JPS6144474B2 - - Google Patents

Info

Publication number
JPS6144474B2
JPS6144474B2 JP10206579A JP10206579A JPS6144474B2 JP S6144474 B2 JPS6144474 B2 JP S6144474B2 JP 10206579 A JP10206579 A JP 10206579A JP 10206579 A JP10206579 A JP 10206579A JP S6144474 B2 JPS6144474 B2 JP S6144474B2
Authority
JP
Japan
Prior art keywords
phenylalanine
ammonia
cinnamic acid
concentration
molar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10206579A
Other languages
Japanese (ja)
Other versions
JPS5626197A (en
Inventor
Ichiro Senhata
Shigeki Yamada
Koichi Nabe
Nobuhiko Izumio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP10206579A priority Critical patent/JPS5626197A/en
Publication of JPS5626197A publication Critical patent/JPS5626197A/en
Publication of JPS6144474B2 publication Critical patent/JPS6144474B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酵素法によるL―フエニルアラニンの
製法に関し、更に詳しくはL―フエニルアラニン
アンモニアリアーゼを含有する微生物の培養液あ
るいは該培養液から採取せる菌体又は該菌体処理
物を用いて桂皮酸とアンモニアもしくはアンモニ
ア供与体とからL―フエニルアラニンを効率よく
製造する方法に関する。 微生物の生産する酵素を用いて桂皮酸とアンモ
ニアもしくはアンモニア供与体とからL―フエニ
ルアラニンを製造する方法は、すでに英国特許第
1489468号公報によつて報告されている。この英
国特許方法は、ロドトルラ属またはフザリウム属
微生物の生産するL―フエニルアラニンアンモニ
アリアーゼを桂皮酸とアンモニアもしくはアンモ
ニア供与体とに作用させてL―フエニルアラニン
を製造するに際し、アンモニアもしくはアンモニ
ア供与体を、桂皮酸に対してモル比で2倍以上、
好ましくは8倍で使用することを特徴とし、この
ような特定条件下で、従来認められていなかつた
L―フエニルアラニンアンモニアリアーゼによる
桂皮酸からL―フエニルアラニンの生成を可能に
したものである。しかしながらこの方法による場
合。 (i) 使用した桂皮酸の最大20%をL―フエニルア
ラニンへ転換させることができるとしているに
もかかわらず、かかる転換率を達成することが
できる場合は酵素反応液中の桂皮酸濃度が
0.006モル濃度(0.1%)と非常に低濃度におい
てのみであり、同公報実施例に示されているよ
うに桂皮酸濃度が0.33〜0.66モル濃度(5〜10
%)と高濃度になると、そのL―フエニルアラ
ニンへの転換率は5%以下に低下してくる。そ
して (ii) 上記の如く桂皮酸からL―フエニルアラニン
への転換率が低いことからL―フエニルアラニ
ンの蓄積量も低くなり(わずかに2.5mg/ml以
下)このため (iii) 生成したL―フエニルアラニンをはるかに上
廻る、未反応桂皮酸が反応液中に存在すること
になり、L―フエニルアラニンの単離が著しく
困難となるばかりでなく、更に (iv) 未反応原料の回収、および再使用も工業的に
は必須となつてくる等の多くの問題があつた。 本発明者等は前記英国特許方法における酵素
反応について種々研究を重ねた結果、 (イ) 酵素反応液中のアンモニウムイオン濃度が
桂皮酸のL―フエニルアラニンへの転換に大
きく関与していること、および (ロ) 酵素反応液中の桂皮酸濃度が高いと該反応
を触媒するL―フエニルアラニンアンモニア
リアーゼが桂皮酸により基質阻害をうけるこ
と 等のアンモニウム濃度と反応平衡の関係お
よび桂皮酸濃度と基質阻害の関係について新
規な知見を得るに至つた。 本発明者等はかかる新規な知見にもとづいて更
に研究を進めた結果、該酵素反応に際して反応液
中にアンモニアもしくはアンモニア供与体を、そ
のアンモニウムイオン濃度が少なくとも3モル濃
度以上となるように、更に桂皮酸をその濃度が約
0.05〜0.2モル濃度となるようにそれぞれ添加す
れば、桂皮酸より約50%以上、80%程度の高転換
率でL―フエニルアラニンを製造することができ
るから、L―フエニルアラニンを反応液中に実用
的高濃度(4〜25mg/ml)で蓄積せしめることが
でき、更に該反応液中には未反応の桂皮酸量も少
なくなり生成したL―フエニルアラニンの単離操
作等が著しく改善されることを見出し、工業的に
有利なL―フエニルアラニンの製造法を完成する
に至つた。 すなわち、本発明はL―フエニルアラニンアン
モニアリアーゼを含有する微生物の培養液あるい
は該培養液から採取せる菌体又は該菌体処理物の
存在下に桂皮酸とアンモニアもしくはアンモニア
供与体とを酵素反応させてL―フエニルアラニン
を製造するに際し、該酵素反応をアンモニアもし
くはアンモニア供与体の濃度が少なくとも約3モ
ル濃度以上であり、桂皮酸の濃度が約0.05〜0.2
モル濃度である条件下に行なうことを特徴とする
酵素法によるL―フエニルアラニンの製法であ
る。 以下、本発明方法を詳細に説明する。 本発明において、L―フエニルアラニンアンモ
ニアリアーゼを含有する微生物としては、桂皮酸
とアンモニアもしくはアンモニア供与体とからL
―フエニルアラニンを生成せしめる能力を持つ微
生物であればいずれの微生物であつてもよいが、
とりわけ例えばスポロボロマイセス・ロゼウス
227(微工研菌寄第3852号)、スポロボロマイセ
ス・ロゼウス221(微工研菌寄第3853号)〔これら
2菌株の菌学的性状はザ・イースト・ア・トキソ
ノミツク・スタデイー,J・ロダーおよびN,
J,W.クレガー・バン・リツジ著,第2版,348
〜352頁(1967年),“ノース・オランダ・パブリ
ツシング・カンパニー,アムステルダム”に記載
されている〕,ロドスポリジウム・トルロイデス
IF00559,ロドトルラ・テゼンシスIF00932,ロ
ドトルラ・ルブラOUT6158等の微生物の培養
液・該培養液から遠心分離等により採取せる菌体
または該菌体の処理物(例えば洗浄菌体,乾燥菌
体,菌体磨砕物,菌体の自己消化物,菌体の超音
波処理物,菌体を例えばアクリルアミドゲル法ま
たはカラギーナンゲル法により固定化したもの)
等を好適に用いることができる。 本発明の酵素反応は、例えば上記微生物の培養
液、該培養液から遠心分離等により採取せる菌体
または該菌体処理物を桂皮酸とアンモニアもしく
はアンモニア供与体とに作用させることにより実
施することができる。上記酵素反応において使用
する一方の原料のアンモニアもしくはアンモニア
供与体としては、アンモニア水のほか例えば酢酸
アンモニウム,硫酸アンモニウユム,塩化アンモ
ニウム等の有機乃至無機アンモニウム塩があげら
れる。これらのアンモニアもしくはアンモニア供
与体は酵素反応液に対してアンモニウムイオン濃
度が少なくとも3モル濃度となるように添加する
のが必要であり、かくすることにより桂皮酸を50
%以上の高転換率でL―フエニルアラニンへ転換
することが可能となる。アンモニウムイオン濃度
が3モル濃度以下では実験例2で示される如く、
桂皮酸を高転換率でL―フエニルアラニンへ変換
することができない。また他方の原料の桂皮酸
は、反応液に対してその濃度が約0.05〜0.2モル
濃度(0.75〜3%)となるように添加するのが、
反応系に存在させるL―フエニルアラニンアンモ
ニアリアーゼ活性の基質阻害をできるだけ避け、
かつ実用的濃度以上でL―フエニルアラニンを蓄
積させるために必要である。反応液中の桂皮酸濃
度が0.2モル濃度以上では、後記実験例1に示さ
れる如く、酵素が基質阻害を受けてその活性が著
しく低下するので反応は殆んど進行しないか、も
しくは進行してもその速度は極端に低下し、また
0.05モル濃度以下では当該酵素活性が基質阻害を
受けることは全くないが、桂皮酸の仕込量が少な
くなるため、たとえ桂皮酸のL―フエニルアラニ
ンへの転換率が高いとしてもL―フエニルアラニ
ン自体の蓄積量が少なくなつて実用的濃度では得
られず、これらいずれの場合にも反応効率の低下
を避けることができない。 以上の如く反応液中のアンモニウムイオン濃度
と桂皮酸濃度は、それぞれ独立して桂皮酸のL―
フエニルアラニンへの転換に大きく関与するもの
であるが反応液におけるアンモニウムイオンおよ
び桂皮酸の好適濃度は上記実施可能範囲において
桂皮酸のL―フエニルアラニンへの転換率,蓄積
L―フエニルアラニンの濃度、L―フエニルアラ
ニンの単離操作等を考慮することにより実験的に
求めればよい。例えば後記実験例1〜2で示され
ている、スポロボロマイセス・ロゼウス221(微
工研菌寄第3853号)、ロドスポリジウム・トルロ
イデスIF00559の場合、それら実験結果からアン
モニウムイオン濃度が約8〜10モル濃度、また桂
皮酸濃度が0.15〜0.2モル濃度であるのが好まし
く、この場合L―フエニルアラニンを反応液に20
〜25mg/mlの著量を蓄積せしめることができる。 本発明の酵素反応は通常、水性媒質中で温度20
℃〜60℃、好ましくは30℃〜40℃程度、PH約9〜
10の条件下に実施するのが好ましい。反応時間は
静置、かくはん、流下等の手段、あるいは酵素の
形態および能力によつて異なるので一様ではない
が、バツチ法では通常1〜72時間程度である。
尚、本反応において酵素源として生菌体を用いる
場合、界面活性剤を添加することにより反応時間
を著しく短縮できる場合がある。 反応液中に生成蓄積したL―フエニルアラニン
の分離精製は、通常のイオン交換樹脂やその他公
知の方法を組み合せて容易に行なうことができ
る。 本発明方法によれば、桂皮酸のL―フエニルア
ラニンへの転換反応を50%以上、80%の転換率で
実施し得るので、原料基質である桂皮酸の使用量
を節減してL―フエニルアラニンを高収率で製造
することができ、更に反応液中の生成したL―フ
エニルアラニンの単離取得が極めて容易となるた
め本発明方法は前記英国特許方法に比し、経済的
にはるかに有利なL―フエニルアラニンの製造法
となるものである。 以下、実験例、実施例をあげて本発明方法を更
に具体的に説明するが、該実施例中L―フエニル
アラニンの確認および定量はペーパークロマトグ
ラフイーによるニンヒドリン発色位置、アミノ酸
オートアナライザー及びロイコノストツク・メセ
ンテロイデスP―60によるバイオアツセイ法によ
り行なつた。 実験例 1 (酵素反応における桂皮酸濃度の影響) 桂皮酸を第1表に示す如く変化させ、その桂皮
酸をそれぞれ28%アンモニア水(市販品)55mlに
溶解し、塩酸を適当量加えてPHを調整したのち蒸
留水を加えて全量80mlとする。これに酵素標品と
してスポロボロマイセス・ロゼウス221(微工研
菌寄第3853号)またはロドスポリジウム・トルロ
イデスIF00559の菌体けん濁液20mlを加えて100
mlとし、30℃で転換反応を行つてその初速度を測
定した。その結果は第1表に示す通りであり、桂
皮酸のL―フエニルアラニンへの転換反応の酵素
活性に対して桂皮酸濃度が大きく関与しているこ
とが認められた。
The present invention relates to a method for producing L-phenylalanine by an enzymatic method, and more specifically, using a culture solution of a microorganism containing L-phenylalanine ammonia-lyase, microbial cells collected from the culture solution, or a processed product of the microbial cells. The present invention relates to a method for efficiently producing L-phenylalanine from cinnamic acid and ammonia or an ammonia donor. A method for producing L-phenylalanine from cinnamic acid and ammonia or an ammonia donor using enzymes produced by microorganisms has already been patented in the UK.
It is reported in Publication No. 1489468. This British patented method involves the production of L-phenylalanine by allowing L-phenylalanine ammonia-lyase produced by microorganisms of the genus Rhodotorula or Fusarium to act on cinnamic acid and ammonia or an ammonia donor. more than twice the molar ratio of cinnamic acid,
It is characterized in that it is preferably used at 8 times the amount, and under such specific conditions, it enables the production of L-phenylalanine from cinnamic acid by L-phenylalanine ammonia lyase, which has not been recognized in the past. be. However, when using this method. (i) Although it is stated that up to 20% of the cinnamic acid used can be converted to L-phenylalanine, if such a conversion rate can be achieved, the concentration of cinnamic acid in the enzyme reaction solution is
Only at a very low concentration of 0.006 molar concentration (0.1%), and as shown in the example of the same publication, the concentration of cinnamic acid is 0.33 to 0.66 molar concentration (5 to 10%).
%), the conversion rate to L-phenylalanine decreases to 5% or less. And (ii) As mentioned above, since the conversion rate from cinnamic acid to L-phenylalanine is low, the amount of L-phenylalanine accumulated is also low (slightly less than 2.5 mg/ml). Unreacted cinnamic acid, which far exceeds L-phenylalanine, will be present in the reaction solution, which not only makes it extremely difficult to isolate L-phenylalanine, but also (iv) unreacted raw materials. There have been many problems, such as the recovery and reuse of carbon dioxide, which has become an industrial necessity. As a result of various studies conducted by the present inventors regarding the enzymatic reaction in the above-mentioned British patented method, the present inventors have found that (a) the ammonium ion concentration in the enzymatic reaction solution is significantly involved in the conversion of cinnamic acid to L-phenylalanine; , and (b) the relationship between ammonium concentration and reaction equilibrium, and the cinnamic acid concentration, such as the fact that when the cinnamic acid concentration in the enzyme reaction solution is high, L-phenylalanine ammonia-lyase, which catalyzes the reaction, is subject to substrate inhibition by cinnamic acid. We have obtained new knowledge about the relationship between fertilization and substrate inhibition. As a result of further research based on this new knowledge, the present inventors added ammonia or an ammonia donor to the reaction solution during the enzyme reaction so that the ammonium ion concentration was at least 3 molar or more. Cinnamic acid, whose concentration is approximately
If each is added at a concentration of 0.05 to 0.2 molar, L-phenylalanine can be produced at a conversion rate of about 50% or more, about 80% higher than that of cinnamic acid. It can be accumulated in the reaction solution at a practically high concentration (4 to 25 mg/ml), and the amount of unreacted cinnamic acid in the reaction solution is also reduced, making it easier to isolate the L-phenylalanine produced. They found that this was significantly improved and completed an industrially advantageous method for producing L-phenylalanine. That is, the present invention involves enzymatic reaction of cinnamic acid and ammonia or an ammonia donor in the presence of a culture solution of a microorganism containing L-phenylalanine ammonia-lyase, cells collected from the culture solution, or a treated product of the cells. When producing L-phenylalanine, the enzymatic reaction is carried out in such a manner that the concentration of ammonia or an ammonia donor is at least about 3 molar or higher, and the concentration of cinnamic acid is about 0.05 to 0.2 molar.
This is a method for producing L-phenylalanine using an enzymatic method, which is characterized in that it is carried out under conditions of molar concentration. The method of the present invention will be explained in detail below. In the present invention, the microorganism containing L-phenylalanine ammonia-lyase is a microorganism containing L-phenylalanine ammonia-lyase,
- Any microorganism that has the ability to produce phenylalanine may be used, but
Among others, e.g. Sporobolomyces roseus
227 (Feikoken Bacterium No. 3852), Sporobolomyces roseus 221 (Feikokuken Bacterial Reference No. 3853) [Mycological properties of these two strains are described in The East A Toxonomic Study, J.・Loder and N,
J. W. Creger Van Ritzge, 2nd edition, 348
~352 pages (1967), “North Holland Publishing Company, Amsterdam”], Rhodosporidium toruloides
Culture solution of microorganisms such as IF00559, Rhodotorula thezensis IF00932, Rhodotorula rubra OUT6158, bacterial cells collected from the culture solution by centrifugation, or processed products of the bacterial cells (e.g., washed bacterial cells, dried bacterial cells, bacterial cell polishing) crushed materials, autolysed bacterial cells, ultrasonicated bacterial cells, and immobilized bacterial cells using, for example, acrylamide gel method or carrageenan gel method)
etc. can be suitably used. The enzyme reaction of the present invention can be carried out, for example, by allowing a culture solution of the above-mentioned microorganisms, microbial cells collected from the culture solution by centrifugation, or a treated product of the microbial cells to react with cinnamic acid and ammonia or an ammonia donor. I can do it. Examples of ammonia or an ammonia donor used as one of the raw materials in the enzyme reaction include aqueous ammonia and organic or inorganic ammonium salts such as ammonium acetate, ammonium sulfate, ammonium chloride, and the like. It is necessary to add these ammonia or ammonia donors to the enzyme reaction solution so that the ammonium ion concentration is at least 3 molar.
It becomes possible to convert to L-phenylalanine at a high conversion rate of % or more. When the ammonium ion concentration is below 3 molar concentration, as shown in Experimental Example 2,
Cinnamic acid cannot be converted to L-phenylalanine at a high conversion rate. The other raw material, cinnamic acid, is added to the reaction solution at a concentration of about 0.05 to 0.2 molar (0.75 to 3%).
Avoid substrate inhibition of L-phenylalanine ammonia lyase activity as much as possible in the reaction system,
It is also necessary to accumulate L-phenylalanine at a practical concentration or higher. If the cinnamic acid concentration in the reaction solution is 0.2 molar or higher, as shown in Experimental Example 1 below, the enzyme will be inhibited by the substrate and its activity will be significantly reduced, so the reaction will hardly proceed or will not proceed at all. However, the speed decreases drastically, and
At concentrations below 0.05 molar, the enzyme activity is not inhibited by the substrate at all, but since the amount of cinnamic acid charged is small, even if the conversion rate of cinnamic acid to L-phenylalanine is high, L-phenyl The accumulated amount of alanine itself is too small to be obtained at a practical concentration, and in any of these cases, a decrease in reaction efficiency cannot be avoided. As described above, the ammonium ion concentration and the cinnamic acid concentration in the reaction solution are independently determined by the L-
Although they are largely involved in the conversion to phenylalanine, the preferred concentrations of ammonium ions and cinnamic acid in the reaction solution are within the above-mentioned practicable range, the conversion rate of cinnamic acid to L-phenylalanine, and the accumulation of L-phenylalanine. It may be determined experimentally by considering the concentration of L-phenylalanine, the isolation procedure of L-phenylalanine, etc. For example, in the case of Sporobolomyces roseus 221 (Fiber Science and Technology Research Institute No. 3853) and Rhodosporidium toruloides IF00559, which are shown in Experimental Examples 1 and 2 below, the ammonium ion concentration is approximately 8. It is preferable that the concentration of cinnamic acid is 0.15 to 0.2 molar, and in this case, L-phenylalanine is added to the reaction solution at a concentration of 20 molar.
Significant amounts of ~25 mg/ml can be accumulated. The enzymatic reaction of the present invention is typically carried out in an aqueous medium at a temperature of 20°C.
℃~60℃, preferably about 30℃~40℃, PH about 9~
Preferably, the test is carried out under 10 conditions. The reaction time varies depending on the method of standing, stirring, flowing down, etc., or the form and capacity of the enzyme, but it is usually about 1 to 72 hours in the batch method.
In addition, when using live bacterial cells as an enzyme source in this reaction, the reaction time may be significantly shortened by adding a surfactant. Separation and purification of L-phenylalanine produced and accumulated in the reaction solution can be easily carried out using a combination of conventional ion exchange resins and other known methods. According to the method of the present invention, the conversion reaction of cinnamic acid to L-phenylalanine can be carried out at a conversion rate of 50% or more to 80%, so the amount of cinnamic acid used as a raw material substrate can be reduced and L-phenylalanine can be converted into L-phenylalanine. Phenylalanine can be produced in high yield, and L-phenylalanine produced in the reaction solution can be isolated and obtained very easily, so the method of the present invention is more economical than the British patented method. This is a much more advantageous method for producing L-phenylalanine. Hereinafter, the method of the present invention will be explained in more detail with reference to experimental examples and examples. - It was carried out by bioassay method using Mesenteroides P-60. Experimental example 1 (Influence of cinnamic acid concentration on enzyme reaction) Cinnamic acid was changed as shown in Table 1, each of the cinnamic acids was dissolved in 55 ml of 28% ammonia water (commercially available), and an appropriate amount of hydrochloric acid was added to adjust the pH. After adjusting the amount, add distilled water to make a total volume of 80ml. To this, add 20 ml of bacterial cell suspension of Sporobolomyces roseus 221 (Feikoken Bibori No. 3853) or Rhodosporidium toruloides IF00559 as an enzyme preparation, and add 100 mL of bacterial cell suspension.
ml, a conversion reaction was carried out at 30°C, and the initial velocity was measured. The results are shown in Table 1, and it was found that the concentration of cinnamic acid was significantly involved in the enzyme activity of the conversion reaction of cinnamic acid to L-phenylalanine.

【表】 但し、酵素活性は桂皮酸50mMの場合の活性を
それぞれ100とした。 又、表中SおよびRは下記を表わす。 以下同。 S:スポロボロマイセス・ロゼウスの菌体 R:ロドスポリジウム・トルロイデスの菌体 実験例 2 (酵素反応におけるアンモニウムイオン濃度の
影響) 桂皮酸1000mgまたは3000mgを28%アンモニア水
(市販品)の適当量に溶解し、塩酸でPHを10.0に
調整したのち蒸留水を加えて全量80mlとする。こ
れに実験例1と同一の菌体けん濁液20mlを加えて
100mlとし、30℃で18時間反応せしめた。反応
後、桂皮酸のL―フエニルアラニンへの転換率を
算出し、その転換率に及ぼすアンモニウムイオン
濃度の影響を調べた。その結果は第2表に示す通
りであり、桂皮酸のL―フエニルアラニンへの転
換に対してアンモニウムイオン濃度が大きく関与
していることが認められた。
[Table] However, for the enzyme activity, the activity in the case of cinnamic acid 50mM was set as 100. In addition, S and R in the table represent the following. Same hereafter. S: Cell of Sporobolomyces roseus R: Cell of Rhodosporidium toruloides Experimental Example 2 (Effect of ammonium ion concentration on enzyme reaction) Add 1000 mg or 3000 mg of cinnamic acid to 28% ammonia water (commercially available). After adjusting the pH to 10.0 with hydrochloric acid, add distilled water to make a total volume of 80 ml. Add 20ml of the same bacterial cell suspension as in Experimental Example 1 to this.
The volume was adjusted to 100 ml, and the reaction was carried out at 30°C for 18 hours. After the reaction, the conversion rate of cinnamic acid to L-phenylalanine was calculated, and the influence of ammonium ion concentration on the conversion rate was investigated. The results are shown in Table 2, and it was found that the ammonium ion concentration was significantly involved in the conversion of cinnamic acid to L-phenylalanine.

【表】 但し、表中AおよびBは下記を表わす。 A:桂皮酸1000mg/100ml B:桂皮酸3000mg/100ml 実施例 1 (1) 下記組成の培地(PH6.5)100mlを500ml容坂
口フラスコに入れ、スポロボロマイセス・ロゼ
ウス221(微工研寄菌第3853号)を1白金耳接
種する。25℃にて40時間しんとう培養する。培
養終了後・培養液100mlを遠心分離し、スポロ
ボロマイセス・ロゼウス221の菌体を集める。 培地組成(100ml中) ペプトン 0.5g 酵母エキス 2.5g 食 塩 0.5g (2) 桂皮酸3000gを28%アンモニア水(市販品)
55mlに溶解し、塩酸でPHを10.0に調整したの
ち、上記(1)で得たスポロボロマイセス・ロゼウ
ス221の菌体をけん濁する。この菌体けん濁液
に水を加えて全量100mlとし、30℃で18時間反
応する。反応後、反応液中の桂皮酸の80%がL
―フエニルアラニンへ転換され、約2500mgのL
―フエニルアラニンが蓄積していることが認め
られた。この反応液から菌体を遠心分離により
除去し、上澄液を塩酸でPH2.0にして桂皮酸を
ろ去した。このろ液をエーテルで洗浄し、残つ
た桂皮酸を除去し、上澄液を濃縮してPHを5.5
にして、L―フエニルアラニンを沈殿させた。 L―フエニルアラニン2325mg(収率75%)を
得た。 実施例 2 (1) 実施例1と同一組成の培地100mlを500ml容坂
口フラスコに入れ、これにスポロボロマイセ
ス・ロゼウス227(微工研菌寄第3852号)を1
白金耳接種する。以下実施例1と同様に処理し
てスポロボロマイセス・ロゼウス227菌体を集
める。 (2) 桂皮酸2220mgを28%アンモニア水(市販品)
55mlに溶解し、塩酸でPHを10.0に調整したのち
上記(1)で得たスポロボロマイセス・ロゼウス
227の菌体をけん濁する。この菌体けん濁液に
水を加えて全量100mlとし、30℃で24時間反応
する。反応後、反応液中の桂皮酸の80%がL―
フエニルアラニンへ転換され、約2040mgのL―
フエニルアラニンが蓄積されていることが認め
られた。 実施例 3 (1) 下記組成の培地(PH6.5)100mlを500ml容坂
口フラスコに入れ、ロドスポリジウム・トルロ
イデスIF00559を1白金耳接種する。30℃にて
16時間しんとう培養したのち、遠心分離してロ
ドスポリジウム・トルロイデスの菌体を集め
る。 培地組成(100ml中) ペプトン 3g 酵母エキス 0.5g 食 塩 0.5g (2) 桂皮酸2220mgを28%アンモニア水(市販品)
55mlに溶解し、塩酸でPH10.0に調整したのち、
上記(1)で得たロドスポリジウム・トルロイデス
の菌体をけん濁する。以下実施例2と同様に処
理すると、反応液中の桂皮酸の80%がL―フエ
ニルアラニンへ転換され、約2040mgのL―フエ
ニルアラニンが蓄積されていることが認められ
た。
[Table] However, A and B in the table represent the following. A: 1000 mg/100 ml of cinnamic acid B: 3000 mg/100 ml of cinnamic acid Example 1 (1) Put 100 ml of the culture medium (PH6.5) with the following composition into a 500 ml Sakaguchi flask, and add Sporobolomyces roseus 221 (Fiber Technology Research Institute) to a 500 ml Sakaguchi flask. Inoculate one platinum loop of Bacterium No. 3853). Incubate at 25℃ for 40 hours. After culturing, centrifuge 100ml of the culture solution and collect Sporobolomyces roseus 221 cells. Medium composition (in 100ml) Peptone 0.5g Yeast extract 2.5g Salt 0.5g (2) 3000g cinnamic acid and 28% ammonia water (commercially available)
After dissolving in 55 ml and adjusting the pH to 10.0 with hydrochloric acid, suspend the Sporobolomyces roseus 221 cells obtained in (1) above. Add water to this cell suspension to make a total volume of 100 ml, and react at 30°C for 18 hours. After the reaction, 80% of the cinnamic acid in the reaction solution is L.
- Converted to phenylalanine, approximately 2500 mg of L
- Accumulation of phenylalanine was observed. The bacterial cells were removed from this reaction solution by centrifugation, and the supernatant solution was adjusted to pH 2.0 with hydrochloric acid and cinnamic acid was removed by filtration. The filtrate was washed with ether to remove remaining cinnamic acid, and the supernatant was concentrated to a pH of 5.5.
to precipitate L-phenylalanine. 2325 mg (yield 75%) of L-phenylalanine was obtained. Example 2 (1) Put 100 ml of a medium with the same composition as in Example 1 into a 500 ml Sakaguchi flask, and add 1 portion of Sporobolomyces roseus 227 (Feikoken Bacterial Serial No. 3852) to it.
Inoculate with platinum ear. Thereafter, Sporobolomyces roseus 227 cells were collected by the same treatment as in Example 1. (2) 2220 mg of cinnamic acid in 28% ammonia water (commercially available)
Sporobolomyces roseus obtained in (1) above after dissolving in 55 ml and adjusting the pH to 10.0 with hydrochloric acid.
Suspends 227 bacterial cells. Add water to this cell suspension to make a total volume of 100 ml, and react at 30°C for 24 hours. After the reaction, 80% of the cinnamic acid in the reaction solution is L-
Converted to phenylalanine, approximately 2040mg of L-
Accumulation of phenylalanine was observed. Example 3 (1) Put 100 ml of a medium (PH6.5) with the following composition into a 500 ml Sakaguchi flask, and inoculate one platinum loop of Rhodosporidium toruloides IF00559. At 30℃
After incubating for 16 hours, the cells of Rhodosporidium toruloides are collected by centrifugation. Medium composition (in 100ml) Peptone 3g Yeast extract 0.5g Salt 0.5g (2) 2220mg of cinnamic acid in 28% ammonia water (commercially available)
After dissolving in 55ml and adjusting the pH to 10.0 with hydrochloric acid,
Suspend the Rhodosporidium toruloides cells obtained in (1) above. When the reaction solution was treated in the same manner as in Example 2, it was found that 80% of the cinnamic acid in the reaction solution was converted to L-phenylalanine, and about 2040 mg of L-phenylalanine was accumulated.

Claims (1)

【特許請求の範囲】 1 桂皮酸とアンモニアもしくはアンモニア供与
体とをL―フエニルアラニンアンモニアリアーゼ
を含有する微生物の培養液あるいは該培養液から
採取せる菌体又は該菌体処理物の存在下に酵素反
応させてL―フエニルアラニンを製造するに際
し、該酵素反応をアンモニアもしくはアンモニア
供与体の濃度が少なくとも3モル濃度以上であ
り、桂皮酸濃度が0.05〜0.2モル濃度である条件
下に行うことを特徴とする酵素法によるL―フエ
ニルアラニンの製法。 2 L―フエニルアラニンアンモニアリアーゼが
スポロボロマイセス属またはロドトルラ属微生物
の生産するL―フエニルアラニンアンモニアリア
ーゼである特許請求の範囲第1項記載の製法。 3 L―フエニルアラニンアンモニアリアーゼ源
としてスポロボロマイセス属またはロドトルラ属
微生物の培養液あるいは該培養液から採取せる菌
体または該菌体処理物を使用する特許請求の範囲
第2項記載の製法。 4 スポロボロマイセス属微生物がスポロボロマ
イセス・ロゼウス221(微工研菌寄第3853号)で
ある特許請求の範囲第2項記載の製法。 5 スポロボロマイセス属微生物がスポロボロマ
イセス・ロゼウス227(微工研菌寄第3852号)で
ある特許請求の範囲第2項記載の製法。 6 ロドトルラ属微生物がロドトルラ・グルチニ
スIF00599である特許請求の範囲第3項記載の製
法。 7 アンモニアもしくはアンモニア供与体の濃度
が約8〜10モル濃度である特許請求の範囲第2
項,第3項,第4項,第5項または第6項記載の
製法。 8 桂皮酸濃度が約0.15〜0.20モル濃度である特
許請求の範囲第2項,第3項,第4項,第5項,
第6項または第7項記載の製法。
[Claims] 1. Cinnamic acid and ammonia or an ammonia donor in the presence of a culture solution of a microorganism containing L-phenylalanine ammonia-lyase, or a microbial cell collected from the culture solution, or a treated product of the microbial cell. When producing L-phenylalanine by enzymatic reaction, the enzymatic reaction is carried out under conditions where the concentration of ammonia or an ammonia donor is at least 3 molar or more, and the cinnamic acid concentration is 0.05 to 0.2 molar. A method for producing L-phenylalanine using an enzymatic method, characterized by: 2. The production method according to claim 1, wherein the L-phenylalanine ammonia-lyase is L-phenylalanine ammonia-lyase produced by a microorganism of the genus Sporobolomyces or the genus Rhodotorula. 3. The production method according to claim 2, which uses a culture solution of a microorganism of the genus Sporobolomyces or Rhodotorula, or cells collected from the culture solution, or a processed product of the cells as a source of L-phenylalanine ammonia-lyase. . 4. The production method according to claim 2, wherein the microorganism of the genus Sporobolomyces is Sporobolomyces roseus 221 (Feikokenbokuyori No. 3853). 5. The production method according to claim 2, wherein the microorganism of the genus Sporobolomyces is Sporobolomyces roseus 227 (Feikokenbokuyori No. 3852). 6. The production method according to claim 3, wherein the Rhodotorula microorganism is Rhodotorula glutinis IF00599. 7. Claim 2, wherein the concentration of ammonia or ammonia donor is about 8 to 10 molar.
3. The manufacturing method described in Section 3, Section 3, Section 4, Section 5, or Section 6. 8 Claims 2, 3, 4, and 5, in which the cinnamic acid concentration is approximately 0.15 to 0.20 molar.
The manufacturing method according to item 6 or 7.
JP10206579A 1979-08-09 1979-08-09 Preparation of l-phenylalanine Granted JPS5626197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206579A JPS5626197A (en) 1979-08-09 1979-08-09 Preparation of l-phenylalanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206579A JPS5626197A (en) 1979-08-09 1979-08-09 Preparation of l-phenylalanine

Publications (2)

Publication Number Publication Date
JPS5626197A JPS5626197A (en) 1981-03-13
JPS6144474B2 true JPS6144474B2 (en) 1986-10-02

Family

ID=14317355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206579A Granted JPS5626197A (en) 1979-08-09 1979-08-09 Preparation of l-phenylalanine

Country Status (1)

Country Link
JP (1) JPS5626197A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1206435A (en) * 1982-10-01 1986-06-24 Wayne E. Swann Method for the production of l-phenylalanine through the reuse of phenylalanine ammonia lyase
JPS6043393A (en) * 1983-08-19 1985-03-07 Kyowa Hakko Kogyo Co Ltd Preparation of l-phenylalanine
IT1174140B (en) * 1984-05-31 1987-07-01 Erba Farmitalia METHOD FOR THE EXTRACTION OF FENYLALANIN FROM BIOCONVERSION BRODS
US5981239A (en) * 1997-09-24 1999-11-09 Great Lakes Chemical Corp. Synthesis of optically active phenylalanine analogs using Rhodotorula graminis
DE10061539C1 (en) 2000-12-11 2002-07-11 Haarmann & Reimer Gmbh Process for the preparation of cinnamic acid esters

Also Published As

Publication number Publication date
JPS5626197A (en) 1981-03-13

Similar Documents

Publication Publication Date Title
JPH10179154A (en) Reduction in concentration of d-enantiomer in mixture of d-enantiiomer with l-enantiomer
JPS6144474B2 (en)
JPH0411194B2 (en)
JPS5922516B2 (en) Method for producing L-phenylalanine
US4492757A (en) Process for preparing L-threonine
US4092220A (en) Process for manufacture of L(+)-tartaric acid or salts thereof
CA1206435A (en) Method for the production of l-phenylalanine through the reuse of phenylalanine ammonia lyase
JPS58201985A (en) Production of glucose dehydrogenase
JPS6231914B2 (en)
JPH03277292A (en) Production of optically active 2-hydroxycarboxylic acid
JP3055711B2 (en) Method for producing optically active (S) -3-phenyl-1,3-propanediol
KR0169215B1 (en) Method for increasing fastness of nitrile hydratase on acrylamide
JPS6225353B2 (en)
KR910007849B1 (en) New microorganism stretomyces spy-183
JPS6125359B2 (en)
JPH0851989A (en) Isomerization of maleic acid
JPH08103283A (en) Production of tryptophan
RU2032743C1 (en) Method for producing of yeast alcohol oxidase
JP3165040B2 (en) Novel microorganism and method for producing L-aspartic acid, fumaric acid and / or L-malic acid
JP2931623B2 (en) Method for producing L-phenylalanine
JPH0695945B2 (en) Acetyl CoA manufacturing method
JPH0446116B2 (en)
JPS5914796A (en) Preparation of l-phenylalanine
JPH08173173A (en) Production of phenylpyruvic acid
JPH08266294A (en) Production of fumaric acid