JPS6225353B2 - - Google Patents

Info

Publication number
JPS6225353B2
JPS6225353B2 JP56115316A JP11531681A JPS6225353B2 JP S6225353 B2 JPS6225353 B2 JP S6225353B2 JP 56115316 A JP56115316 A JP 56115316A JP 11531681 A JP11531681 A JP 11531681A JP S6225353 B2 JPS6225353 B2 JP S6225353B2
Authority
JP
Japan
Prior art keywords
indole
reaction
tryptophan
concentration
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56115316A
Other languages
Japanese (ja)
Other versions
JPS5816692A (en
Inventor
Nobuyoshi Makiguchi
Nobuhiro Fukuhara
Yoshuki Asai
Yoshitaka Momotari
Seiya Iguchi
Satoshi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11531681A priority Critical patent/JPS5816692A/en
Publication of JPS5816692A publication Critical patent/JPS5816692A/en
Publication of JPS6225353B2 publication Critical patent/JPS6225353B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、インドールとL−セリンからエツシ
エリヒア・コリ(Escherichia coli)の生産する
トリプトフアン・シンセターゼの作用でL−トリ
プトフアンを製造する際に、原料であるインドー
ルを連続または断続的に添加することによつて反
応液中のインドール濃度を0.1重量%以下のよう
な低濃度に制御し、該酵素による反応を効率よく
進行させるL−トリプトフアンの製造方法に関す
るものである。 近年、L−トリプトフアンは医薬用のみならず
飼料添加物としての効果が世の注目を集めるに至
り、工業的規模による安価な本物質生産の期待が
高まつてきている。L−トリプトフアンを生産せ
しめる方法として、化学合成法および発酵法が数
多く知られているが、化学合成法の場合はDL体
が合成されるためにL体を得るのに光学分割しな
ければならないという欠点があり、又、発酵法の
場合は蓄積量、収率、精製、廃水処理などに欠点
があつていずれも工業上有利な生産方法には至つ
ていない。これらの方法に代つて最近酵素法によ
るL−トリプトフアンの生産が脚光を浴びてきて
おり、中でもトリプトフアン・シンセターゼを用
いて、インドールとL−セリンからL−トリプト
フアンを製造する方法は工業上、非常に有望と考
えられる。 従来、トリプトフアン・シンセターゼがインド
ールとL−セリンからL−トリプトフアンを合成
する反応を触媒することは知られているが、本発
明者らの知見によれば反応基質であるインドール
が通常0.1重量%以上の高濃度になると酵素活性
を阻害するために反応開始時に高濃度のインドー
ルを一括して仕込むことが出来ず、従つてインド
ール濃度を低濃度として反応を行わざるを得ない
ために生成するL−トリプトフアンの濃度は通常
数g/程度と非常に低く、実用的な製造方法に
はなり得なかつた。この問題を解決する他の方法
として、反応液中に非イオン性の界面活性剤を添
加してインドールとミセルを形成させ、インドー
ルの反応液中への溶解をコントロールする方法が
知られているが、この方法の場合は通常5重量%
以上のようなかなりの高濃度の界面活性剤を添加
する必要がありコスト上の問題に加えて、反応液
からのトリプトフアンの精製分離或いは反応廃液
の廃水処理に問題があつて工業上有利な方法とは
言い難いものであつた。 本発明者らは、酵素の活性を低下させることな
く、反応終了後の反応液中に残存インドールがな
くしかもL−トリプトフアンを高濃度で生成する
反応条件を種々検討した結果、反応液中のインド
ール濃度を0.1重量%以下に保つようにインドー
ルを連続または断続的に添加して反応せしめるこ
とにより、酵素の活性の低下もなくしかも高収量
でL−トリプトフアンが生成することを見出し本
発明を完成した。 本発明の方法によれば、L−トリプトフアンを
高収量で生成させるだけでなく、反応液中のイン
ドール濃度は常に低濃度に制御されているので、
反応終了時に反応液中にインドールが殆んど残存
しない利点もあり、このことは後続の精製にかゝ
る負担を著しく軽減するものである。これに反
し、高濃度のインドールを反応開始時に一括に仕
込む方法では、L−トリプトフアンは非常に低濃
度でしか得られないばかりか、反応終了時の反応
液中の残インドール量が著しく多くなるという欠
点を有している。 本発明に使用するトリプトフアン・シンセタゼ
生産菌としてはエツシエリヒア・コリに属する微
生物、例えばエツシエリヒア・コリMT−10232
(FERM BP−19)、エツシエリヒア・コリMT−
10242(FERM BP−20)など、が使用され、本
酵素を反応で使用するときには精製された酵素ま
たは菌体または菌体を破砕して得られる無細胞抽
出液、或いは酵素または菌体を固定化して得られ
る固定化物を酵素源として使用することが出来
る。インドールを連続または断続的に添加する方
法としては、インドールを粉体フイーダーなどを
用いて粉体の状態で添加する方法、52℃以上に加
温してインドールを溶融して液状のインドールを
滴下またはポンプで添加する方法またはメタノー
ル、エタノールなどのアルコールにインドールを
溶解させた後ポンプなどで添加する方法などが使
用できる。反応液中のインドール濃度を0.1重量
%以下に保ちながら基質のインドールを添加する
ためには、反応液中のインドール濃度を連続また
は断続的に測定し、この値をフイーダー(粉体フ
イーダーまたはポンプなど)にフイードバツクす
る必要があるが、この反応液中のインドール濃度
を定量する方法としては、例えば、PEG20Mのカ
ラムを用いてガス・クロマトグラフイーで測定す
る方法または反応液中のインドールをn−ヘキサ
ンなどで抽出して250〜270nmに於けるインドー
ルの紫外部吸収を測定する方法などを採用するこ
とができる。 本発明の製造方法によれば、インドールとL−
セリンから高収量で且つ反応液中の残インドール
が殆んどなく目的とするL−トリプトフアンを得
ることができるので、本発明はL−トリプトフア
ンの工業的生産に大いに貢献するものと思われ
る。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 トリプトフアン・シンセターゼ生産菌であるエ
ツシエリヒア・コリMT−10232(FERM BP−
19)を500mlの坂口フラスコ中の第1表に示す組
成の培地100mlに接種し、35℃で24時間培養し
た。この培養液200ml(フラスコ2本)を30の
ジヤーフアーメンター中の第2表に示す組成の培
地15に接種し、35℃、PH6.8(28%アンモニア
水でコントロール)で30時間培養した。培養終了
後、該培養液を遠心集菌して湿菌体を40gずつ分
取し、−15℃で2日間凍結した。この凍結菌体を
反応直前に解凍し、酵素源として使用した。反応
開始に先立つて本酵素源である菌体のトリプトフ
アン・シンセターゼ比活性を、インドール2%、
L−セリン1.8%、トリトンX−100 5%、ピリ
ドキサールリン酸0.01%、亜硫酸ソーダ0.1%、
菌体濃度0.2g(乾燥菌体)/の組成の反応液
を用いて35℃、PH8.5で1時間反応させて測定し
たところ、2.5〔g−トリプトフアン/g(乾燥
菌体)/hr〕であり、この結果菌体中にはトリプ
トフアン・シンセターゼが存在していることが認
められた。次に第3表に示す組成の反応液1を
用いて、反応液中のインドールは、ガスクロマト
グラフイイーで分析しながら、消費されつつ0.1
重量%を越えないように継続的に添加し、最終的
にインドール添加濃度が2重量%に相当する量に
なる迄反応を実施した。反応温度は35℃、PH8.5
で反応に要した時間は24時間であつた。比較例と
して、反応開始時にインドール濃度を2%として
一括仕込んだ組成の反応液(他の成分は第3表に
同じ)を用いて24時間反応を実施した。結果を第
4表に示した。なお、反応終了後、PHを10にして
結晶で析出しているL−トリプトフアンを溶解し
た後、遠心集菌して反応液中の菌体濃度を測定し
たところ、7.9g(乾燥菌体)/であつた。反
応開始時の菌体濃度は8.1g(乾燥菌体)/で
あつたので、反応中に何ら菌の増殖は起こつてい
なかつたと認められた。 第 1 表 エールリツヒ肉エキス 10g ポリペプトン 10g NaCl 5g 蒸溜水1に希釈して使用(PH6.8) 第 2 表 グルコース 10g (NH42SO4 1.5g K2HPO4 1g MgSO4・7H2O 1g ポリペプトン 0.5g 酵母エキス 0.5g L−トリプトフアン 0.15g アデカノールLG−805 5g 蒸溜水で1に希釈して使用(PH6.8) 第 3 表 インドール 1g L−セリン 20g ピリドキサール5′−リン酸 0.1g (NH42SO4 10g 湿菌体 40g 蒸溜水で1に希釈して使用
The present invention involves continuously or intermittently adding indole as a raw material when L-tryptophan is produced from indole and L-serine by the action of tryptophan synthetase produced by Escherichia coli. The present invention relates to a method for producing L-tryptophan in which the indole concentration in the reaction solution is controlled to a low concentration of 0.1% by weight or less, and the reaction by the enzyme is efficiently proceeded. In recent years, L-tryptophan has attracted public attention not only for its medicinal use but also for its effectiveness as a feed additive, and expectations for the inexpensive production of this substance on an industrial scale are increasing. Many chemical synthesis methods and fermentation methods are known as methods for producing L-tryptophan, but in the case of chemical synthesis, the DL form is synthesized, so optical resolution is required to obtain the L form. In addition, fermentation methods have drawbacks in terms of accumulation amount, yield, purification, waste water treatment, etc., and none of them have been developed into industrially advantageous production methods. As an alternative to these methods, the production of L-tryptophan by enzymatic methods has recently been in the spotlight, and in particular, the method of producing L-tryptophan from indole and L-serine using tryptophan synthetase is industrially very popular. It is considered promising. It has been known that tryptophan synthetase catalyzes the reaction to synthesize L-tryptophan from indole and L-serine, but according to the findings of the present inventors, indole, which is a reaction substrate, is usually 0.1% by weight or more. When the concentration of indole becomes high, it inhibits the enzyme activity, so it is not possible to charge a high concentration of indole all at once at the start of the reaction, and therefore the reaction has to be carried out with a low indole concentration, resulting in L- The concentration of tryptophan is usually very low, on the order of several grams per gram, and this could not be a practical production method. Another method known to solve this problem is to add a nonionic surfactant to the reaction solution to form micelles with indole to control the dissolution of indole into the reaction solution. , usually 5% by weight in this method.
As mentioned above, it is necessary to add a fairly high concentration of surfactant, which poses a cost problem, and there are also problems in the purification and separation of tryptophan from the reaction solution or in the wastewater treatment of the reaction waste solution, making this an industrially advantageous method. It was difficult to say that. The present inventors investigated various reaction conditions that would produce L-tryptophan at a high concentration without reducing the activity of the enzyme, without residual indole in the reaction solution after the completion of the reaction, and found that indole in the reaction solution The present inventors have discovered that L-tryptophan can be produced in high yield without decreasing enzyme activity by continuously or intermittently adding indole to keep the concentration below 0.1% by weight, and have completed the present invention. . According to the method of the present invention, not only can L-tryptophan be produced in high yield, but also the indole concentration in the reaction solution is always controlled to a low concentration.
Another advantage is that almost no indole remains in the reaction solution upon completion of the reaction, which significantly reduces the burden of subsequent purification. On the other hand, when a high concentration of indole is added all at once at the start of the reaction, L-tryptophan can only be obtained at a very low concentration, and the amount of indole remaining in the reaction solution at the end of the reaction is significantly increased. It has drawbacks. The tryptophan synthetase producing bacteria used in the present invention include microorganisms belonging to E. coli, such as E. coli MT-10232.
(FERM BP−19), Etzierihia coli MT−
10242 (FERM BP-20), etc. are used, and when using this enzyme in a reaction, purified enzyme or bacterial cells, a cell-free extract obtained by crushing bacterial cells, or immobilized enzymes or bacterial cells are used. The immobilized product obtained can be used as an enzyme source. Methods for continuously or intermittently adding indole include adding indole in powder form using a powder feeder, heating it to 52°C or higher to melt the indole, and adding liquid indole dropwise. A method of adding with a pump or a method of dissolving indole in an alcohol such as methanol or ethanol and then adding with a pump or the like can be used. In order to add the substrate indole while keeping the indole concentration in the reaction solution at 0.1% by weight or less, measure the indole concentration in the reaction solution continuously or intermittently, and measure this value using a feeder (powder feeder, pump, etc.). ), but methods for quantifying the indole concentration in this reaction solution include, for example, measuring it by gas chromatography using a PEG20M column, or measuring indole in the reaction solution with n-hexane. A method of extracting indole and measuring the ultraviolet absorption of indole at 250 to 270 nm can be adopted. According to the production method of the present invention, indole and L-
Since the desired L-tryptophan can be obtained from serine in a high yield and with almost no residual indole in the reaction solution, it is believed that the present invention will greatly contribute to the industrial production of L-tryptophan. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Tryptophan synthetase producing bacterium E. coli MT-10232 (FERM BP-
19) was inoculated into 100 ml of a medium having the composition shown in Table 1 in a 500 ml Sakaguchi flask, and cultured at 35°C for 24 hours. 200 ml of this culture (2 flasks) was inoculated into medium 15 with the composition shown in Table 2 in a 30 jar fermenter, and cultured at 35°C and pH 6.8 (controlled with 28% ammonia water) for 30 hours. . After the culture was completed, the culture solution was centrifuged to collect 40 g of wet bacterial cells, which were frozen at -15°C for 2 days. The frozen cells were thawed immediately before the reaction and used as an enzyme source. Prior to the start of the reaction, the specific activity of bacterial tryptophan synthetase, which is the source of this enzyme, was determined by adding 2% indole,
L-serine 1.8%, Triton X-100 5%, pyridoxal phosphate 0.01%, sodium sulfite 0.1%,
Using a reaction solution with a bacterial cell concentration of 0.2 g (dry bacterial cells)/1 hour reaction at 35°C and pH 8.5, the result was 2.5 [g-tryptophan/g (dry bacterial cells)/hr]. As a result, it was confirmed that tryptophan synthetase was present in the bacterial cells. Next, using reaction solution 1 with the composition shown in Table 3, indole in the reaction solution was analyzed by gas chromatography, and as it was being consumed, 0.1
The indole was added continuously so as not to exceed 2% by weight, and the reaction was carried out until the final addition concentration of indole reached an amount corresponding to 2% by weight. Reaction temperature is 35℃, PH8.5
The time required for the reaction was 24 hours. As a comparative example, a reaction was carried out for 24 hours using a reaction solution having a composition (other components were the same as in Table 3) that had an indole concentration of 2% at the start of the reaction. The results are shown in Table 4. After the reaction was completed, the pH was adjusted to 10 to dissolve the L-tryptophan that had precipitated as crystals, and the cells were collected by centrifugation to measure the cell concentration in the reaction solution, which was 7.9 g (dry cells)/ It was hot. Since the bacterial cell concentration at the start of the reaction was 8.1 g (dry bacterial cells), it was recognized that no bacterial growth occurred during the reaction. Table 1 Ehrlich meat extract 10g Polypeptone 10g NaCl 5g Diluted in 1 part distilled water (PH6.8) Table 2 Glucose 10g (NH 4 ) 2 SO 4 1.5g K 2 HPO 4 1g MgSO 4・7H 2 O 1g Polypeptone 0.5g Yeast extract 0.5g L-tryptophan 0.15g Adekanol LG-805 5g Diluted to 1 with distilled water (PH6.8) Table 3 Indole 1g L-serine 20g Pyridoxal 5'-phosphate 0.1g (NH 4 ) 2 SO 4 10g Wet bacterial cells 40g Dilute to 1 with distilled water and use

【表】【table】

【表】 実施例 2 反応液中のインドール濃度はn−ヘキサンで抽
出して266nmに於けるインドールの紫外部吸収
を測定する方法で反応進行中連続的に測定し、こ
の分析装置をインドールの粉体フイーダーに連動
させて、反応液中のインドール濃度を200ppmに
制御しながら反応を行つた他は実施例1と同様の
操作を施した。反応時間は16時間であり、得られ
た結果を第5表に示した。
[Table] Example 2 The concentration of indole in the reaction solution was measured continuously during the reaction by extracting with n-hexane and measuring the ultraviolet absorption of indole at 266 nm. The same operation as in Example 1 was performed except that the reaction was carried out while controlling the indole concentration in the reaction solution to 200 ppm in conjunction with a body feeder. The reaction time was 16 hours and the results obtained are shown in Table 5.

【表】 実施例 3 トリプトフアン・シンセターゼ生産菌であるエ
ツシエリヒア・コリMT−10242(FERM BP−
20)を用いて実施例2と同様の操作を行なつた。
トリプトフアン・シンセターゼの比活性を、実施
例1と同様に測定した結果、3.2〔g−トリプト
フアン/g(乾燥菌体/hr〕であつた。得られた
結果を第6表に示した。 なお、反応開始時と終了時の菌体濃度を実施例
1と同様に測定したところ、それぞれ8.3g(乾
燥菌体)/、8.1g(乾燥菌体)/であり、
反応中に菌の増殖は認められなかつた。
[Table] Example 3 Tryptophan synthetase producing bacterium E. coli MT-10242 (FERM BP-
20), the same operation as in Example 2 was performed.
The specific activity of tryptophan synthetase was measured in the same manner as in Example 1, and was found to be 3.2 [g-tryptophan/g (dry bacterial cells/hr).The obtained results are shown in Table 6. When the bacterial cell concentrations at the start and end of the reaction were measured in the same manner as in Example 1, they were 8.3 g (dry bacterial cells)/8.1 g (dry bacterial cells)/, respectively.
No bacterial growth was observed during the reaction.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エツシエリヒア・コリに属する微生物の生産
するトリプトフアン・シンセターゼの存在下イン
ドールとL−セリンとを反応させてL−トリプト
フアンを製造する方法において、反応液中のイン
ドール濃度を0.1重量%をこえないよう保つこと
を特徴とする酵素によるL−トリプトフアンの製
造方法。
1. In a method for producing L-tryptophan by reacting indole and L-serine in the presence of tryptophan synthetase produced by a microorganism belonging to E. coli, the indole concentration in the reaction solution is maintained at not more than 0.1% by weight. A method for producing L-tryptophan using an enzyme, characterized in that:
JP11531681A 1981-07-24 1981-07-24 Preparation of l-tryptophan by enzyme Granted JPS5816692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11531681A JPS5816692A (en) 1981-07-24 1981-07-24 Preparation of l-tryptophan by enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11531681A JPS5816692A (en) 1981-07-24 1981-07-24 Preparation of l-tryptophan by enzyme

Publications (2)

Publication Number Publication Date
JPS5816692A JPS5816692A (en) 1983-01-31
JPS6225353B2 true JPS6225353B2 (en) 1987-06-02

Family

ID=14659589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11531681A Granted JPS5816692A (en) 1981-07-24 1981-07-24 Preparation of l-tryptophan by enzyme

Country Status (1)

Country Link
JP (1) JPS5816692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754759A1 (en) 1995-07-18 1997-01-22 Mitsui Toatsu Chemicals, Incorporated S-phenyl-l-cysteine production process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764084B2 (en) * 1987-10-12 1998-06-11 三井化学株式会社 Method for producing L-tryptophan
AU611501B2 (en) * 1987-10-12 1991-06-13 Mitsui Toatsu Chemicals Inc. Process for producing l-tryptophane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGRICULTURAL AND BIOLOGICAL CHEMISTRY=1974 *
BIOCHIMICA ET BIOPHYSICA ACTA=1978 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754759A1 (en) 1995-07-18 1997-01-22 Mitsui Toatsu Chemicals, Incorporated S-phenyl-l-cysteine production process

Also Published As

Publication number Publication date
JPS5816692A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
JPH0411194B2 (en)
JPS62289A (en) Enzymatic production of l-alpha-amino acid from alpha-ketoic acid
JPS6225353B2 (en)
US3458400A (en) Process for producing l-alanine
JP3116102B2 (en) Method for producing L-3,4-dihydroxyphenylalanine
JP2832723B2 (en) Method for producing L-alanine
JPH09154589A (en) Production of erythritol
JP3638425B2 (en) Process for producing optically active α-aminoadipic acid-γ-semialdehyde ethylene acetal
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JPS6144474B2 (en)
JPS6224076B2 (en)
JPH04304893A (en) Production of hydroxide of nitrogen-containing heterocyclic compound by microorganism
JPS6142554B2 (en)
JP2674076B2 (en) Method for producing D-α-amino acid
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine
JPS6125359B2 (en)
JPH08103283A (en) Production of tryptophan
JPS6258710B2 (en)
JP2901458B2 (en) Method for producing gentianose
JPH06181788A (en) Production of l-serine
JP2000197495A (en) Production of pyrrole-2-carboxylic acid
JPH0683677B2 (en) Method for producing DN-carbamyl-α-amino acid
JPH0438398B2 (en)
JPH0143554B2 (en)
JPS6112296A (en) Production of l-phenylalanine