this manner, the introduced gas is ionized by light irradiation, and the generated ions are attracted by an electric field and can be introduced into the substrate 3 to be processed.

@1図の装置において、ガスのイオン化を行う光として
主に、被処理基体表面上方に照射する光9を主に述べて
きたが、基体表面に垂直に照射する光18がイオン化を
行う光であっても良いことは明らかである。9,18が
共にイオン化を行う光であっても良く%またはいずれか
一万でも良い。
In the apparatus shown in Figure 1, we have mainly described the light 9 that irradiates above the surface of the substrate to be processed as the light that ionizes the gas, but the light 18 that irradiates perpendicularly to the substrate surface is the light that ionizes. It is clear that it is possible. Both of 9 and 18 may be lights that cause ionization, and either % or 10,000 may be used.

18がイオン化を行う光であれば、特に9の光を必要と
しない。また1光源6と光源17の配置が入れ換った場
合も同様の考え方で、表面処理が行えることは明らかで
ある。
If the light 18 is for ionization, the light 9 is not particularly required. Furthermore, it is clear that surface treatment can be performed using the same concept even when the positions of one light source 6 and one light source 17 are exchanged.

@2図に発明の他の実施例を説明するための装置の概略
図を示す。第1図と同一部分については同一番号を付し
である。第1図の場合と異なるのは、イオン化を行う光
9が、基体30表面に垂直に入射し、tた、基体温度を
昇温と冷却の相方が行える温度調整装gt5’があるこ
とである。
Figure 2 shows a schematic diagram of an apparatus for explaining another embodiment of the invention. The same parts as in FIG. 1 are given the same numbers. What is different from the case in FIG. 1 is that the ionizing light 9 is perpendicularly incident on the surface of the substrate 30, and there is also a temperature adjustment device gt5' that can raise and cool the substrate temperature. .

@2図の装置を用いて不純物の拡散を行う方法について
述べる。まず1反応容器内の基体を冷却しておき、ガス
導入口14から不純物元素を含むガスを導入する。この
ガスは、放電され、励起されたガスが反応容器内に導入
される。この励起ガス社、冷却された基体表面に吸着し
、基体表面には不純物元素を含んだ薄膜が形成される。
@2 A method for diffusing impurities using the apparatus shown in Figure 2 will be described. First, the substrate in one reaction vessel is cooled, and a gas containing an impurity element is introduced from the gas inlet 14. This gas is discharged and the excited gas is introduced into the reaction vessel. This excited gas is adsorbed onto the cooled substrate surface, and a thin film containing impurity elements is formed on the substrate surface.

そこに同時にイオン化を行う光を照射し、吸着層中の不
純物元素をイオン化する。基体には1反応容器内で放電
を生じない程度の電界が印加されている。
At the same time, ionizing light is irradiated onto the adsorption layer to ionize impurity elements in the adsorption layer. An electric field is applied to the substrate to an extent that no discharge occurs within one reaction vessel.

表面で生じたイオンは表面から内部へ向う電界によシ、
内部方向へ引き込まれることによシ基体内部に拡散層を
形成する。この場合1元が基体表面に照射されているた
め1表面自体も光によシ励起され、不純物元素の拡散を
助ける。この方法による拡散では、電界はさほど強くな
く、かつ低温である丸めに、その深さは極めて浅い。こ
の方法で原料ガスを放電させるのは吸着をしやすくする
ためであり、吸着能の高いガスを用いる場合には。
Ions generated on the surface are stimulated by an electric field directed from the surface to the inside.
By being drawn inward, a diffusion layer is formed inside the substrate. In this case, since the single element is irradiated onto the surface of the substrate, the single surface itself is also excited by the light, helping to diffuse the impurity element. In diffusion using this method, the electric field is not very strong, the temperature is low, and the depth is extremely shallow. The purpose of discharging the source gas in this method is to facilitate adsorption, and when using a gas with high adsorption capacity.

特に放電を行わなくても良い。例えば、シリコン中にn
型の不純物を添加する場合にはガスとしてPClB、P
OCl、、PH,、AsHl 、A3CJ1等があシ、
P型不伺物源としてはBC1s嘗BFs、B鵞I(・等
がある。
In particular, it is not necessary to perform discharge. For example, n in silicon
When adding type impurities, use PClB, P as gas.
OCl, PH, AsHl, A3CJ1, etc.
Examples of P-type sources include BC1s嘗BFs, B-goon I (・, etc.).

また、この方法による拡散では拡散元素は、電界の方向
に引き込まれるために、横方向へ拡散層が広がることが
少ない。第3因にマスク材によるパターンを有する試料
で本発明の拡散を行った場合の拡散r−形状を示す。光
照射部分でのみイオンが表面から引き込まれ電界により
内部に引き込まれるために方向性の良い拡散層が形成で
きる。図中36は基体、37はマスク材、38は拡散層
Further, in diffusion by this method, the diffusion element is drawn in the direction of the electric field, so that the diffusion layer rarely spreads in the lateral direction. The third factor is the diffusion r-shape when the diffusion of the present invention is performed on a sample having a pattern formed by a mask material. Since ions are drawn from the surface only in the light irradiated area and drawn into the interior by the electric field, a diffusion layer with good directionality can be formed. In the figure, 36 is a base, 37 is a mask material, and 38 is a diffusion layer.

39は照射した光を示している。39 indicates the irradiated light.

第4図に更に発明の他の実施例を示す説明図を示す@基
体表面に光を照射する方法において、光路中に光学マス
クをRき、そのマスク像を基体表面に結像させ、光照射
部分のみに拡散等を行う転写によるパターン形成方法が
用いられる。@4図中、41は光学マスク、42は基体
、43は光であシカマスク像に対応した拡散が生じてい
ることを示す概略図である。
Figure 4 shows an explanatory diagram showing another embodiment of the invention.@In the method of irradiating light onto the surface of a substrate, an optical mask is placed in the optical path, the mask image is formed on the surface of the substrate, and the light is irradiated. A pattern forming method is used by transferring, in which diffusion or the like is performed only in a portion. @4 In the figure, 41 is an optical mask, 42 is a substrate, and 43 is a light, which is a schematic diagram showing that diffusion corresponding to a deer mask image is occurring.

第5図は光が照射される部分のみの拡散を示す説明図で
ある。図中51は基体420表面上に結像した光学像の
明暗部を示すものであり黒い部分が暗部である。
FIG. 5 is an explanatory diagram showing the diffusion of only the portion irradiated with light. In the figure, reference numeral 51 indicates bright and dark parts of the optical image formed on the surface of the base 420, and the black parts are the dark parts.

一般に、イオン化を起こす光の波長は100OA以下と
短くパターン転写にこの光を用いる場合。
Generally, the wavelength of light that causes ionization is short, 100 OA or less, when this light is used for pattern transfer.

回折効果等が小さく、微細パターン形成に向いている。It has small diffraction effects and is suitable for forming fine patterns.

さらに、生成したイオンに電界により方向性を持たせる
ために、微細加工性に極めてすぐれている。
Furthermore, since the generated ions are given directionality by an electric field, it has extremely excellent microfabrication properties.

〔発明の効果〕〔Effect of the invention〕

本発明では、低温で、ダメージが少なく、シかも高精度
に半導体中への不純物拡散を行うことができる。この拡
散方法においては、低温で拡散が行えることから浅い接
置を作ることに適してお夛微a素子を形成する製造プロ
セスとして適している。また選択拡散を行うことによシ
、従来の製造プロセスを大幅に短縮にでき、製造コスト
は大巾に低下する。
According to the present invention, impurities can be diffused into a semiconductor at low temperatures, with little damage, and with high precision. In this diffusion method, diffusion can be performed at a low temperature, so that it is suitable for making a shallow contact and is suitable as a manufacturing process for forming a multilayer a-element. Moreover, by performing selective diffusion, the conventional manufacturing process can be significantly shortened, and manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一実施例を示す概略構成図
、第2図は同梱の実施例を示す概略構成図、第3図は拡
散層形成の原理を示す説明図、第4図は本発明による方
法の一実施例を示す説明図。 M5図は酸化及び拡散の原理を説明するための図である
。 1・・・反応容器、2・・・試料萱、3・・・被処理基
体。 4・・・電源、6・・・イオン化光源。 代理人 弁理士   則 近 憲 佑 同     竹 花 喜久男 第2図 第8図 第4図 第5図
FIG. 1 is a schematic configuration diagram showing an embodiment of the apparatus according to the present invention, FIG. 2 is a schematic configuration diagram showing the included embodiment, FIG. 3 is an explanatory diagram showing the principle of forming a diffusion layer, and FIG. 4 FIG. 1 is an explanatory diagram showing an embodiment of the method according to the present invention. Diagram M5 is a diagram for explaining the principle of oxidation and diffusion. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Sample 萱, 3... Substrate to be processed. 4...Power supply, 6...Ionization light source. Agent Patent Attorney Noriyuki Ken Yudo Takehana KikuoFigure 2Figure 8Figure 4Figure 5

Claims (16)

【特許請求の範囲】[Claims] (1)被処理基体を収納する容器内に原料ガスを供給し
、前記被処理基板内で光を照射すると共に前記被処理基
体と垂直な方向の電界を与えてイオンを前記被処理基体
材料内に導入することを特徴とする表面処理方法。
(1) A raw material gas is supplied into a container that houses a substrate to be processed, and light is irradiated within the substrate to be processed, and an electric field is applied in a direction perpendicular to the substrate to be processed to induce ions into the substrate material to be processed. A surface treatment method characterized in that it is introduced into.
(2)イオンの被処理基体内への導入は、不純物の拡散
であることを特徴とする特許請求の範囲第1項記載の表
面処理方法。
(2) The surface treatment method according to claim 1, wherein the introduction of ions into the substrate to be treated is by diffusion of impurities.
(3)前記ガスとして、少なくとも拡散の不純物元素を
含むガスを用い被処理基体上に拡散層を形成することを
特徴とする特許請求の範囲第1項記載の表面処理方法。
(3) The surface treatment method according to claim 1, characterized in that a diffusion layer is formed on the substrate to be treated using a gas containing at least a diffusion impurity element as the gas.
(4)前記不純物元素を含むガスとしてPCl_3、P
OCl_2、PH_3、AsCl_3もしくはAsH_
3を用い、被処理基板としてシリコンを用いてシリコン
表面にn型不純物を導入することを特徴とする特許請求
の範囲第1項記載の表面処理方法。
(4) As the gas containing the impurity element, PCl_3, P
OCl_2, PH_3, AsCl_3 or AsH_
3. The surface treatment method according to claim 1, wherein n-type impurities are introduced into the silicon surface using silicon as the substrate to be treated.
(5)前記不純物元素を含むガスとして、BCl_3、
B_2H_6を用い、被処理基板としてシリコンを用い
、シリコン表面にP型不純物を導入することを特徴とす
る特許請求の範囲第1項記載の表面処理方法。
(5) As the gas containing the impurity element, BCl_3,
2. The surface treatment method according to claim 1, wherein B_2H_6 is used, silicon is used as the substrate to be processed, and P-type impurities are introduced into the silicon surface.
(6)前記不活性ガスとしてKr、Ne、He、Arの
うちいずれかを用いることを特徴とする特許請求の範囲
第1項記載の表面処理方法。
(6) The surface treatment method according to claim 1, wherein one of Kr, Ne, He, and Ar is used as the inert gas.
(7)前記被処理基体上には、レジスト、酸化膜、金属
膜等でマスクがパターニングされているか、あるいは、
被処理基体表面に明暗のコントラストを持つパターニン
グされた像を結像させることにより、被処理基体上に選
択的に拡散処理を行い、パターンを形成することを特徴
とする特許請求の範囲第1項記載の表面処理方法。
(7) Is a mask patterned with resist, oxide film, metal film, etc. on the substrate to be processed, or
Claim 1, characterized in that a pattern is formed by selectively performing a diffusion process on a substrate to be processed by forming a patterned image having a contrast between light and dark on the surface of the substrate to be processed. Surface treatment method described.
(8)前記ガスに不活性ガスを添加することを特徴とす
る特許請求の範囲第1項記載の表面処理方法。
(8) The surface treatment method according to claim 1, characterized in that an inert gas is added to the gas.
(9)前記不活性ガスとしてRr、Ne、He、Arの
少なくとも一種を用いることを特徴とする特許請求の範
囲第1項記載の表面処理方法。
(9) The surface treatment method according to claim 1, wherein at least one of Rr, Ne, He, and Ar is used as the inert gas.
(10)被処理基体を収納する反応容器と、該反応容器
内に原料ガスを含むガスを導入する手段と、前記ガスの
うち少なくとも1つのガスのイオン化ポテンシャル以上
のエネルギーを有する光を被処理基体表面近傍に照射す
る手段と、前記被処理基体表面に垂直方向の電界を発生
させてイオンを前記被処理基体材料内に導入する手段と
を具備した表面処理装置。
(10) a reaction vessel for storing a substrate to be processed; a means for introducing a gas containing a raw material gas into the reaction vessel; A surface treatment apparatus comprising: means for irradiating near a surface; and means for generating an electric field in a direction perpendicular to the surface of the substrate to be treated to introduce ions into the material of the substrate to be treated.
(11)前記ガスを反応容器と真空で連結された別の真
空容器内であらかじめ解離する手段とを具備しているこ
とを特徴とする特許請求の範囲第10項記載の表面処理
装置。
(11) The surface treatment apparatus according to claim 10, further comprising means for dissociating the gas in advance in a separate vacuum vessel connected to the reaction vessel under vacuum.
(12)前記ガスのイオン化を起こさせる光以外の波長
域の光を被処理基体に垂直に照射する手段を具備するこ
とを特徴とする特許請求の範囲第10項記載の表面処理
装置。
(12) The surface treatment apparatus according to claim 10, further comprising means for perpendicularly irradiating the substrate to be treated with light in a wavelength range other than the light that causes ionization of the gas.
(13)前記光を垂直方向から照射する手段を具備して
いることを特徴とする特許請求の範囲第10項記載の表
面処理装置。
(13) The surface treatment apparatus according to claim 10, further comprising means for irradiating the light from a vertical direction.
(14)前記被処理基体表面に発生させる電界は、反応
容器内で放電が起こるしきい値電界以下であることを特
徴とする特許請求の範囲第10項記載の表面処理装置。
(14) The surface treatment apparatus according to claim 10, wherein the electric field generated on the surface of the substrate to be treated is equal to or lower than a threshold electric field at which discharge occurs within the reaction vessel.
(15)前記被処理基体を昇温する手段を具備している
ことを特徴とする特許請求の範囲第10項記載の表面処
理装置。
(15) The surface treatment apparatus according to claim 10, further comprising means for raising the temperature of the substrate to be treated.
(16)前記被処理基体上に、明暗のコントラストを持
つパターニングされた光学像を結像させる手段を有する
ことを特徴とする特許請求の範囲10項記載の表面処理
装置。
(16) The surface treatment apparatus according to claim 10, further comprising means for forming a patterned optical image having a contrast of brightness and darkness on the substrate to be treated.
JP9684286A 1986-04-28 1986-04-28 Method and device for surface treatment Pending JPS62254421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9684286A JPS62254421A (en) 1986-04-28 1986-04-28 Method and device for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9684286A JPS62254421A (en) 1986-04-28 1986-04-28 Method and device for surface treatment

Publications (1)

Publication Number Publication Date
JPS62254421A true JPS62254421A (en) 1987-11-06

Family

ID=14175766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9684286A Pending JPS62254421A (en) 1986-04-28 1986-04-28 Method and device for surface treatment

Country Status (1)

Country Link
JP (1) JPS62254421A (en)

Similar Documents

Publication Publication Date Title
KR970003906B1 (en) Manufacture of semiconductor substrate and the device
US4465529A (en) Method of producing semiconductor device
KR950015652A (en) Manufacturing method and apparatus for manufacturing semiconductor integrated circuit device
US20080011426A1 (en) Plasma reactor with inductively coupled source power applicator and a high temperature heated workpiece support
JPS62254421A (en) Method and device for surface treatment
KR20010040444A (en) Method of rapid thermal processing (rtp) of ion implanted silicon
KR100699290B1 (en) Production method and production device for semiconductor device
JPS6236826A (en) Ashing method
EP0197286B1 (en) A dry development method for a resist film
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JP3157911B2 (en) Heat treatment method for compound semiconductor substrate and heat treatment apparatus therefor
JPH0648682B2 (en) Oxidation method and its equipment
KR920009983B1 (en) Apparatus for ashing process
JPS60211850A (en) Forming method of insulating film pattern
US5626921A (en) Method for forming photoluminescence layer on a semiconductor layer by ion irradiation
JPH03248419A (en) Semiconductor production device
JPH01111320A (en) Diffusing method for impurity
JP2826972B2 (en) Method for forming ultrafine pattern of compound semiconductor
JP2624366B2 (en) Method for manufacturing semiconductor device
JPS60225431A (en) Surface treating device
JPS6348825A (en) Ashing device
JPS6376332A (en) Manufacture of semiconductor device
JPS60236233A (en) Forming method of minute pattern by ion beam
JPH03248420A (en) Manufacture of semiconductor device
JPH0516656B2 (en)