JPS62250179A - Surface treatment of ceramic - Google Patents

Surface treatment of ceramic

Info

Publication number
JPS62250179A
JPS62250179A JP9418486A JP9418486A JPS62250179A JP S62250179 A JPS62250179 A JP S62250179A JP 9418486 A JP9418486 A JP 9418486A JP 9418486 A JP9418486 A JP 9418486A JP S62250179 A JPS62250179 A JP S62250179A
Authority
JP
Japan
Prior art keywords
plating
electroless
layer
ceramic
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9418486A
Other languages
Japanese (ja)
Inventor
Yoshinori Takakura
高倉 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9418486A priority Critical patent/JPS62250179A/en
Publication of JPS62250179A publication Critical patent/JPS62250179A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To provide electric conductivity to a ceramic substrate by subjecting the surface of the ceramic substrate to degreasing, etching with an acid soln. and electroless plating so as to metallize the surface. CONSTITUTION:The surface of a ceramic member 1 is degreased with an org. solvent contg. chlorine and the member 1 is immersed in an aqueous soln. contg. hydrofluoric acid, nitric acid and other inorg. acid to etch the surface. The surface is then sensitized and activated as usual and a Cu layer 2, an Ni layer 3 and an Ay layer 4 are successively formed by electroless plating. Thus, superior electric conductivity is provided to the ceramic member of Si3N4, SiC Al2O3, ZnO2, Cr2O3- added Al2O3 or the like having high hardness, superior wear, corrosion and heat resistances, so the utilization range can be considerably extended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はセラミックスから成る基材表面上への表面処
理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of surface treatment on the surface of a substrate made of ceramics.

〔従来の技術] 周知のように・半導体デバイスの開発・製造に伴って、
今日家電製品から産業機器に至るまで小型化、軽量化、
高速化、高密度化、高信頼性化。
[Prior art] As is well known, with the development and manufacturing of semiconductor devices,
Today, everything from home appliances to industrial equipment is becoming smaller and lighter.
Higher speed, higher density, and higher reliability.

低価格の要請はま丁ま丁強くなり、絶え間のない技術革
新が展開されている。
The demand for low prices is becoming increasingly strong, and technological innovation is constantly being developed.

これらの動向の中で、最近注目されているのがエンジニ
アリングセラミックスである。
Among these trends, engineering ceramics have recently been attracting attention.

エンジニアリングセラミックスは従来の陶磁器とは異な
り、工業的に高性能化を図ったものであす、窒化ケイ素
、炭化ケイ素、アルミナ、ジルコニア、酸化クロム添加
アルミナ、チタン酸バリウム・酸化亜鉛・べ131ヤ、
および?)種焼結フェライト等があげられる。
Engineering ceramics are different from conventional ceramics, and are made with industrially advanced materials such as silicon nitride, silicon carbide, alumina, zirconia, chromium oxide-added alumina, barium titanate, zinc oxide, aluminum alloy, etc.
and? ) Seed sintered ferrite etc.

エンジニアリングセラミックスは典型的な脆性材料であ
るが、合鴨やプラスチックに比較して高映度であり、耐
摩耗性、耐食性、1IIH熱性に優れており、添加剤の
種類によっては高熱伝導性を有する。
Although engineering ceramics are typical brittle materials, they have a high reflectivity compared to ducks and plastics, and have excellent wear resistance, corrosion resistance, and 1IIH heat resistance, and depending on the type of additives, they have high thermal conductivity.

又1通信苗報艮の増加、広域通信システムの発展に伴っ
て・マイクロ波回路の小型化が要請されている。
In addition, with the increase in the number of communications stations and the development of wide-area communication systems, there is a demand for miniaturization of microwave circuits.

マイクロ波回路の小型化は電磁波の波長が基準となり・
一般に次のようになる、 D中□        ・・・・・・・・・ (1)J
q D:誘電体共振器の直径 f二共振周波数 C:光速 εr:比誘電率 り二同軸共振器の長さ Lニストリップラインの長さ ε−= 0.6〜0.9εr …〜(31式に示したように8マイクロ波回路の小型化
には誘電体の比誘電率Cer)の大きい材料が望ましい
ことがわかり、二ンシニアリングセラミックスはかかる
点において最も有望な材料である。
The miniaturization of microwave circuits is based on the wavelength of electromagnetic waves.
In general, it will be as follows, D middle □ ・・・・・・・・・ (1) J
q D: Diameter f of dielectric resonator Resonance frequency C: Speed of light εr: Relative permittivity Two Length L of coaxial resonator L Length of strip line ε-=0.6~0.9εr ...~(31 As shown in the equation, it has been found that a material with a large dielectric constant (Cer) is desirable for downsizing microwave circuits, and secondary ring ceramics are the most promising material in this respect.

以上のように、高硬度、耐食性、耐摩耗性、耐熱性、比
誘電率等の材料特性を生かした分野への利用方法が確立
しているが、材料の脆性に加え。
As mentioned above, methods have been established to utilize material properties such as high hardness, corrosion resistance, abrasion resistance, heat resistance, and dielectric constant, but in addition to the brittleness of the material.

電気伝導性が劣っており、セラミックスからなる基材表
面に表面処理技術を応用して金属化することにより、セ
ラミックスからなる基材表面に電気伝導性をH与し、さ
らに応用分野を広げるCとが期待されている。
Electrical conductivity is poor, and by applying surface treatment technology to the surface of a ceramic base material and metallizing it, electrical conductivity can be imparted to the surface of the ceramic base material, further expanding the field of application. is expected.

かかる表面処理技術として1例えは、ア)スクリーン印
刷法、イ)真空蒸右・又はスパッタリング法、つ)無電
解及び電解めっき法等が挙げられる。
Examples of such surface treatment techniques include a) screen printing method, b) vacuum evaporation/sputtering method, and c) electroless and electrolytic plating method.

〔発明が解決しようとする問題点」 上記のような庭木のセラミックスからなる基材表面に耐
熱性が良好で電気伝導性の優れた皮膜を付与するための
表面処理方法では次に述べるような問題点が挙げられる
[Problems to be Solved by the Invention] The following problems occur in the surface treatment method for applying a film with good heat resistance and excellent electrical conductivity to the surface of a base material made of ceramics for garden trees as described above. There are several points.

即ち、上記(ア1の方法によれは、セラミックスから成
る基材表面上に金、銀、パラジウム、銅等の導電性ペー
ストを印刷インクとしてスクリーン印刷法により電子回
路を印刷し、600〜1.000℃の範囲の各電導付焼
結最適温度でセラミックス基材表面に焼付けて必要な電
子回路を得るものである。
That is, according to the above method (A1), an electronic circuit is printed on the surface of a base material made of ceramics by a screen printing method using a conductive paste of gold, silver, palladium, copper, etc. as a printing ink. The necessary electronic circuit is obtained by baking the ceramic substrate onto the surface of the ceramic substrate at the optimum sintering temperature for each conductivity in the range of 0,000°C.

又、胞法では、セラミックス基材表面全体に上記導電性
ペーストをスクリーン印刷法により印刷後、所要の電子
回路の部分のみ各電導材の最適温度(例えはレーザー装
置を利用)で焼付けて、その後、所要の電子回路以外の
不要部分を溶解して除去するのである。
In addition, in the cell method, after printing the above-mentioned conductive paste on the entire surface of the ceramic base material using a screen printing method, only the required electronic circuit parts are baked at the optimum temperature for each conductive material (for example, using a laser device), and then , unnecessary parts other than the required electronic circuits are melted and removed.

上記の導電性ペーストの電気伝導性は1G−40−側オ
ーダーであり、電子回路部品、マイクロ波回路部品にと
って要求される特性としては不充分である。
The electrical conductivity of the above conductive paste is on the order of 1G-40-, which is insufficient for the characteristics required for electronic circuit components and microwave circuit components.

上記1イlの方法によれは、セラミックスからなる基材
を真空然看、又はスパッタリング装置にセットシ、所要
の真寛度で所要の金属1例えはクロム。
According to method 1 above, a base material made of ceramics is placed in a vacuum or sputtering apparatus, and a required metal, for example chromium, is deposited with the required degree of tolerance.

ニッケル、銅、金、チタニウム、アルミニウム。Nickel, copper, gold, titanium, aluminum.

合金等を加熱・溶融させ、セラミックス基村上に堆積さ
せるものである。
This involves heating and melting an alloy, etc., and depositing it on a ceramic substrate.

上記の方法では、メタライズ層を比較的厚く・例えば1
000Å以上成膜するのに長時間(約5時間以上)要し
1例え厚くできても数μmという厚みで、実用に俳する
こ2は田Mであスー又、形状が複雑な製品に適用するに
も限度がある。
In the above method, the metallized layer is relatively thick, e.g.
It takes a long time (approximately 5 hours or more) to form a film of 000 Å or more, and even if it can be made thick, it is only a few μm thick, making it difficult to put into practical use.In addition, it is applicable to products with complex shapes. There are limits to what you can do.

上記1つ)の方法によれは、セラミックス基材表面上に
所定の前処理を行った後、所要の無電解めっきをhfA
って、その後所要の電解めっきを行なうものである。
If method 1) is used, the required electroless plating is performed on the surface of the ceramic base material using hfA after pretreatment.
Then, the required electrolytic plating is performed.

かかる方法においては特許公報昭54−24405によ
って詳細に提案されている。
Such a method is proposed in detail in Japanese Patent Publication No. 54-24405.

しかしながら、上記特許公報昭54−24405による
と、セラミック基板上に銅の無電解めっきを行ない0次
に上記無電解めっき土に電解めっきを行なう方法におい
て、一度11℃、20℃。
However, according to the above-mentioned Japanese Patent Publication No. 54-24405, in a method in which copper is electrolessly plated on a ceramic substrate and then electrolytically plated on the electroless plating soil, the temperature is once at 11°C and once at 20°C.

30″G、40℃の範囲で、めっき時曲を変化させtか
ら不電右現象発生について検討した結果、銅の無電解め
っきの不電右現象は銅めつき層の厚さと使用するセラミ
ックスの大きさく表面m)によるとしているが9本末め
っき液においてこのような現象はtl(、無電解めっき
の場会、めっき液の建浴時において添加した金属塩中の
金属分と品物との表面積との関係で示される。
As a result of changing the curve during plating in the range of 30"G and 40°C, and examining the occurrence of electroless phenomenon from t, it was found that the electroless phenomenon of electroless copper plating depends on the thickness of the copper plating layer and the ceramics used. However, in the case of electroless plating, this phenomenon is caused by the surface area of the product and the metal content in the metal salt added at the time of preparing the plating solution during electroless plating. It is shown by the relationship.

めっき厚X金属の比重X 【41  式で示したように、めっき液中の金属塩中の
金属分は各々のめつき液によって異なり、めっき厚と品
物の表面積との関係だけで示すのは粗雑な手法であり、
本末無電解めっきの不電看現象はめつきIT+iの処理
方法が確立されていないために発生するものと考えられ
る。
Plating thickness x Specific gravity of metal It is a method that
It is thought that the non-electrostatic phenomenon of electroless plating occurs because a processing method for plating IT+i has not been established.

又、無電解及び電解めっき法では、無電解めっき法で厚
くめっきを付与するのに長時開裂するのを電気めっき法
で短時間にできるようにしたり。
In addition, in electroless and electrolytic plating methods, the electroless plating method can apply a thick plating, but the long cleavage time can be reduced by the electroplating method, which can be done in a short time.

又種々の金員を付与するという利点があるが、製品の形
状が複雑になると適用することはできない。
Although it has the advantage of adding various amounts of money, it cannot be applied if the shape of the product becomes complex.

という問題点があった。There was a problem.

この発明は上記した問題点を解決するためになされたも
のであり、その目的は比較的簡単な方法により、セラミ
ック基材表面上に金属化した。かつ耐熱性・電導性の要
好な処理層を付与する方法を提供するにある。
This invention was made to solve the above-mentioned problems, and its purpose is to metallize the surface of a ceramic substrate by a relatively simple method. Moreover, it is an object of the present invention to provide a method for providing a treatment layer having desirable heat resistance and electrical conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るセラミックスから成る基材表面上への表
面処理方法は鋭意検討を重ねた結果、セラミックスから
成る基材表面を常法により脱脂後フッ化水素酸と、硝酸
と、無機酸塩とを含む水溶液中で所要時間浸漬してエツ
チングし、ついで所要厚みの無電解銅、無電解ニッケル
・無電解金めつきを行なうことにより上記目的が達成で
きることをみいだし1本発明を完成するに到った。
As a result of extensive research, the surface treatment method for the surface of a base material made of ceramics according to the present invention was developed by degreasing the surface of a base material made of ceramics using a conventional method, and then treating the surface with hydrofluoric acid, nitric acid, and an inorganic acid salt. It has been discovered that the above object can be achieved by immersing it in an aqueous solution for a required period of time for etching, and then plating it with electroless copper, electroless nickel, or electroless gold to the required thickness, and has completed the present invention. Ta.

即ち1本発明のセラミックスから成る基材表面上への表
面処理方法はめつき皮膜の密着性を向上させるには適正
な表面粗さを得ることと、耐熱性。
Namely, 1. The method of surface treatment on the surface of a substrate made of ceramics according to the present invention requires obtaining appropriate surface roughness and heat resistance in order to improve the adhesion of the plating film.

電気伝導性を改良するための金属の組合せを8′慮し、
さらに複雑な形状の製品に適用できるように電流分布を
考慮しないでめっきできる無電解めっきで全て行なえる
ことを特徴としたものである。
Considering the combination of metals to improve electrical conductivity,
Furthermore, it is characterized in that it can be completely plated using electroless plating, which can be plated without considering current distribution so that it can be applied to products with complex shapes.

以下において史に詳しく説明をする。The history will be explained in detail below.

本発明の表面処理方法は先ず、セラミックスから成る基
材表面に付看した油脂等を除去するために塩素系有機溶
剤等で脱脂を行うのである。
In the surface treatment method of the present invention, first, degreasing is performed using a chlorinated organic solvent or the like in order to remove fats and oils attached to the surface of a base material made of ceramics.

本発明の表面処理方法はついでめっき皮膜の密着性を向
上させるための適正な表面粗さを得るためにセラミック
スから成る基材表面をフッ化水素酸と、硝酸と、無機酸
とを含む水溶液中で所要時間浸漬してエツチング後、常
法によりセンシタイジング、アクチベートを行ない、つ
いで無電解鋼・無電解ニッケル、無電解金めつきを行な
って、耐熱性、電気伝導性の良好なメタライズ層を得る
のである。
In the surface treatment method of the present invention, the surface of a ceramic substrate is placed in an aqueous solution containing hydrofluoric acid, nitric acid, and an inorganic acid in order to obtain an appropriate surface roughness for improving the adhesion of the plating film. After soaking and etching for the required time, sensitizing and activating using conventional methods, and then plating with electroless steel, electroless nickel, and electroless gold to form a metallized layer with good heat resistance and electrical conductivity. You get it.

〔作 用〕 この発明においては、めっき面の脱脂、適正なエツチン
グによりめっき皮膜の密着性を確保し・その後外部を源
を一切用いないでメタライジング層を形成するので、電
解めっきの宿命的な欠点である物品の凹凸部及び端部に
おける膜厚が布の不均一化でき、複雑な形状の物品でも
補助極を使用しないでめっきが可能となり、めっき不′
ILs部分がfj (flるので品質的に安定したもの
となる。
[Function] In this invention, the adhesion of the plating film is ensured by degreasing the plating surface and proper etching, and then the metallizing layer is formed without using any external source, thereby eliminating the fateful problems of electrolytic plating. The film thickness at the irregularities and edges of the article, which is a drawback, can be made nonuniform, and even articles with complex shapes can be plated without using an auxiliary electrode, eliminating plating defects.
Since the ILs portion is equal to fj (fl), the quality is stable.

又、高温度に安定な無電解ニッケル皮膜及び無電解金め
つき皮膜を行なっているのでハンダ付温度に対しても安
定で、しかも良好な電気伝導性を得ることができる。
Furthermore, since the electroless nickel coating and electroless gold plating coating are stable at high temperatures, they are stable even at soldering temperatures and can provide good electrical conductivity.

〔実施例〕〔Example〕

以下において一′=Ali![5’lJ例を掲げこの発
明を更に詳しく説明する。
In the following, 1′=Ali! [5'lJ This invention will be explained in more detail using an example.

第1図は種々のめつき仕様における赤外放射率の熱的変
化を示す図であり、試片ナンバー111・(2)は無電
解鋼めつき十電解金めつき、(3:は無電解鋼めっき十
無電解金めつき、 141 、151は無電解銀めつき
十電解金めつき、 +61.171は無電解銀めつき十
無電解金めつき、1B+ 、 (91は無電解ニッケル
+電解金めつき、tlQ、uυは無電解ニッケルめつき
十無電解金めつきである。
Figure 1 shows the thermal changes in infrared emissivity for various plating specifications, where specimen number 111 (2) is electroless steel plated and ten electrolytic gold plated, and (3: electroless gold plated). Steel plating 10 electroless gold plating, 141, 151 electroless silver plating 10 electroless gold plating, +61.171 electroless silver plating 10 electroless gold plating, 1B+, (91 electroless nickel + electrolytic gold plating Gold plating, tlQ, uυ are electroless nickel plating and electroless gold plating.

谷試片を温度200〜290℃の各一度で4時間保持し
、加熱jif後において、定置的な把握の目安として赤
外放M(率を測定し0前後の変化を図示したものである
The valley specimen was held at a temperature of 200 to 290° C. for 4 hours at each time, and after heating JIF, the infrared emission rate was measured as a guide for stationary grasping, and the change around 0 is illustrated.

第1図から明らかなように、ベーキング温度290℃に
おいて、各めっき仕様の赤外放射率の変化が′&著とな
るが1本発明の表面処理方法である試片α[1,Qυは
加熱前後の変化が少す<、実用に供する程度の変化であ
り、最も良好な熱的安定性を示した。
As is clear from Fig. 1, at a baking temperature of 290°C, the change in infrared emissivity of each plating specification is '&'; There was little change before and after, which was enough for practical use, and showed the best thermal stability.

第2図は各無電解めっき皮膜の比抵抗値の測定結果であ
る。得られた各めっき皮膜の比抵抗値は純金属に近い値
を示している。
FIG. 2 shows the measurement results of the specific resistance values of each electroless plated film. The specific resistance value of each plated film obtained is close to that of pure metal.

一般に皮膜の電気抵抗は接触型と高周波数帯(例えば準
ミ’1波?tr%)で便用する電子機器のように表皮効
果を考慮する場合とがある。
In general, the electrical resistance of a film may take into account the skin effect, such as in contact type electronic equipment and electronic equipment commonly used in high frequency bands (for example, quasi-mi'1 wave? tr%).

接触型の場合は一番上層のめつき皮膜の抵抗値により電
At伝導性は決定されるが、高周波数帯で使用する電す
機器の場合は、めっき皮JIQJψ全体の抵抗値を考慮
する必餐がある。
In the case of a contact type, the electrical At conductivity is determined by the resistance value of the top layer plating film, but in the case of electric equipment used in high frequency bands, the resistance value of the entire plating film JIQJψ must be considered. There's dinner.

例として、第3図のめつき皮膜の断面図を利用して説明
すると0図において、11)はセラミックス。
As an example, let us explain using the cross-sectional view of the plating film in Fig. 3. In Fig. 0, 11) is ceramic.

(2)は無電解銅めっき層、(3Iは無電解ニッケルめ
つきす、141は無電解金めつき層である。
(2) is an electroless copper plating layer, (3I is an electroless nickel plating layer, and 141 is an electroless gold plating layer.

第3図のように、輻(Wl、長さ化1のセラミックス(
1)上に無電解銅めっき(21,無電解ニッケル(3;
、無電解金めつき(4)の例を考察すると次のようにな
る。
As shown in Figure 3, the radiation (Wl), the ceramics (
1) Electroless copper plating (21, electroless nickel (3;
, Considering the example of electroless gold plating (4), the following results are obtained.

金めつき皮膜+41の抵抗(R1) j、=+=金めつき厚 ニッケル皮膜(3)の抵抗(R2) ρ2=ニッケルめっき皮膜の比抵抗値 12=ニツケルめつき厚 銅めつき皮膜(2夛の抵抗(R5) ρ5=銅めっき皮膜の比抵抗値 【38銅めっき厚 151 、161 、 +71の関係式から合成抵抗式
は次のようになる。
Resistance of gold plating film + 41 (R1) j, = + = Resistance of gold plating thick nickel film (3) (R2) ρ2 = Specific resistance value of nickel plating film 12 = Nickel plating thick copper plating film (2) Multiple resistance (R5) ρ5 = Specific resistance value of copper plating film [38 From the relational expression of copper plating thickness 151, 161, +71, the combined resistance formula is as follows.

・・・・・・ta+ となる。・・・・・・ta+ becomes.

(81式と第2図の結果から・無電解ニッケルめっき厚
は可能な限り薄<シ、無電解銅めっき(2:、無電解金
めつき(4)の各々のめっき厚を可能な限り厚くした方
がめつき皮膜の全抵抗は低下し、電気伝導性の良好な皮
膜が得られる。
(From the results of formula 81 and Figure 2, the thickness of electroless nickel plating should be as thin as possible, the thickness of electroless copper plating (2:), and the thickness of electroless gold plating (4) should be as thick as possible. By doing so, the total resistance of the plating film is lowered, and a film with good electrical conductivity can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば長年待望されて
いた複雑な形状をした物品にも容易にめっきを強てこと
ができ、しかも高温度(例えば温度300℃)における
耐熱性が改善されるので今後、広範に使用されると予想
される。
As explained above, according to the present invention, it is possible to easily apply plating to articles with complex shapes, which has been desired for many years, and the heat resistance at high temperatures (e.g., 300°C) is improved. Therefore, it is expected that it will be widely used in the future.

例えは、準ミリ波帯で使用する立体回路部品の表面処理
に大いに期待されるところであり・高い信頼性を保証す
ることができる。
For example, it is highly anticipated for surface treatment of three-dimensional circuit components used in the quasi-millimeter wave band, and high reliability can be guaranteed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々のめつき仕様における赤外放射率の熱的変
化を示す図、第2図は各無電解めっき皮膜の比抵抗値の
測定結果を示す図、第3図はめっき皮膜の断面図である
。 M巾−III 1! −h ’x 2 ”IN ?  
IQI l−+ d区’WI WaG 仏^1c層・(
31は無電解ニッケルめっき層、(4)は無電解金めつ
き層である。
Figure 1 is a diagram showing thermal changes in infrared emissivity for various plating specifications, Figure 2 is a diagram showing the measurement results of specific resistance values of each electroless plating film, and Figure 3 is a cross section of the plating film. It is a diagram. M width-III 1! -h'x 2"IN?
IQI l-+ d-ku'WI WaG Buddha^1c layer・(
31 is an electroless nickel plating layer, and (4) is an electroless gold plating layer.

Claims (1)

【特許請求の範囲】[Claims] 所要形状のセラミックスから成る物品を常法により脱脂
後、フッ化水素酸と、硝酸と、無機酸塩とを含む水溶液
中で所要時間浸漬してエッチングし、ついで常法により
センシタイジング、アクチベート後所要厚みの無電解銅
めっきと、無電解ニッケルめっきと、無電解金めっきと
を順番に行って複数のめっき層を形成し、上記無電解ニ
ッケルめっき皮膜と無電解金めっき皮膜とで高温度(例
えは300℃)に対する安定性及び良好な電気伝導性を
得るようにしたことを特徴とするセラミックス上への表
面処理方法。
After degreasing a ceramic article of a desired shape by a conventional method, it is etched by immersing it in an aqueous solution containing hydrofluoric acid, nitric acid, and an inorganic acid salt for a required period of time, and then sensitized and activated by a conventional method. Electroless copper plating, electroless nickel plating, and electroless gold plating of the required thickness are performed in order to form multiple plating layers, and the electroless nickel plating film and electroless gold plating film are coated at high temperature ( 1. A method of surface treatment on ceramics, characterized in that stability against temperatures (for example, 300° C.) and good electrical conductivity are obtained.
JP9418486A 1986-04-23 1986-04-23 Surface treatment of ceramic Pending JPS62250179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9418486A JPS62250179A (en) 1986-04-23 1986-04-23 Surface treatment of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9418486A JPS62250179A (en) 1986-04-23 1986-04-23 Surface treatment of ceramic

Publications (1)

Publication Number Publication Date
JPS62250179A true JPS62250179A (en) 1987-10-31

Family

ID=14103231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9418486A Pending JPS62250179A (en) 1986-04-23 1986-04-23 Surface treatment of ceramic

Country Status (1)

Country Link
JP (1) JPS62250179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968979A1 (en) * 1998-06-30 2000-01-05 Siemens Aktiengesellschaft Etching of Bi-based metal oxides ceramics
JP2011517307A (en) * 2008-03-06 2011-06-02 セラムテック アクチエンゲゼルシャフト Metalized coil body with high Q

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968979A1 (en) * 1998-06-30 2000-01-05 Siemens Aktiengesellschaft Etching of Bi-based metal oxides ceramics
JP2011517307A (en) * 2008-03-06 2011-06-02 セラムテック アクチエンゲゼルシャフト Metalized coil body with high Q

Similar Documents

Publication Publication Date Title
EP0591198B1 (en) Method for coating a dielectric ceramic piece
US4795658A (en) Method of metallizing ceramic material
US3362851A (en) Nickel-gold contacts for semiconductors
US3212918A (en) Electroless plating process
US3172074A (en) Electrical resistors
JP2637804B2 (en) Substrate with plating
JP3563832B2 (en) Method for metallizing ferrite using surface reduction
JPS62250179A (en) Surface treatment of ceramic
US5210511A (en) Dielectric resonator and process for manufacturing the same
US20190093233A1 (en) Non-Seed Layer Electroless Plating of Ceramic
US3679472A (en) Method for bonding a metal pattern to a substrate
RU2815518C1 (en) Method for galvanic gold coating of semiconductor device housings
JPH0785495B2 (en) Method of forming copper electrode on oxide ceramics
JPS58157963A (en) Manufacture of layer of high melting point metal or metal compound
JP2004253997A (en) Method for manufacturing electronic parts, electronic parts, resonator, and filter
JPH04202672A (en) Formation of electrode for ceramic electronic part
US3034921A (en) Metal coating and method of making the same
JPS62248289A (en) Method and apparatus for forming fine conductor layer pattern
JPH05101972A (en) Method for forming electrode on ceramic
RU2083064C1 (en) Process of manufacturing current conductive silver coats
JPS63270454A (en) Method for metallizing of aluminum nitride substrate
JP4186808B2 (en) Manufacturing method of ceramic electronic component
JPH05110321A (en) Electrode forming method for microwave use dielectric resonator
Van Nie Electroless NiP processing for hybrid integrated circuits
JPS6317531A (en) Method and apparatus for manufacturing fine conductor layered pattern