JPS6225260B2 - - Google Patents

Info

Publication number
JPS6225260B2
JPS6225260B2 JP8307679A JP8307679A JPS6225260B2 JP S6225260 B2 JPS6225260 B2 JP S6225260B2 JP 8307679 A JP8307679 A JP 8307679A JP 8307679 A JP8307679 A JP 8307679A JP S6225260 B2 JPS6225260 B2 JP S6225260B2
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor
power supply
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8307679A
Other languages
Japanese (ja)
Other versions
JPS567449A (en
Inventor
Tadashi Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8307679A priority Critical patent/JPS567449A/en
Publication of JPS567449A publication Critical patent/JPS567449A/en
Publication of JPS6225260B2 publication Critical patent/JPS6225260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明はMOSトランジスタの電源供給構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply structure for a MOS transistor.

従来のMOSトランジスタ特にPチヤンネル
MOSトランジスタへの電源供給方法として、電
源用パツドから集積回路チツプの周辺に引き回し
たアルミ配線によつて、N型基板上のチヤンネル
ストツパー領域と称する高濃度N型拡散層に供給
していた。しかしながら上記チヤンネルストツパ
ー領域の存在は、1トランジスタ当りの占有面積
が大きくなるため、MOSトランジスタ集積回路
の高集積化及び高速化を制限してしまう。故に、
チヤンネルストツパー即ち、高濃度N型拡散層を
除去しさらに電源を各MOSトランジスタへ供給
する方法として、例えば、電源用パツドから直接
各MOSトランジスタへ、アルミ配線によつて電
源を供給することが考えられる。しかしながら、
高集積化のおり、素子数1万素子以上という様
な、集積回路へのアルミ配線による電源供給方法
は、集積回路チツプ内におけるアルミ配線の占め
る面積がぼう大なものとなり高集積化は望めず不
適当である。
Conventional MOS transistor especially P channel
As a method of supplying power to MOS transistors, the power was supplied to a highly doped N-type diffusion layer called a channel stopper region on an N-type substrate through aluminum wiring routed around the integrated circuit chip from a power supply pad. However, the presence of the channel stopper region increases the area occupied by one transistor, which limits the ability to increase the integration and speed of MOS transistor integrated circuits. Therefore,
As a method of removing the channel stopper, that is, the highly doped N-type diffusion layer, and supplying power to each MOS transistor, it is possible to supply power directly from the power supply pad to each MOS transistor through aluminum wiring, for example. It will be done. however,
Due to the trend toward higher integration, the power supply method using aluminum wiring to integrated circuits with more than 10,000 elements requires a large area of the aluminum wiring within the integrated circuit chip, making it impossible to achieve high integration. It's inappropriate.

電源供給の方法として、今一つ集積回路チツプ
内のトランジスタ領域以外、即ち、配線領域に高
濃度N型拡散層を設け、高濃度N型拡散層をもつ
て、電源供給のための配線とする方法が考えられ
る。しかしながら、高集積化に伴う配線領域の減
少、及び、配線領域内における高濃度P型拡散配
線などによる制限のため、高濃度N型拡散層の
“長さ対幅の比”の大きな、即ち高濃度N型拡散
層でも結果として高抵抗拡散層しか電源供給のた
めの配線としては用いざるを得ない、そのため供
給電源の電圧降下を生じ、集積回路の高速化が望
めず、不適当である。
Another method for supplying power is to provide a highly doped N-type diffusion layer in an area other than the transistor area in the integrated circuit chip, that is, in the wiring area, and use the highly doped N-type diffusion layer as wiring for power supply. Conceivable. However, due to the reduction in wiring area due to high integration and restrictions due to high concentration P-type diffusion wiring within the wiring area, the "length to width ratio" of the high concentration N-type diffusion layer is large, that is, the Even with the concentration N-type diffusion layer, only the high-resistance diffusion layer has to be used as wiring for power supply, which causes a voltage drop in the power supply, making it impossible to increase the speed of the integrated circuit, which is inappropriate.

本発明の目的は、以上の様な欠点を除去し、高
集積化に適した電源供給構造を得るものである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to obtain a power supply structure suitable for high integration.

すなわち、本発明によれば、一導電型の半導体
基板とその上に高濃度半導体薄層を介して形成さ
れた半導体気相成長層とを有し、半導体気相成長
層にMOS型電界効果トランジスタ等の半導体素
子を形成するとともに高濃度半導体層を介して半
導体素子に電源電圧を供給する半導体装置を得
る。
That is, according to the present invention, there is provided a semiconductor substrate of one conductivity type and a semiconductor vapor phase growth layer formed thereon via a high concentration semiconductor thin layer, and a MOS type field effect transistor is formed in the semiconductor vapor phase growth layer. A semiconductor device is obtained in which a semiconductor element such as the above is formed and a power supply voltage is supplied to the semiconductor element through a highly doped semiconductor layer.

本発明に従えば、集積回路の高速度化及び高集
積化が計れるとともに、各MOSトランジスタへ
の電源の供給を確実に行うことができる。
According to the present invention, the speed and integration of the integrated circuit can be increased, and power can be reliably supplied to each MOS transistor.

以下、本発明に関して、N型シリコン基板を例
に挙げて図面を参照して説明する。もちろんP型
シリコン基板に関しても同様の説明が成り立つ。
The present invention will be described below with reference to the drawings, taking an N-type silicon substrate as an example. Of course, the same explanation holds true for P-type silicon substrates as well.

図は本発明の一実施例を示したものである。即
ち第1図に示される如く、N型で5×1014cm-3
3×1015cm-3の不純物濃度のシリコン基板1の表
面にN型で拡散速度の異なる不純物、例えば拡散
速度のおそい不純物をアンチモン、拡散速度の速
い不純物をリンとして、基板シリコン1よりも
102〜106倍程度高濃度なアンチモン拡散層2とリ
ン拡散層3とをそれぞれ拡散する(以下、埋め込
み層2、埋め込み層3という)。埋め込み層2及
び3を拡散した後、第2図に示す如く、N型シリ
コン基板1上に、N型で不純物濃度5×1014cm-3
〜3×1015cm-3のエピタキシヤル層4ご形成す
る。即ち、高濃度N型埋め込み層2及び3をN型
シリコン基板1とN型エピタキシヤル層4でサン
ドイツチした構造となる。次に、第3図に示す如
く、電源用パツドの下部に当たる部分に高濃度N
型拡散層5を拡散して、高濃度N型埋め込み層3
と導通をとる。その後、第4図に示す如く、N型
エピタキシヤル層4の表面に、MOSトランジス
タのP型ソース領域6とP型ドレイン領域7とが
形成されるこのP型ソース領域6にエピタキシヤ
ル層4から電源電圧を後に酸化膜13上に形成さ
れるアルミ電極8によつて供給する。その際アル
ミ電極8とエピタキシヤル層4との間にオーミツ
ク・コンタクトが取れる様にするために高濃度N
型拡散層9を形成する。次に高濃度N型拡散層5
上に電源用引き出しアルミ電極10及び他のアル
ミ電極11,12を形成する。
The figure shows one embodiment of the present invention. That is, as shown in Fig. 1, the N type has 5×10 14 cm -3 ~
On the surface of a silicon substrate 1 with an impurity concentration of 3×10 15 cm -3, N-type impurities with different diffusion rates, such as antimony as an impurity with a slow diffusion rate and phosphorus as an impurity with a fast diffusion rate, are added.
An antimony diffusion layer 2 and a phosphorus diffusion layer 3 each having a concentration approximately 10 2 to 10 6 times higher are diffused (hereinafter referred to as buried layer 2 and buried layer 3). After diffusing the buried layers 2 and 3, as shown in FIG. 2, an N-type impurity concentration of 5×10 14 cm -3 is placed on the N-type silicon substrate 1.
An epitaxial layer 4 of ~3×10 15 cm −3 is formed. That is, the structure is such that the heavily doped N-type buried layers 2 and 3 are sandwiched between the N-type silicon substrate 1 and the N-type epitaxial layer 4. Next, as shown in Figure 3, a high concentration of N is applied to the lower part of the power supply pad.
By diffusing the type diffusion layer 5, a high concentration N type buried layer 3 is formed.
Establish continuity with. Thereafter, as shown in FIG. 4, a P-type source region 6 and a P-type drain region 7 of a MOS transistor are formed on the surface of the N-type epitaxial layer 4. A power supply voltage is supplied by an aluminum electrode 8 that will be formed later on the oxide film 13. At this time, in order to make ohmic contact between the aluminum electrode 8 and the epitaxial layer 4, a high concentration of N is applied.
A mold diffusion layer 9 is formed. Next, high concentration N type diffusion layer 5
A power source lead aluminum electrode 10 and other aluminum electrodes 11 and 12 are formed thereon.

以上に説明したように、本発明によれば、従来
のように電源用Al配線を集積回路チツプ上に引
き回す必要がなく、高集積化が計れる。さらにチ
ヤンネルストツパー領域を除去し、かつN型シリ
コン基板とN型エピタキシヤル層の間の埋め込み
層2の“長さ対幅の比”が小さいため、埋め込み
層2の抵抗成分による電源の電圧降下も非常に小
さくすることができ集積回路の高速化が計れる。
As described above, according to the present invention, there is no need to route the power supply Al wiring over the integrated circuit chip as in the conventional case, and high integration can be achieved. Furthermore, since the channel stopper region is removed and the "length-to-width ratio" of the buried layer 2 between the N-type silicon substrate and the N-type epitaxial layer is small, the voltage drop in the power supply due to the resistance component of the buried layer 2 is reduced. It can also be made extremely small, making it possible to increase the speed of integrated circuits.

上記のように、本発明のMOSトランジスタへ
の電源供給方法により、MOS ICの高集積化、高
速度化をさらに進めることができる。本実施例で
はPチヤンネルMOSについて説明たが、Nチヤ
ンネルMOSや相補型MOSの各々のトランジスタ
についても本発明が適用出来ることは言うまでも
ない。
As described above, by the method of supplying power to a MOS transistor of the present invention, it is possible to further increase the degree of integration and speed of a MOS IC. In this embodiment, a P-channel MOS has been described, but it goes without saying that the present invention can also be applied to N-channel MOS and complementary MOS transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図までは本発明の一実施例を示す
製造工程順の断面図であり、特に第4図は本発明
を適用して得られるPチヤンネルMOSトランジ
スタの断面図でもある。 1……N型シリコン基板、2……アンチモン埋
め込み層、3……リン埋め込み層、4……N型エ
ピタキシヤル層、5……高濃度リン拡散層、6…
…リース領域、7……ドレイン領域、8……ソー
ス電極、9……コンタクト拡散層、10……電源
用引出しアルミ電極、11……ドレイン電極、1
2……ゲート電極。
1 to 4 are cross-sectional views showing one embodiment of the present invention in the order of manufacturing steps, and in particular, FIG. 4 is a cross-sectional view of a P-channel MOS transistor obtained by applying the present invention. DESCRIPTION OF SYMBOLS 1... N-type silicon substrate, 2... Antimony buried layer, 3... Phosphorus buried layer, 4... N-type epitaxial layer, 5... High concentration phosphorus diffusion layer, 6...
... Lease region, 7 ... Drain region, 8 ... Source electrode, 9 ... Contact diffusion layer, 10 ... Leading aluminum electrode for power supply, 11 ... Drain electrode, 1
2...Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板上に前記一導電型の半
導体層を有し、該半導体層に電界効果トランジス
タが形成された半導体装置において、前記半導体
基板と前記半導体層との間に高濃度半導体薄層を
設け、該高濃度半導体薄層を電源供給源とするこ
とを特徴とする半導体装置。
1. In a semiconductor device having a semiconductor layer of one conductivity type on a semiconductor substrate of one conductivity type, and a field effect transistor formed in the semiconductor layer, a high concentration semiconductor thin layer is provided between the semiconductor substrate and the semiconductor layer. 1. A semiconductor device comprising: a thin layer of highly concentrated semiconductor;
JP8307679A 1979-06-29 1979-06-29 Semiconductor device Granted JPS567449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8307679A JPS567449A (en) 1979-06-29 1979-06-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8307679A JPS567449A (en) 1979-06-29 1979-06-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS567449A JPS567449A (en) 1981-01-26
JPS6225260B2 true JPS6225260B2 (en) 1987-06-02

Family

ID=13792078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8307679A Granted JPS567449A (en) 1979-06-29 1979-06-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS567449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181474U (en) * 1986-05-12 1987-11-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181474U (en) * 1986-05-12 1987-11-18

Also Published As

Publication number Publication date
JPS567449A (en) 1981-01-26

Similar Documents

Publication Publication Date Title
JPH0410226B2 (en)
US4884116A (en) Double diffused mosfet with potential biases
JPH01128568A (en) Semiconductor device
JP2002134752A (en) Semiconductor device
JP2729422B2 (en) Semiconductor device
JPS6225260B2 (en)
JPS6123669B2 (en)
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
US5008724A (en) Semiconductor device
JPS5951143B2 (en) MIS type semiconductor device
JPS5944784B2 (en) Complementary MOS semiconductor device
JPS63278273A (en) Semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPH01189955A (en) Semiconductor device
JPH0794741A (en) Semiconductor device
JPH02170571A (en) Semiconductor device and manufacture thereof
JPS59121864A (en) Semiconductor device
JPH04317336A (en) Semiconductor device and manufacture thereof
JPS62104068A (en) Semiconductor integrated circuit device
JPS5918873B2 (en) P channel MOS field effect transistor
JPH0456280A (en) Semiconductor device and manufacture thereof
JPS59181669A (en) Mos type semiconductor device
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPS6110978B2 (en)
JPH0580155B2 (en)