JPS62254310A - High dielectric constant porcelain compound - Google Patents

High dielectric constant porcelain compound

Info

Publication number
JPS62254310A
JPS62254310A JP61092957A JP9295786A JPS62254310A JP S62254310 A JPS62254310 A JP S62254310A JP 61092957 A JP61092957 A JP 61092957A JP 9295786 A JP9295786 A JP 9295786A JP S62254310 A JPS62254310 A JP S62254310A
Authority
JP
Japan
Prior art keywords
dielectric constant
dielectric
composition
temperature
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61092957A
Other languages
Japanese (ja)
Other versions
JPH0544763B2 (en
Inventor
洋八 山下
稲垣 勝実
結城 経治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61092957A priority Critical patent/JPS62254310A/en
Publication of JPS62254310A publication Critical patent/JPS62254310A/en
Publication of JPH0544763B2 publication Critical patent/JPH0544763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は高誘電率磁器組成物に係り、特にPb(Zn 
 Nb  )03を主体とした誘電率基度係数(T、C
,C)が小さく信頼性に優れた高誘電率ia器組成物に
関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a high dielectric constant ceramic composition, particularly Pb (Zn
Dielectric constant basis coefficient (T, C
, C) is small and has excellent reliability.

し発明の技術的背景とその問題点〕 従来、誘電率が3000を越えるような高誘電率!12
S材料としては、チタン酸バリウム(B aT103)
系材料が主体として用いられている。
[Technical background of the invention and its problems] Conventionally, the dielectric constant exceeds 3000! 12
As the S material, barium titanate (BaT103)
These materials are mainly used.

今日ではこの材料をもちいて、誘電体厚み20〜30μ
m1積層数20〜80層の積層セラミックコンデン#(
MLC)が実用化されている。しかしながら、この材料
をもちいて積層セラミックコンデンサを作成した場合に
は種々の問題点が現れてきている。誘電体厚みの薄層化
に伴い、誘電体厚みあたりに対する電圧が増加し誘電体
のDCバイアス依存性、すなわち定格電圧が印加された
時の実効容量の大幅な低下がそのひとつである。例エバ
定格25V、1.0μF(7)F特性MLCにおいては
M電率を10000.誘電体厚みを25μmとすると定
格電圧の印加時には約70%の容量の低下があり得られ
る容量は0.3μFにすぎない。更に誘電率温度係数(
T、C,C)を考慮すると定格電圧の印加時に最低でも
1.0μFの容量を必要とする回路では3.3μF以上
のMLCを使用しなくてはならないことになる。
Today, using this material, the dielectric thickness is 20 to 30 μm.
m1 Multilayer ceramic condenser with 20 to 80 layers # (
MLC) has been put into practical use. However, when a multilayer ceramic capacitor is manufactured using this material, various problems have emerged. As the thickness of the dielectric becomes thinner, the voltage per dielectric thickness increases, resulting in a significant decrease in the DC bias dependence of the dielectric, that is, the effective capacitance when a rated voltage is applied. For example, in an MLC with an EVA rating of 25V and a 1.0μF(7)F characteristic, the M electric rate is 10000. If the dielectric thickness is 25 μm, the capacitance decreases by about 70% when the rated voltage is applied, and the resulting capacitance is only 0.3 μF. Furthermore, the temperature coefficient of dielectric constant (
Considering T, C, C), a circuit that requires a capacitance of at least 1.0 μF when the rated voltage is applied must use an MLC of 3.3 μF or more.

また誘電体厚みの薄層化においてはその大きな結晶粒子
径が問題となる。通常の固相反応によるBaTiO3の
結晶粒子系は4〜10μmである。
Further, in reducing the thickness of the dielectric, the large crystal grain size poses a problem. The crystal grain size of BaTiO3 by normal solid phase reaction is 4 to 10 μm.

大容量化をはかるため誘電体厚みを20μ而以下にする
と層間の粒子数が少なくなり耐電圧の低下の原因となる
。さらに、チタン酸バリウム系材料の焼成温度は130
0〜1400℃と高温であり同時焼成される内部電極材
料は必然的にパラジウムPdや白金Ptなどの高温で酸
化されない高価な真金属材料を用いなければならず、コ
スト高の原因となる。このチタン酸バリウム系材料の問
題点を解決すべく鉛を含む複合ペロブスカイト化合物の
研究が広く行なわれている。例えば、鉄ニオブ酸鉛Pb
(Fe   Nb   )03を主体とし1/2   
 1/ま たもの(特開昭57−57204号)、マグネシウムニ
オブ酸鉛Pb(MQ   Nb   )Oを主体とした
もの(特開昭55−51758号)マグネシウムタング
ステン酸鉛Pb(Mc+    W1/2)03を主体
としたもの(特開昭52−21699号)等が知られて
いる。鉄ニオブ酸鉛を主体としたものは結晶粒子径及び
絶縁抵抗の焼成温度による変化が大きく、85℃以上に
おける絶縁抵抗の低下が大きく高温での信頼性に問題が
あるマグネシウムニオブ酸鉛を主体としたものは焼成温
度が比較的に高く、ペロブスカイト単−相を得にくいと
いう問題点がある。またマグネシウムタングステン酸鉛
を主体としたものは絶縁抵抗が大ぎいと誘電率が小さく
誘電率が大きいと絶縁抵抗が小さいという問題点があっ
た。更にこれ等の材料を用いて作成した積層セラミック
コンデンサの耐湿負荷テストの結果はチタン酸バリウム
を用いたものと比較すると不十分であった。
If the dielectric thickness is reduced to 20 μm or less in order to increase the capacity, the number of particles between layers will decrease, causing a decrease in withstand voltage. Furthermore, the firing temperature of barium titanate material is 130
The internal electrode material, which is simultaneously fired at a high temperature of 0 to 1400° C., must necessarily be an expensive true metal material such as palladium Pd or platinum Pt, which is not oxidized at high temperatures, which causes high costs. In order to solve the problems of barium titanate-based materials, research on composite perovskite compounds containing lead is being widely conducted. For example, lead iron niobate Pb
Mainly composed of (Fe Nb)03 and 1/2
1/Matamono (Japanese Unexamined Patent Publication No. 57-57204), Magnesium lead niobate Pb (MQ Nb )O as main component (Japanese Unexamined Patent Application No. 55-51758) Magnesium lead tungstate Pb (Mc+ W1/2) 03 (Japanese Unexamined Patent Publication No. 52-21699) is known. Products made mainly of lead iron niobate have a large change in crystal particle size and insulation resistance depending on the firing temperature, and a large drop in insulation resistance at temperatures above 85°C, resulting in problems with reliability at high temperatures. However, the firing temperature is relatively high and it is difficult to obtain a perovskite single phase. Further, materials mainly made of magnesium lead tungstate have the problem that if the insulation resistance is large, the dielectric constant is small, and if the dielectric constant is large, the insulation resistance is small. Furthermore, the results of a humidity load test on multilayer ceramic capacitors made using these materials were insufficient compared to those using barium titanate.

[発明の目的] 本発明は以上の点を考慮してなされたもので誘電率が大
きく、かつその温度係数が小さく1100℃以下の低温
で焼成でき、積層セラミックコンデンサとしたときの耐
湿負荷テストに優れた高誘電率磁器組成物を提供するこ
とを目的とする。
[Purpose of the Invention] The present invention has been made in consideration of the above points, and has a large dielectric constant, a small temperature coefficient, and can be fired at a low temperature of 1100°C or less, and is suitable for humidity resistance load tests when made into a multilayer ceramic capacitor. The purpose is to provide an excellent high dielectric constant ceramic composition.

[発明の概要〕 本発明は、一般式 %式%( とき、それぞれの成分を頂点とする三元図のa  (x
=0.50.  y=o、oo、  z=0.50> b  (x=1.oO,y=o、oo、  z=0.0
0) C(X=0.20.   ’/=0.80.   Z=
0.00) d   (x=0.05.   y=0.90.   
z=0、 05) で示される各点を結ぶ線内の組成のpbの一部を1〜3
5mo1%のBa及びSrの少なくとも一種で置換した
ことを特徴とした高誘電率磁器組成物に対してff1f
fi比で0.05〜1.0mff1%のBi o  4
0〜60wt%、SiO5〜15wt%、8010〜3
3wt%。
[Summary of the Invention] The present invention provides a general formula % formula % ( , when a (x
=0.50. y=o, oo, z=0.50> b (x=1.oO, y=o, oo, z=0.0
0) C(X=0.20.'/=0.80.Z=
0.00) d (x=0.05. y=0.90.
z = 0, 05) A part of the pb of the composition within the line connecting each point indicated by 1 to 3
ff1f for a high dielectric constant ceramic composition characterized by substitution with at least one of Ba and Sr at 5 mo1%
Bio 4 with fi ratio of 0.05-1.0mff1%
0-60wt%, SiO5-15wt%, 8010-3
3wt%.

Aq2015〜25wt%からなるガラス成分を添加し
たことをことを特徴とした高誘電率磁器組成物である。
This is a high dielectric constant ceramic composition characterized by adding a glass component consisting of Aq2015 to 25 wt%.

従来から誘電体材料として各種の複合ペロブスカイト化
合物が検討されているが、亜鉛ニオブ酸鉛は磁器として
はべOブスカイト構造を取りにくく、誘電体材料として
は適さないと考えられティた(NECRe5earch
  &oeve+opment  NQ  29  A
I)ri+1973  p、15〜21参照)。本発明
名等の研究によれば亜鉛ニオブ酸鉛の鉛の一部をバリウ
ム又はストロンチウムで適ff1l換することにより磁
器で安定なペロブスカイト構造を形成できることが分か
った。更にこのような磁器組成物は、非常に高い誘電率
及び絶縁抵抗を示し、かつ、その温度特性も極めて良好
であることがわかった。更に研究を進めた結果、この亜
鉛ニオブ酸鉛にマグネシウムニオブ酸鉛及びチタン酸鉛
とを組合せることにより、更に高い誘電率と絶縁抵抗を
合せ持つ高誘電率磁器組成物が得られることを見出した
のである。この材料にB1040〜60wt%、5ho
25〜15wt%、820310〜30wt%、Aa2
0 15〜25wt%からなるガラス成分を0.05〜
1,0wt%含むことにより積層セラミックコンデンサ
の耐湿負荷テストの結果を大幅に向上できることを見出
した。
Various composite perovskite compounds have been studied as dielectric materials, but zinc lead niobate is difficult to form a porcelain O-buskite structure and was thought to be unsuitable as a dielectric material (NECRe5earch).
&oeve+opment NQ 29 A
I) ri+1973 p, 15-21). According to research related to the present invention, it has been found that a stable perovskite structure can be formed in porcelain by appropriately replacing a portion of lead in zinc niobate with barium or strontium. Furthermore, it has been found that such a ceramic composition exhibits extremely high dielectric constant and insulation resistance, and also has extremely good temperature characteristics. As a result of further research, it was discovered that by combining this zinc lead niobate with magnesium lead niobate and lead titanate, a high dielectric constant porcelain composition with even higher dielectric constant and insulation resistance could be obtained. It was. This material contains B1040-60wt%, 5ho
25-15wt%, 820310-30wt%, Aa2
0 0.05 to 25 wt% glass component
It has been found that by containing 1.0 wt%, the results of the humidity load test of multilayer ceramic capacitors can be significantly improved.

以下に本発明の組成物の組成範囲について説明する。M
e−Ba、3rは上記した一般式のペロブスカイト構造
を形成するための必要な元素であり、1m01%以下だ
と、パイロクロア構造が混在し高い誘電率及び高い絶縁
抵抗を示さない。35mo1%以上では誘電率が100
0程度以下と小さくなってしまったり、焼成温度が11
00℃以上と高くなったりしてしまう。よって、Me酸
成分置換量は、(Pb1.Me8)と表したときo、o
i≦a≦0.35とする。
The composition range of the composition of the present invention will be explained below. M
e-Ba and 3r are necessary elements for forming the perovskite structure of the above-mentioned general formula, and if the content is less than 1m01%, a pyrochlore structure will be present and high dielectric constant and high insulation resistance will not be exhibited. At 35mo1% or more, the dielectric constant is 100.
It may become small to about 0 or less, or the firing temperature may be 11
The temperature may rise to 00°C or higher. Therefore, the Me acid component substitution amount is o, o when expressed as (Pb1.Me8).
It is assumed that i≦a≦0.35.

誘電体材料においては常温における容量を高くするため
、誘電率が最大になるキュリ一温度が常温付近(0〜3
0℃)にくるようにする。本発明のMe酸成分上述した
ようにペロブスカイト構造を形成するための必須成分で
あるが、また、本発明磁器組成物のキュリ一温度を下げ
るシフターの働きがある。さらに、絶縁抵抗を著しく増
加させ、機械的強度も向上させる。
In order to increase the capacitance of dielectric materials at room temperature, the Curie temperature at which the dielectric constant becomes maximum is around room temperature (0 to 3
0℃). The Me acid component of the present invention is an essential component for forming a perovskite structure as described above, but it also functions as a shifter to lower the Curie temperature of the porcelain composition of the present invention. Furthermore, it significantly increases insulation resistance and improves mechanical strength.

Me酸成分よるpbの置換置はキュリ一温度等を考慮し
て適当に選定することが可能であるが、亜鉛ニオブ酸鉛
及びチタン酸鉛の多い領域(X>0.5.z>0.1)
では10+o1%以上が好ましく、マグネシウムニオブ
酸鉛の多い領域(y>0.6.z<0.05)では1m
01%以上で充分その置換の効果を発揮する。
The substitution position of pb by the Me acid component can be appropriately selected taking into consideration the Curie temperature, etc., but it is important to note that the substitution position of pb by the Me acid component can be appropriately selected in consideration of the Curie temperature, etc. 1)
Therefore, 10+o1% or more is preferable, and in areas with a large amount of lead magnesium niobate (y>0.6.z<0.05), 1 m
At 0.01% or more, the substitution effect is sufficiently exhibited.

第1図に本発明磁器組成物の組成範囲を示す。FIG. 1 shows the composition range of the ceramic composition of the present invention.

線分adの外側では焼成温度が1100℃以上と高くな
ってしまい、また絶縁抵抗も低下し高い信頼性を得るこ
とができない。
Outside the line segment ad, the firing temperature becomes as high as 1100° C. or higher, and the insulation resistance also decreases, making it impossible to obtain high reliability.

また線分cdの外側ではキュリ一温度がもともと常温付
近にあるため、Me酸成分よる置換でキュリ一温度が大
幅に低温側に移動して常温における誘電率が大幅に低下
してしまう。また、添加物であるB1040〜60wt
%、 S i、025〜15wt%、8010〜30w
t%。
Furthermore, since the Curie temperature outside the line segment cd is originally near normal temperature, the substitution with the Me acid component significantly shifts the Curie temperature to the lower temperature side, resulting in a significant decrease in the dielectric constant at room temperature. In addition, the additive B1040~60wt
%, Si, 025~15wt%, 8010~30w
t%.

八〇2015〜25wt%からなるガラス成分を0.0
5重量%から1重量%とじたのは0.05重量%未満で
は積層セラミックコンデンサとしたときの耐湿負荷テス
トの結果を大幅に向上できる効果がほとんど期待できず
1重量%以上では誘電率が大幅に低下するためである。
0.0 glass component consisting of 802015~25wt%
If the content is less than 0.05% by weight, it will hardly be expected to significantly improve the moisture resistance load test results when used as a multilayer ceramic capacitor, and if it is more than 1% by weight, the dielectric constant will increase significantly. This is because it decreases to .

つぎに、本発明の組成物の製造方法について説明する。Next, a method for producing the composition of the present invention will be explained.

出発原料としてPb、Ba、Sr、Zn。Pb, Ba, Sr, Zn as starting materials.

Nb、Ti、MOの酸化物、もしくは焼成により酸化物
になる炭酸塩、しゆう酸塩等の塩類、水酸化物、有機化
合物などを所定の割合で秤量し、充分混合した後に仮焼
する。この仮焼は700〜850℃程度で行う。余り仮
焼温が低いと焼結密度が低下し、また、あまり高いとや
はり焼結密度が低下し、絶縁抵抗が低下する。
Oxides of Nb, Ti, and MO, or salts such as carbonates and oxalates that become oxides upon firing, hydroxides, organic compounds, and the like are weighed out in predetermined proportions, thoroughly mixed, and then calcined. This calcination is performed at about 700 to 850°C. If the calcination temperature is too low, the sintered density will decrease, and if it is too high, the sintered density will also decrease and the insulation resistance will decrease.

つぎに仮焼物を粉砕し前記のガラス成分を添加し原料粉
末をtJ造する。平均粒径は0.5〜2μm程度が好ま
しく、あまり大きいと焼結密度が低下し、小さいと成型
性が低下する。このような原料粉末を用い所望の形状に
成型した後、焼成することにより、高誘電率磁器を得る
。本発明の組成物を用いることにより焼成は1100℃
以下、930〜1080℃程度と比較的低温で行うこと
ができる。
Next, the calcined product is pulverized and the above-mentioned glass component is added to produce a raw material powder. The average particle diameter is preferably about 0.5 to 2 μm; if it is too large, the sintered density will decrease, and if it is too small, the moldability will decrease. A high dielectric constant porcelain is obtained by molding such raw material powder into a desired shape and firing it. By using the composition of the present invention, firing is possible at 1100°C.
Hereinafter, it can be carried out at a relatively low temperature of about 930 to 1080°C.

積層タイプの素子を製造する場合は、前述の原料粉末に
バインダー、溶剤等を加えスラリー化して、グリーンシ
ートを形成し、このグリーンシート上に内部電極を印刷
した後、所定の枚数をVi層。
When manufacturing a laminated type element, a binder, a solvent, etc. are added to the raw material powder mentioned above to form a slurry, a green sheet is formed, internal electrodes are printed on this green sheet, and a predetermined number of sheets are printed as a Vi layer.

圧着し焼成することにより製造する。このとぎ、本発明
の誘電体材料は低温で焼成できるため、内部電極材料と
して例えば銀主体の安価で抵抗率の低い材料を用いるこ
とができる。
Manufactured by pressing and firing. At this point, since the dielectric material of the present invention can be fired at a low temperature, an inexpensive, low-resistivity material mainly composed of silver, for example, can be used as the internal electrode material.

また、このように低温で焼成が可能であることから、回
路基板上等に印刷・焼成する厚膜誘電体ペーストの材料
としても有効である。
Furthermore, since it can be fired at such a low temperature, it is also effective as a material for thick film dielectric pastes printed and fired on circuit boards and the like.

このような本発明磁器組成物は、従来まで鉛ペロブスカ
イト複合化合物の欠点であった積層セラミックコンデン
サとしたときの耐湿負荷テストに優れ、高い絶縁抵抗、
低い誘電損失、DCバイアス特性が良好である。またC
R値も大きく、特に高温でも充分な値を有し、高温での
信頼性に優れている。
The ceramic composition of the present invention has excellent moisture resistance load tests when used as a multilayer ceramic capacitor, which had been a drawback of conventional lead perovskite composite compounds, and has high insulation resistance and
Low dielectric loss and good DC bias characteristics. Also C
It also has a large R value, which is sufficient even at high temperatures, and has excellent reliability at high temperatures.

T、C,Cの小さいことは本発明の大きな特徴であり、
これは、K≧10000のごとくの大きな誘電率の場合
、特に顕著である。このように誘電率の大きい場合には
、(誘電率)/(温度変化率の絶対値)の大きいことが
要求される。本発明ではこの点に関しても非常に優れて
いる。
Small T, C, and C are major features of the present invention,
This is particularly noticeable for large dielectric constants such as K≧10,000. When the dielectric constant is as large as this, it is required that (permittivity)/(absolute value of temperature change rate) be large. The present invention is also very superior in this respect.

さらに、誘電率バイアス電界依存性も従来のチタン酸鉛
系の材料と比較して優れており、誘電率の変化率が4に
■/#でも10%以下程度の材料を得ることもできる。
Furthermore, the dependence of the dielectric constant on electric field is also superior to that of conventional lead titanate-based materials, and it is possible to obtain a material with a dielectric constant change rate of 10% or less even when the rate of change is 4/#.

したがって、高圧用の材料として有効である。また誘電
損失が小さく、交流用、高周波用としても有効である。
Therefore, it is effective as a material for high pressure. Furthermore, it has low dielectric loss and is effective for AC and high frequency applications.

さらに、前述のごと<T、C,C,が小さいため、電歪
素子へ応用した場合でも変位置の温度変化の小さい素子
を得ることができる。
Furthermore, since <T, C, C, as described above, is small, even when applied to an electrostrictive element, an element with small temperature change at displacement can be obtained.

さらに、焼成時のグレインサイズも1〜3μmと均一化
されるため耐圧性にも優れている。
Furthermore, since the grain size during firing is made uniform to 1 to 3 μm, it also has excellent pressure resistance.

以上電気的特性について述べたが、機械的強度も充分に
優れたものである。
Although the electrical properties have been described above, the mechanical strength is also sufficiently excellent.

[発明の効果] 以上説明したように本発明によれば、重量比で0.05
〜1.0mm%のBi20340〜60wt%、sto
   5〜15wt%、B2O310〜30wt%、A
020 15〜25wt%からなるガラス成分を添加せ
しめることにより積層セラミックコンデンサとしたとき
の耐湿負荷テストに優れ、高い絶縁抵抗、低い誘電損失
、fgれたT、C,C,及びDCバイアス特性が良好で
ある高誘電率磁器組成物を得ることができる。特に、こ
のような各種特性に優れた磁器組成物は低温焼成で得る
ことができるため、低コストの積層セラミックコンデン
サ、積層型セラミック変位発生素子等の積層タイプのセ
ラミック素子への応用に適している。
[Effect of the invention] As explained above, according to the present invention, the weight ratio is 0.05
~1.0mm% Bi20340~60wt%, sto
5-15wt%, B2O310-30wt%, A
020 By adding a glass component of 15 to 25 wt%, it has excellent moisture resistance load test when made into a multilayer ceramic capacitor, and has high insulation resistance, low dielectric loss, and good fg T, C, C, and DC bias characteristics. A high dielectric constant ceramic composition can be obtained. In particular, since ceramic compositions with such excellent properties can be obtained by firing at low temperatures, they are suitable for application to multilayer ceramic elements such as low-cost multilayer ceramic capacitors and multilayer ceramic displacement generating elements. .

[発明の実施例] 以下に本発明の詳細な説明する。[Embodiments of the invention] The present invention will be explained in detail below.

Pb、Ba、Sr、Zn、Nb、Ti、Mqの酸化物な
どの出発原料をボールミルなどで混合し、700〜85
0℃で仮焼する。ついでこの仮焼体に所定量のBi2O
3,5i02,8203゜Ag2Oを白金ルツボ中で加
熱し、ガラス化した侵に水中投入し、その後ボールミル
などで0.5〜10μmまで粉砕したガラス成分を添加
しボールミルなどで粉砕し乾燥の後、バインダーを加え
造粒し、プレスして直径17m+、厚さ約2mの円板状
素体を形成した。混合、粉砕用のボールは、不純物の混
入を防止するため部分安定化ジルコニアボール等の硬度
が大きく、かつ靭性の高いボールを用いることが好まし
い。
Starting materials such as oxides of Pb, Ba, Sr, Zn, Nb, Ti, and Mq are mixed in a ball mill etc.
Calculate at 0℃. Next, a predetermined amount of Bi2O is added to this calcined body.
3,5i02,8203°Ag2O is heated in a platinum crucible, poured into the vitrified solution in water, and then a glass component crushed to 0.5 to 10 μm with a ball mill etc. is added, crushed with a ball mill etc., and after drying, A binder was added, granulated, and pressed to form a disc-shaped element with a diameter of 17 m+ and a thickness of about 2 m. As balls for mixing and grinding, it is preferable to use balls with high hardness and high toughness, such as partially stabilized zirconia balls, in order to prevent contamination of impurities.

この素体を空気中930〜1080℃、2時間の条件で
焼結し、両主面に銀電極を焼付は各特性を測定した。誘
電損失、重伍は、1kl−1z、1Vrms、25℃の
条件でのデジタルLCRメータによる測定値であり、こ
の値から誘電率を算出した。また、絶縁抵抗は、100
0Vの電圧を2分間印加した後、絶縁抵抗計を用いて測
定した値から算出した。なお、T、C,C,は、25℃
の値を基準とし、−25℃、85℃、での変化率で表し
た。容量抵抗積は、25℃および125℃でのく誘電率
)×(絶縁抵抗)X(真空の誘電率)から求めた。絶縁
抵抗の測定は、空気中の湿気の効果を除くためシリコー
ンオイル中で行った。その結果を第1表に示す。
This element body was sintered in air at 930 to 1080°C for 2 hours, silver electrodes were baked on both main surfaces, and various characteristics were measured. The dielectric loss and weight were measured using a digital LCR meter under conditions of 1kl-1z, 1Vrms, and 25°C, and the dielectric constant was calculated from these values. In addition, the insulation resistance is 100
It was calculated from the value measured using an insulation resistance meter after applying a voltage of 0 V for 2 minutes. In addition, T, C, C, are 25℃
Based on the value of , it was expressed as a rate of change at -25°C and 85°C. The capacitance-resistance product was determined from (dielectric constant at 25° C. and 125° C.)×(insulation resistance)×(dielectric constant in vacuum). Insulation resistance measurements were performed in silicone oil to eliminate the effect of atmospheric moisture. The results are shown in Table 1.

以  下  余  白 積層セラミックコンデンサは以下の方法で作成した。ま
ず、このような組成を有する仮焼粉にバインダー、有機
溶剤を加えてスラリー化した後ドクターブレード型キャ
スターを用いて45μmのグリーンシートを作成した。
The blank space below The multilayer ceramic capacitor was created using the following method. First, a binder and an organic solvent were added to calcined powder having such a composition to form a slurry, and then a 45 μm green sheet was created using a doctor blade type caster.

このグリーンシート上に70AQ/30Pdの1514
ペーストを所定のパター・ンで印刷し、このような電極
パターンを有するシートを20層積層圧着した。その後
、所定の形状に切断し、脱脂を行い1040℃2hの条
件で焼成を行った。焼結後、外部電極としてAQペース
トを焼付け、積層セラミックコンデンサを製造した。第
2図は上記の手段によって得た積層セラミックコンデン
サを示すもので、第2表は、第1表に示す実施例4の組
成物を用い第2図に示すように構成した積層セラミック
コンデンサの電気的特性を示すものである。第2図中1
は誘電体、2は内部電極、3は外部電極である。
1514 of 70AQ/30Pd on this green sheet
The paste was printed in a predetermined pattern, and 20 sheets having such an electrode pattern were laminated and pressure-bonded. Thereafter, it was cut into a predetermined shape, degreased, and fired at 1040° C. for 2 hours. After sintering, AQ paste was baked as an external electrode to produce a multilayer ceramic capacitor. FIG. 2 shows a multilayer ceramic capacitor obtained by the above method, and Table 2 shows the electrical characteristics of a multilayer ceramic capacitor constructed as shown in FIG. 2 using the composition of Example 4 shown in Table 1. It shows the characteristics of 1 in Figure 2
is a dielectric, 2 is an internal electrode, and 3 is an external electrode.

第2表 第3表に実施例1,2.4および参考例1,3の組成を
用いて作成した積層セラミックコンデンサにおける絶縁
抵抗(ΩF)の耐湿負荷テストの結果を示す。
Tables 2 and 3 show the results of the humidity load test of the insulation resistance (ΩF) of the multilayer ceramic capacitors prepared using the compositions of Examples 1 and 2.4 and Reference Examples 1 and 3.

第3表 試験条件は40℃、95%RH,50V印加。Table 3 Test conditions were 40°C, 95% RH, and 50V applied.

2000時間で行った。数量は各ロット100個である
。判定は試験後に500ΩF以下となったものを不良と
した。第3表から明らかであるように、ガラス成分を含
まない材料を用いた’M4Mセラミックコンデンサでは
試験後の絶縁抵抗が低下するものが5〜6/100個見
られるのに対して、本発明による前記構成からなるガラ
ス成分を0゜05〜1wt%含む材料を用いて作成した
積層セラミックコンデンサは耐湿負荷テストにおける絶
縁抵抗の低下が全く見られない。
It took 2000 hours. The quantity is 100 pieces for each lot. In the judgment, those whose resistance was 500 ΩF or less after the test were judged as defective. As is clear from Table 3, 5 to 6/100 of 'M4M ceramic capacitors using materials that do not contain glass components show a decrease in insulation resistance after the test, whereas the present invention A multilayer ceramic capacitor fabricated using a material containing 0.05 to 1 wt% of the glass component having the above structure shows no decrease in insulation resistance in a humidity load test.

このように、本発明による高誘電率磁器組成物は、各種
特性に優れており、特にv4層セラミックコンデンサ用
の材料として有効である。
As described above, the high dielectric constant ceramic composition according to the present invention has excellent various properties and is particularly effective as a material for V4 layer ceramic capacitors.

なお、上記説明では添加物であるガラス成分を焙焼粉に
添加したが、調合時に加えても同等の特性が得られ、こ
れ等の方法も本発明の範囲に含まれることは明らかであ
る。
In the above explanation, the glass component as an additive was added to the roasted powder, but it is clear that the same characteristics can be obtained even if it is added at the time of preparation, and such methods are also included in the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の組成範囲を示す組成図、第2図は、
積層セラミックコンデンサを示す一部切欠断面斜視図で
ある。 1・・・・・・誘電体       2・・・・・・内
部電極3・・・・・・外部電極 特  許  出  願  人 マルコン電子株式会社 本発明の組成範囲を示す組成図 第1図 1M電体 積層セラミックコンデンサの一部切欠断面斜視図第2図
FIG. 1 is a composition diagram showing the composition range of the present invention, and FIG. 2 is a composition diagram showing the composition range of the present invention.
FIG. 2 is a partially cutaway perspective view showing a multilayer ceramic capacitor. 1...Dielectric 2...Inner electrode 3...Outer electrode Patent application Marcon Electronics Co., Ltd. Composition diagram showing the composition range of the present invention Figure 1 1M electric Partially cutaway perspective view of a multilayer ceramic capacitor Figure 2

Claims (1)

【特許請求の範囲】 一般式 xPb(Zn_1_/_3Nb_2_/_3)O_3−
yPb(Mg_1_/_3Nb_2_/_3)O_3−
zPbTiO_3で表したとき、それぞれの成分を頂点
とする三元図の a(x=0.50、y=0.00、z=0.50)b(
x=1.00、y=0.00、z=0.00)c(x=
0.20、y=0.80、z=0.00)d(x=0.
05、y=0.90、z=0.05)で示される各点を
結ぶ線内の組成のPbの一部を1〜35mol%のBa
及びSrの少なくとも一種で置換したことを特徴とした
高誘電率磁器組成物に対してBi_2O_340〜60
wt%、SiO_25〜15wt%、B_2O_310
〜30wt%、Ag_2O15〜25wt%からなるガ
ラス成分を0.05〜1.0wt%添加したことを特徴
とした高誘電率磁器組成物。
[Claims] General formula xPb(Zn_1_/_3Nb_2_/_3)O_3-
yPb(Mg_1_/_3Nb_2_/_3)O_3-
When expressed as zPbTiO_3, the ternary diagram a(x=0.50, y=0.00, z=0.50)b(
x=1.00, y=0.00, z=0.00)c(x=
0.20, y=0.80, z=0.00) d(x=0.
1 to 35 mol% of Ba
and Bi_2O_340 to 60 for a high dielectric constant ceramic composition characterized by substitution with at least one of Sr.
wt%, SiO_25-15wt%, B_2O_310
A high dielectric constant ceramic composition characterized by adding 0.05 to 1.0 wt% of a glass component consisting of ~30 wt% and 15 to 25 wt% of Ag_2O.
JP61092957A 1986-04-21 1986-04-21 High dielectric constant porcelain compound Granted JPS62254310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61092957A JPS62254310A (en) 1986-04-21 1986-04-21 High dielectric constant porcelain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092957A JPS62254310A (en) 1986-04-21 1986-04-21 High dielectric constant porcelain compound

Publications (2)

Publication Number Publication Date
JPS62254310A true JPS62254310A (en) 1987-11-06
JPH0544763B2 JPH0544763B2 (en) 1993-07-07

Family

ID=14068933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092957A Granted JPS62254310A (en) 1986-04-21 1986-04-21 High dielectric constant porcelain compound

Country Status (1)

Country Link
JP (1) JPS62254310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155115A (en) * 1988-07-28 1990-06-14 Murata Mfg Co Ltd Nonreductive dielectric porcelain composition
EP0376670A2 (en) * 1988-12-27 1990-07-04 Kabushiki Kaisha Toshiba A high-dielectric constant ceramic composite and ceramic capacitor elements
WO1991009814A1 (en) * 1989-12-22 1991-07-11 Marcon Electronics Co., Ltd. Ceramic composition and electronic component made therefrom
JPH04243952A (en) * 1991-01-31 1992-09-01 Nec Corp Ceramic composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155115A (en) * 1988-07-28 1990-06-14 Murata Mfg Co Ltd Nonreductive dielectric porcelain composition
EP0376670A2 (en) * 1988-12-27 1990-07-04 Kabushiki Kaisha Toshiba A high-dielectric constant ceramic composite and ceramic capacitor elements
US5059566A (en) * 1988-12-27 1991-10-22 Kabushiki Kaisha Toshiba High-dielectric constant ceramic composite and ceramic capacitor elements
WO1991009814A1 (en) * 1989-12-22 1991-07-11 Marcon Electronics Co., Ltd. Ceramic composition and electronic component made therefrom
US5182695A (en) * 1989-12-22 1993-01-26 Marcon Electronics Co., Ltde. Ceramic composition and electronic part using the same
JPH04243952A (en) * 1991-01-31 1992-09-01 Nec Corp Ceramic composition

Also Published As

Publication number Publication date
JPH0544763B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JPH0283256A (en) Dielectric material porcelain composition
JPH0831232A (en) Nonreducing dielectric ceramic composition
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JPS62254310A (en) High dielectric constant porcelain compound
JPH0449503B2 (en)
JP3634930B2 (en) Dielectric porcelain composition
JP2660010B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPS62254305A (en) High dielectric constant porcelain compound
JPS61251563A (en) High permittivity ceramic composition
JP3250932B2 (en) Non-reducing dielectric porcelain composition
JP2926827B2 (en) Dielectric porcelain composition
JPS6117087B2 (en)
JPS6226705A (en) High permeability ceramic composition
JPH09148180A (en) Laminated capacitor
JP3450919B2 (en) Dielectric ceramic composition for temperature compensation
JP2803320B2 (en) Dielectric porcelain composition
JP2023117898A (en) Dielectric ceramic composition
JPH0715855B2 (en) Ceramic capacitors
JP2023069307A (en) Dielectric composition and electronic component
JPH0478577B2 (en)
JPS63156062A (en) High permittivity ceramic composition and manufacture
CN116589273A (en) Dielectric ceramic composition and single-plate capacitor
JP3469911B2 (en) Dielectric porcelain composition