JPS6225253B2 - - Google Patents

Info

Publication number
JPS6225253B2
JPS6225253B2 JP3519877A JP3519877A JPS6225253B2 JP S6225253 B2 JPS6225253 B2 JP S6225253B2 JP 3519877 A JP3519877 A JP 3519877A JP 3519877 A JP3519877 A JP 3519877A JP S6225253 B2 JPS6225253 B2 JP S6225253B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
support jig
phase reaction
substrate support
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3519877A
Other languages
Japanese (ja)
Other versions
JPS53121463A (en
Inventor
Masaru Watanabe
Masahide Kudo
Takahiro Morimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3519877A priority Critical patent/JPS53121463A/en
Publication of JPS53121463A publication Critical patent/JPS53121463A/en
Publication of JPS6225253B2 publication Critical patent/JPS6225253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板の気相反応方法にかかり、
特に半導体基板に気相反応容器中にて施す気相反
応の改良方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase reaction of a semiconductor substrate,
In particular, it provides an improved method of gas phase reactions performed on semiconductor substrates in a gas phase reaction vessel.

一例の半導体装置の製造において、半導体基板
に気相における反応を施し、その表面に酸化膜形
成、領域形成のための不純物拡散導入等を施す工
程がある。
In manufacturing an example of a semiconductor device, there is a step of subjecting a semiconductor substrate to a reaction in a gas phase, forming an oxide film on its surface, diffusing impurities to form a region, and the like.

上記工程を一例のPチヤネル・エンハンスメン
ト形MOS―FETの製造工程につき説明する。第
1図は上記MOS―FETの一部の断面図を示し、
1は比抵抗値が1〜10ΩcmのN型シリコン基板、
2はソース領域、3はドレイン領域でともに前記
基板の1主面に形成されたSiO2層4をマスクと
してP型不純物を選択的に拡散導入して形成され
る。また12はソース領域の露出面に設けられた
ソース電極、13はドレイン領域の露出面に設け
られたドレイン電極、15はゲート電極で、前記
ソース領域およびドレイン領域の間の基板主面上
にゲート酸化膜5を介して形成される。そして動
作により空乏層、反転層が形成されるところであ
るが、シリコン基板とこれに接触したSiO2との
界面は非常に複雑な様相を呈し、Si―SiO2界面は
金属(電極)―酸化物―半導体間の仕事関数差
(φMS)による電荷の誘起、酸化物と半導体その
結晶構造差による不連結から生ずる結晶不整、高
温酸化中に酸化された部分に存在した不純物や
O2のSi中への拡散などで正常でなくなる。さら
には処理工程でSiO2に不本意に付着していて侵
入する不純物による汚染は、表面欠陥層、SiO2
中に荷電体として存在し、Si表面の電子状態に大
きな影響を与え、ひいてはFETの安定性に問題
を及ぼす。上記の理由にもとづき、製造工程にお
いてはその取扱いに周到な注意を必要とし、上記
MOS―FETさらにはMOS―IC等の製造における
酸化層形成、不純物拡散等の気相成長が一般には
不所望の不純物混入、耐熱性等の面から反応容器
として特に高純度の石英管が用いられている。そ
して第2図に示す如く、石英管6の一端に反応の
雰囲気を形成するためのガス導入部(一部のガス
導入管7の一部を除き、ガス源、ガス量調整装置
等の記載を省略して示す)6を備え、他の一端は
開放にてここから半導体基板8を支持した半導体
基板支持治具18を装入する。この装入には半導
体基板支持治具移動用棒体9(以降移動用棒体と
略称する)を用いて行なう。なお上記移動用棒体
は半導体基板支持治具の取り出しにも用いうる如
く先端部に「かぎ部」が形成される。上記半導体
基板は石英管に外周する高周波コイルに通電し、
均熱管によつて加熱され、所定の雰囲気にて気相
反応が施される。そして反応が完了し降温段階に
移ると、第3図に示す如く移動用棒体を挿入して
操作(取り出し)するが、容器内に外気(空気)
が対流によつて流入する。
The above process will be explained with reference to the manufacturing process of an example of a P-channel enhancement type MOS-FET. Figure 1 shows a cross-sectional view of a part of the above MOS-FET,
1 is an N-type silicon substrate with a specific resistance value of 1 to 10 Ωcm;
2 is a source region, and 3 is a drain region, both of which are formed by selectively diffusing P-type impurities using the SiO 2 layer 4 formed on one main surface of the substrate as a mask. Further, 12 is a source electrode provided on the exposed surface of the source region, 13 is a drain electrode provided on the exposed surface of the drain region, and 15 is a gate electrode, which is provided on the main surface of the substrate between the source region and the drain region. It is formed with an oxide film 5 interposed therebetween. The operation forms a depletion layer and an inversion layer, but the interface between the silicon substrate and the SiO 2 in contact with it has a very complex appearance, and the Si-SiO 2 interface is a metal (electrode)-oxide layer. - Induction of charge due to the work function difference (φ MS ) between semiconductors, crystal misalignment caused by discontinuity due to the difference in crystal structure between oxide and semiconductor, impurities present in the oxidized part during high-temperature oxidation,
It becomes abnormal due to the diffusion of O 2 into Si. Furthermore, contamination caused by impurities that inadvertently attach to SiO 2 during the processing process can cause surface defect layers, SiO 2
It exists in the form of a charged body and has a large effect on the electronic state of the Si surface, which in turn poses a problem to the stability of the FET. Based on the above reasons, careful handling is required during the manufacturing process, and
In general, a high-purity quartz tube is used as a reaction vessel due to the contamination of undesirable impurities and heat resistance due to vapor phase growth such as oxide layer formation and impurity diffusion in the manufacture of MOS-FETs and MOS-ICs. ing. As shown in FIG. 2, there is a gas introduction section for forming a reaction atmosphere at one end of the quartz tube 6 (excluding a part of the gas introduction tube 7, the gas source, gas amount adjustment device, etc. are not described). (omitted) 6, the other end of which is open, into which a semiconductor substrate support jig 18 supporting a semiconductor substrate 8 is inserted. This loading is performed using a semiconductor substrate support jig moving rod 9 (hereinafter abbreviated as moving rod). Note that the moving rod has a "key portion" formed at its tip so that it can also be used to take out the semiconductor substrate support jig. The above semiconductor substrate is energized by a high frequency coil surrounding the quartz tube.
It is heated by a soaking tube and subjected to a gas phase reaction in a predetermined atmosphere. When the reaction is completed and the temperature is lowered, the moving rod is inserted and operated (removed) as shown in Figure 3, but the outside air (air) is removed from the container.
flows in by convection.

上記により半導体基板に反(そ)りとQss
(Surface State)の増大が発生する。上記反りは
一例として写真蝕刻の際のマスクの圧着不良によ
りパターンの精度を低下し、微細パターニングを
損ずるという欠点がある。またQssの増大は半導
体基板に形成される一例のSiO2層の層質を低下
せしめるという重大な欠点がある。なお上記Qss
は界面系に介在する実効的な全電荷を示し、次式 Qss=Vss×Cox にて表わされる。ただし上式におけるCoxは酸化
膜の電荷容量、Vss≡Vth−VIthにてVthは「し
きい値(スレシヨルド)電圧」VIthは「真性し
きい値電圧」を表わす。
The above causes Qss to warp on the semiconductor substrate.
(Surface State) increases. The above-mentioned warping has the disadvantage that, for example, the precision of the pattern is reduced due to poor press-fitting of the mask during photolithography, and fine patterning is impaired. Furthermore, an increase in Qss has a serious drawback in that it deteriorates the layer quality of an example of a SiO 2 layer formed on a semiconductor substrate. In addition, the above Qss
represents the effective total charge present in the interface system, and is expressed by the following formula: Qss = Vss × Cox. However, in the above equation, Cox represents the charge capacity of the oxide film, and Vss≡Vth-V I th, where Vth represents the "threshold voltage" and V I th represents the "intrinsic threshold voltage."

本発明は上記従来の気相反応方法における欠点
を除去する半導体基板の気相反応方法を提供する
ものである。
The present invention provides a method for vapor phase reaction of semiconductor substrates that eliminates the drawbacks of the conventional vapor phase reaction methods described above.

この発明にかかる半導体基板の気相成長方法
は、半導体基板の気相反応器の開放端からこの容
器内に半導体基板が支持された半導体基板支持治
具を装入する工程と、前記反応容器内を所定の雰
囲気にしたのち前記半導体基板を加熱して気相反
応を施す工程と、前記気相反応が終了すれば前記
反応容器の開放端に半導体基板が支持された半導
体基板支持治具を通過させる開孔のあるふた体を
装着する工程と、前記開孔から半導体基板支持治
具移動用棒体を挿入し半導体基板を支持治具とと
もに前記開孔から取り出す工程とを備えたことを
特徴とする。
A method for vapor phase growth of a semiconductor substrate according to the present invention includes the steps of: loading a semiconductor substrate support jig in which a semiconductor substrate is supported into a vapor phase reactor for semiconductor substrates from the open end of the reactor; a step of heating the semiconductor substrate to a predetermined atmosphere and subjecting it to a gas phase reaction; and once the gas phase reaction is completed, the semiconductor substrate is passed through a semiconductor substrate support jig in which the semiconductor substrate is supported at the open end of the reaction vessel; and a step of inserting a rod for moving a semiconductor substrate support jig into the aperture and taking out the semiconductor substrate together with the support jig from the aperture. do.

次に本発明を一実施例のMOS IC,MOS FET
製造に例示して詳細に説明する。第4図に示す如
く、石英管6の一端に反応の雰囲気を形成するた
めのガス導入部(一部のガス導入管の一部を除
き、ガス源、ガス量調整装置等の記載を省略して
示す)7を備え、他の一端は開放にてここから半
導体基板8を支持した半導体基板支持治具18を
装入する。この装入には移動用棒体9を用いて行
なう。なお上記移動用棒体は半導体基板支持治具
の取り出しにも用いうる如く先端部に「かぎ部」
が形成される。上記半導体基板は石英管に外囲す
る高周波コイルに通電し、均熱管によつて加熱さ
れ、所定の雰囲気にて気相反応が施される。そし
て反応が完了すれば一例の第5図にも示すふた体
10を石英管6の開放端部に装着する。上記ふた
体は前記石英管と同じ材質でなり、前記石英管6
の周面に摺動自在に外囲する筒体部10aと、閉
塞端面10bと、この端面に設けられ半導体基板
が支持された半導体基板支持治具8が通過できる
開孔10cとを備える。一例の開孔の大きさとし
て70mm×70mmの方形にて好適した。所定の温度に
まで降温すれば、前記移動用棒体9を第6図に示
す如く開孔より挿入し、端部の「かぎ部」にて半
導体基板支持治具を引き出す。
Next, the present invention will be described as an example of a MOS IC and a MOS FET.
This will be explained in detail by illustrating manufacturing. As shown in FIG. 4, a gas introduction section for forming a reaction atmosphere at one end of the quartz tube 6 (excluding some gas introduction tubes, descriptions of gas sources, gas amount adjustment devices, etc. are omitted). ) 7, the other end of which is open, into which a semiconductor substrate support jig 18 supporting a semiconductor substrate 8 is inserted. This charging is carried out using the moving rod 9. The above-mentioned moving rod has a "key part" at the tip so that it can be used to take out the semiconductor substrate support jig.
is formed. The semiconductor substrate is heated by a high-frequency coil surrounded by a quartz tube, heated by a soaking tube, and subjected to a gas phase reaction in a predetermined atmosphere. Once the reaction is complete, the lid will open as shown in Figure 5.
10 is attached to the open end of the quartz tube 6. The lid body is made of the same material as the quartz tube, and the quartz tube 6
, a closed end face 10b, and an opening 10c through which a semiconductor substrate support jig 8 provided on the end face and supporting a semiconductor substrate can pass through. As an example, a rectangular opening size of 70 mm x 70 mm is suitable. Once the temperature has fallen to a predetermined temperature, the moving rod 9 is inserted through the opening as shown in FIG. 6, and the semiconductor substrate support jig is pulled out using the "key" at the end.

本発明によれば反応容器内に外気の対流流入を
防止できるので、半導体基板に反(そ)りとQss
の増大が防止できるという顕著な利点がある。前
記反(そ)りは一例として写真蝕刻の際のマスク
の圧着不良によりパターンの精度を低下し、微細
パターニングを損ずる。またQssの増大はMOS
FET,MOS ICの電気的特性を損ずるものであ
る。即ちMOS ICのVth値についてみれば従来そ
のバラツキが±0.36Vであつたものが本発明の方
法によるとき±0.12Vに低減をみるという電気的
特性の顕著な向上が認められた。なお、本発明は
実施がきわめて容易である利点もある。
According to the present invention, it is possible to prevent convection of outside air from flowing into the reaction vessel, so that Qss
This has the distinct advantage of preventing an increase in The warpage, for example, is caused by poor press-fitting of a mask during photolithography, which reduces pattern accuracy and impairs fine patterning. Also, the increase in Qss is MOS
This impairs the electrical characteristics of FETs and MOS ICs. That is, when looking at the Vth value of a MOS IC, the variation in the Vth value, which was conventionally ±0.36V, was reduced to ±0.12V when the method of the present invention was used, and a remarkable improvement in the electrical characteristics was observed. Note that the present invention also has the advantage of being extremely easy to implement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMOS FETの一部の断面図、第2図は
半導体基板の気相反応装置の一部の断面図、第3
図は第2図の装置の操作を説明するための断面
図、第4図は本発明の一実施例の気相反応方法を
説明するための装置の断面図、第5図は本発明一
実施例の方法を説明するための装置の斜視図、第
6図は本発明一実施例の方法を説明するための装
置の一部を示す斜視図である。なお図中同一符号
は同一または相当部分を夫々示すものとする。 6……石英管(反応容器)、8……半導体基
板、9……半導体基板支持治具移動用棒体、10
……石英管のふた体、10c……ふた体の開孔、
18……半導体基板支持治具。
Figure 1 is a cross-sectional view of a part of a MOS FET, Figure 2 is a cross-sectional view of a part of a semiconductor substrate vapor phase reaction device, and Figure 3 is a cross-sectional view of a part of a semiconductor substrate vapor phase reaction device.
The figure is a sectional view for explaining the operation of the apparatus shown in Fig. 2, FIG. 4 is a sectional view of the apparatus for explaining the gas phase reaction method according to one embodiment of the present invention, and FIG. A perspective view of an apparatus for explaining an example method. FIG. 6 is a perspective view showing a part of an apparatus for explaining a method according to an embodiment of the present invention. Note that the same reference numerals in the drawings indicate the same or corresponding parts, respectively. 6... Quartz tube (reaction vessel), 8... Semiconductor substrate, 9... Rod for moving semiconductor substrate support jig, 10
...Quartz tube lid, 10c...Lid opening,
18...Semiconductor substrate support jig.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の気相反応容器の開放端からこの
容器内に半導体基板が支持された半導体基板支持
治具を装入する工程と、前記反応容器内を所定の
雰囲気にしたのち前記半導体基板を加熱して気相
反応を施す工程と、前記気相反応が終了すれば前
記反応容器の開放端に半導体基板が支持された半
導体基板支持治具を通過させる開孔のあるふた体
を装着する工程と、前記開孔から半導体基板支持
治具移動用棒体を挿入し半導体基板を支持治具と
ともに前記開孔から取り出す工程とを備えた半導
体基板の気相反応方法。
1. A step of inserting a semiconductor substrate support jig in which a semiconductor substrate is supported into the container from the open end of a vapor phase reaction container for semiconductor substrates, and heating the semiconductor substrate after creating a predetermined atmosphere in the reaction container. and a step of attaching a lid having an opening through which a semiconductor substrate support jig in which a semiconductor substrate is supported is passed through the open end of the reaction container after the gas phase reaction is completed. . A method for vapor phase reaction of a semiconductor substrate, comprising the steps of inserting a rod for moving a semiconductor substrate support jig through the opening and taking out the semiconductor substrate together with the support jig from the opening.
JP3519877A 1977-03-31 1977-03-31 Gas phase reaction method for semiconductor substrate Granted JPS53121463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3519877A JPS53121463A (en) 1977-03-31 1977-03-31 Gas phase reaction method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3519877A JPS53121463A (en) 1977-03-31 1977-03-31 Gas phase reaction method for semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS53121463A JPS53121463A (en) 1978-10-23
JPS6225253B2 true JPS6225253B2 (en) 1987-06-02

Family

ID=12435156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3519877A Granted JPS53121463A (en) 1977-03-31 1977-03-31 Gas phase reaction method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS53121463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197762U (en) * 1987-06-12 1988-12-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197762U (en) * 1987-06-12 1988-12-20

Also Published As

Publication number Publication date
JPS53121463A (en) 1978-10-23

Similar Documents

Publication Publication Date Title
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH02222546A (en) Manufacture of mos field-effect transistor
JPS6225253B2 (en)
Lam et al. Device fabrication in {100} silicon-on-oxide produced by a scanning CW-laser-induced lateral seeding technique
EP0128581A1 (en) Method of forming large number of monocrystalline semiconductor regions on surface of insulator
KR950034592A (en) Method for manufacturing semiconductor integrated circuit device having silicide film
JPH11260750A (en) Manufacture of semiconductor device
JPS6225254B2 (en)
JP3221129B2 (en) Semiconductor device manufacturing method
JP3810168B2 (en) Manufacturing method of semiconductor substrate
JPS6134978A (en) Semiconductor device
JP2718757B2 (en) MOS type semiconductor device and method of manufacturing the same
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JPS5897874A (en) Manufacture of field-effect transistor
JPH0555157A (en) Manufacture of semiconductor device
JPS5870572A (en) Semiconductor device and manufacture thereof
JPH027516A (en) Method of diffusing impurity in semiconductor
JPS55157264A (en) Manufacturing method for semiconductor device
JPS5940580A (en) Manufacture of semiconductor integrated circuit device
JPH0730114A (en) Manufacture of mos transistor
JP2845008B2 (en) Method for manufacturing semiconductor device
JPS6142911A (en) Forming method of conductive layer by implanting ion
JPS5834399Y2 (en) heat treatment equipment
JPS6132433A (en) Manufacture of semiconductor device
JPS61116874A (en) Manufacture of semiconductor device