JPH05110321A - Electrode forming method for microwave use dielectric resonator - Google Patents

Electrode forming method for microwave use dielectric resonator

Info

Publication number
JPH05110321A
JPH05110321A JP29078891A JP29078891A JPH05110321A JP H05110321 A JPH05110321 A JP H05110321A JP 29078891 A JP29078891 A JP 29078891A JP 29078891 A JP29078891 A JP 29078891A JP H05110321 A JPH05110321 A JP H05110321A
Authority
JP
Japan
Prior art keywords
plating
film
chemical
dielectric resonator
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29078891A
Other languages
Japanese (ja)
Inventor
Takao Tani
恭男 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Ltd filed Critical Hitachi Ferrite Ltd
Priority to JP29078891A priority Critical patent/JPH05110321A/en
Publication of JPH05110321A publication Critical patent/JPH05110321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To avoid swell due to plating and to attain excellence in the economy by forming a chemical plating Ni-P being a background electrode as a specific film and applying thick plating by means of chemical Cu plating. CONSTITUTION:The surface of a dielectric resonator ceramics 2 is processed in the order of degreasing, chemical etching, susceptibility and activation, a film 4 is formed for a background electrode whose thickness is 0.1mum or over and less than 1/10 of the skin depth by the chemical Ni-P plating, and thick plating is implemented as a layer 5 by chemical Cu plating to form double electrode layers. After the chemical etching processing is implemented in this way, when the chemical Ni-P plating 4 is implemented as the background plating, since the Ni-P in the etching trace is grown from the initial deposition in a minute film form, the close adhesion on the border of the dielectric substance raw Ni-P film is very excellent. The swell due to plating is avoided by forming the Cu film on the Ni-P film face by the chemical Cu plating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波用等に用いられ
る誘電体共振器の電極形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming electrodes of a dielectric resonator used for high frequencies and the like.

【0002】[0002]

【従来の技術】誘電体共振器の断面図を図4に示す。こ
の誘電体共振器に電極を形成する方法として、従来より
Ag微粉末とガラスフリットを混合した導体ペーストを
内周面及び外周面の全面または一部分を残して選択的に
塗布し、これを600〜900℃の高温中で焼付するこ
とによって電極層を形成する方法がある。また一方、昨
今では、誘電体共振器の低価格化や高性能化を指向した
電極形成法として、本体に直接無電解Cuめっきを形成
する方法も行われている。
2. Description of the Related Art A sectional view of a dielectric resonator is shown in FIG. As a method of forming electrodes on this dielectric resonator, a conductive paste in which Ag fine powder and glass frit are mixed has been conventionally applied selectively while leaving all or part of the inner peripheral surface and the outer peripheral surface. There is a method of forming an electrode layer by baking at a high temperature of 900 ° C. On the other hand, in recent years, a method of directly forming electroless Cu plating on the main body has been performed as an electrode forming method aiming at cost reduction and high performance of the dielectric resonator.

【0003】[0003]

【発明が解決しようとする課題】従来の電極形成方法の
内、Agとガラスの焼結体により電極層を形成させた前
者のものは、使用する電極材料が貴金属であるため高価
となることはもとより、誘電体の内周面、外周面に導体
ペーストを均一に塗布する作業は複雑を極め、量産性に
欠けていた。さらに、密着強度や半田ぬれ性を改善する
ために、Pt、Pd等の金属を含むため誘電体共振器の
重要な特性であるQに影響の深い電気抵抗が大きくなる
といった問題があった。そこで、後者のごとく誘電体上
に無電解CuめっきすることによりCu皮膜を電極層と
して形成する方法が行われている。しかし、無電解Cu
めっき法によるCu皮膜を電極層とした場合、誘電体の
特に内周面にいわゆるめっきふくれが多発する。このめ
っきふくれの最大の原因は、誘電体素地とCu皮膜との
密着強度が弱いためである。そこで、このCu皮膜をN
2、Ar等の不活性ガス中で熱処理すること(特開昭5
8―166806号公報参照)や還元性雰囲気中あるい
は弱酸化性雰囲気中で熱処理すること(特開昭61―1
21501号公報参照)により、この問題を解消するこ
とも試みられている。しかし、これら雰囲気中で熱処理
する方法では作業工数が増え、コストアップにもつなが
り量産性にも欠ける。そこで、本発明は、上記のような
めっきふくれを解消し、経済的にも優れた誘電体共振器
の電極形成方法を提供するものである。
Among the conventional electrode forming methods, the former one in which an electrode layer is formed of a sintered body of Ag and glass is expensive because the electrode material used is a noble metal. Of course, the work of uniformly applying the conductor paste to the inner and outer peripheral surfaces of the dielectric is extremely complicated and lacks mass productivity. Further, in order to improve the adhesion strength and the solder wettability, since metal such as Pt and Pd is contained, there is a problem that the electric resistance, which has a great influence on Q, which is an important characteristic of the dielectric resonator, becomes large. Therefore, as in the latter method, a method of forming a Cu film as an electrode layer by electroless Cu plating on a dielectric is performed. However, electroless Cu
When the Cu film formed by the plating method is used as the electrode layer, so-called plating blisters frequently occur especially on the inner peripheral surface of the dielectric. The biggest cause of this plating blistering is that the adhesion strength between the dielectric substrate and the Cu coating is weak. Therefore, the Cu coating is N
2. Heat treatment in an inert gas such as Ar
No. 8-166806) or heat treatment in a reducing atmosphere or a weakly oxidizing atmosphere (JP-A-61-1).
Japanese Patent Laid-Open No. 21501) has been attempted to solve this problem. However, the method of heat treatment in these atmospheres increases the number of work steps, increases costs, and lacks mass productivity. Therefore, the present invention provides a method for forming an electrode for a dielectric resonator, which is economically excellent in eliminating the above-described plating swelling.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明の誘電体共振器の電極形成方法は、誘電体の素
地全体(表面)を脱脂し、その後、化学的エッチング処
理により表面を粗化し、引続き水洗い、感受性、活性化
の処理を行なう。次に下地めっきとして無電解Ni―P
めっきを行ないNi―P皮膜を形成した後、無電解Cu
めっきにより、Cu皮膜を厚付けした2重構造の電極層
を形成したことを特徴とした電極形成方法である。
In order to solve the above-mentioned problems, a method for forming an electrode of a dielectric resonator according to the present invention is to degrease the entire base material (surface) of a dielectric material and then chemically etch the surface. Roughening, followed by washing with water, sensitivity and activation. Next, electroless Ni-P is used as the base plating.
After plating to form a Ni-P film, electroless Cu
The electrode forming method is characterized in that a double-layered electrode layer having a thick Cu film is formed by plating.

【0005】[0005]

【作用】誘電体素地を化学的エッチングした後、無電解
Cuめっきを行った場合、エッチング痕にCuの粗大な
粒子状の析出が生じ、これらが互いに接触しCu皮膜が
形成される。このとき素地とCu皮膜の界面層には多く
の細孔が存在し、これが密着強度を低下させる原因であ
り、ひいてはめっきふくれの原因になる。しかし、本発
明のように化学的エッチング処理した後、下地めっきと
して無電解Ni―Pめっきを行った場合、エッチング痕
でNi―Pが初期析出から微細な皮膜形態で成長するた
め誘電体素地とNi―P皮膜の界面での密着性は、非常
に良好である。この下地であるNi―P皮膜面に無電解
CuめっきによりCu皮膜を形成した場合、Cu皮膜の
成長過程は、粗大な粒子状で成長するのではなく、Ni
―P皮膜に類似した微細な皮膜形態で成長していく。ま
た、このCu皮膜の成長は、Ni―P皮膜の厚みが0.
1μm以上あれば行うことが出来、Ni―P皮膜の電気
抵抗も膜厚がスキンデプス(δε)の1/10程度以内
であれば、誘電体共振器のQに影響を及ぼさない。尚、
スキンデプス(δε)は、式1で決定される。
When the electroless Cu plating is performed after the dielectric substrate is chemically etched, coarse Cu particles are deposited on the etching traces, and these are in contact with each other to form a Cu film. At this time, many pores are present in the interface layer between the base material and the Cu film, which causes a decrease in adhesion strength, which in turn causes a plating blister. However, when the electroless Ni-P plating is performed as the undercoat after the chemical etching treatment as in the present invention, Ni-P grows in a fine film form from the initial deposition due to the etching marks, so that the dielectric substrate is not formed. The adhesion at the interface of the Ni-P coating is very good. When a Cu film is formed by electroless Cu plating on the surface of the Ni-P film which is the base, the Cu film does not grow in the form of coarse particles during the Cu film growth process.
-Grow in a fine film morphology similar to P film. Further, the growth of this Cu film is such that the thickness of the Ni-P film is 0.
It can be performed if the thickness is 1 μm or more, and the electric resistance of the Ni—P film does not affect the Q of the dielectric resonator if the film thickness is within about 1/10 of the skin depth (δε). still,
The skin depth (δε) is determined by Equation 1.

【0006】[0006]

【式1】 [Formula 1]

【0007】従って、このような簡単な方法で密着強度
の改善、めっきふくれの解消さらには、経済的にも優れ
た誘電体共振器が実現される。
Therefore, by such a simple method, the adhesion strength is improved, the plating swelling is eliminated, and the economically excellent dielectric resonator is realized.

【0008】[0008]

【実施例】次に、この発明の実施例について説明する。 実施例1 BaO―Sm2O3―CeO2―Pr6O11―TiO
2系の誘電体を外径16mm、内径4.4mm、高さ1
8mmに加工した物の表面を10%NaOHで脱脂し、
さらに、HF―HNO3混合溶液で化学的にエッチング
を行なう(図2(a))。水洗した後、奥野製薬製トッ
プOPC―80キャタリスト(80ml/l)とHCl
(300ml/l)の混合溶液により感受性化処理を行
なう(図2(b))。引続き、H2SO4(250ml
/l)で表面を活性化処理する。次に、奥野製薬製トッ
プTMP化学ニッケル浴(160ml/l)、30℃に
浸漬し、Ni―P皮膜を下地めっき皮膜として析出させ
る(図3)。この析出した皮膜上に、硫酸銅、ホルムア
ルデヒド、NaOH、錯化剤からなる混合溶液(但し、
金属銅2g/l、ホルムアルデヒド3.4g/l、pH
=12.3、55℃)で厚付Cuめっき処理を行ない、
誘電体共振器(図1に断面図を示す)を得た。この時の
エッチング時間、下地Ni皮膜の厚さ、めっきふくれ、
無負荷Q及び判定結果を表1に示す。尚、Q値は、共振
周波数470(MHz)により測定し、また、判定結果
は、実際に共振器フィルターに使用したときの結果が、
〇印は実用可能なもののめどとなるQ値が900以上の
もので、めっきふくれが極少もしくは無いもの、×印は
それ以外のものを示す。
EXAMPLES Next, examples of the present invention will be described. Example 1 BaO-Sm2O3-CeO2-Pr6O11-TiO
16mm outer diameter, 4.4mm inner diameter, 1 height
Degrease the surface of the object processed to 8 mm with 10% NaOH,
Further, chemical etching is performed with an HF-HNO3 mixed solution (FIG. 2 (a)). After washing with water, Okuno Seiyaku Top OPC-80 catalyst (80 ml / l) and HCl
Sensitization treatment is performed with a mixed solution of (300 ml / l) (FIG. 2 (b)). Continued, H2SO4 (250ml
/ L) to activate the surface. Next, it is immersed in a top TMP chemical nickel bath (160 ml / l) manufactured by Okuno Seiyaku Co., Ltd. at 30 ° C. to deposit a Ni—P film as a base plating film (FIG. 3). A mixed solution of copper sulfate, formaldehyde, NaOH and a complexing agent (however,
Metallic copper 2 g / l, formaldehyde 3.4 g / l, pH
= 12.3, 55 ° C.) thick Cu plating treatment is performed,
A dielectric resonator (a cross sectional view is shown in FIG. 1) was obtained. Etching time at this time, thickness of underlying Ni film, plating blisters,
Table 1 shows the no-load Q and the determination result. The Q value was measured at a resonance frequency of 470 (MHz), and the judgment result was that the result when actually used for the resonator filter was
.Smallcircle intended Q value which is a prospect of viable ones of more than 900, as the plating blistering or not very small, × mark indicates anything other than it.

【0009】実施例2 BaO―Sm2O3―CeO2―Pr6O11―TiO
2系の誘電体を外径16mm、内径4.4mm、高さ6
0mmに加工した物を、実施例1と同様のめっき処理
し、その結果も実施例1と同様に表2に示す。尚、Q値
は共振周波数130(MHz)により測定し、また、判
定結果は、実施例1と同様、〇印が実用可能なQ≧57
0のもので、めっきふくれが極少もしくは無いもの、×
印はそれ以外のものを示す。比較例は、試料Noに※印
をしているものであり、表1、2中の試料No1〜3
は、従来どおりの無電解Cuめっきで電極を形成したも
のである。
Example 2 BaO-Sm2O3-CeO2-Pr6O11-TiO
16mm outer diameter, 4.4mm inner diameter, 6 height
The product processed to 0 mm was plated as in Example 1, and the results are shown in Table 2 as in Example 1. The Q value is measured by the resonance frequency of 130 (MHz), and the judgment result is the same as in the first embodiment.
0, with minimal or no plating blister, ×
Marks indicate other things. In the comparative example, the sample No. is marked with *, and the sample Nos. 1 to 3 in Tables 1 and 2 are used.
Shows that an electrode is formed by conventional electroless Cu plating.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【発明の効果】本発明において、誘電体素地を化学的エ
ッチング処理により微細な凹凸を作製し、そのエッチン
グ面に下地めっきとして無電解Ni―Pめっきにより緻
密なNi―P皮膜を0.1μm以上スキンデプスの1/
10以下形成し、そのNi―P皮膜上に無電解Cuめっ
きによりCu皮膜を形成させた2重構造の電極層を形成
させることによって、密着強度が改善され、めっきふく
れが解消する。さらに、製造方法も簡単かつ量産性に優
れ、経済的にも優れている。さらに、誘電体共振器とし
ての高周波特性のQも優れたものが得られる。
INDUSTRIAL APPLICABILITY In the present invention, fine asperities are formed on a dielectric substrate by chemical etching, and a dense Ni-P film is formed on the etched surface by electroless Ni-P plating as a base plating to have a thickness of 0.1 μm or more. 1 / skin depth
By forming 10 or less and forming an electrode layer having a double structure in which a Cu film is formed by electroless Cu plating on the Ni-P film, the adhesion strength is improved and the plating swelling is eliminated. Furthermore, the manufacturing method is simple, mass productivity is excellent, and it is economically excellent. Further, it is possible to obtain an excellent Q of high frequency characteristics as a dielectric resonator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の誘電体共振器の断面図
である。
FIG. 1 is a sectional view of a dielectric resonator of an embodiment according to the present invention.

【図2】本発明に係る一実施例の説明図である。FIG. 2 is an explanatory diagram of an embodiment according to the present invention.

【図3】本発明に係る一実施例の説明図である。FIG. 3 is an explanatory diagram of an embodiment according to the present invention.

【図4】一般的な誘電体共振器である。FIG. 4 is a general dielectric resonator.

【符号の説明】[Explanation of symbols]

1 電極(Cu電極もしくはAg電極) 2 誘電体 3 キャタリスト(Pd+Sn) 4 Ni―P電極 5 Cu電極 イ エッチング痕 1 electrode (Cu electrode or Ag electrode) 2 dielectric 3 catalyst (Pd + Sn) 4 Ni-P electrode 5 Cu electrode a etching mark

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘電体共振器セラミックスの表面を脱
脂、化学的エッチング、感受性化、活性化の順に処理し
た後、下地電極として無電解Ni―Pめっきの厚みを
0.1μm以上、スキンデプスの1/10以下の皮膜に
形成させた後、無電解Cuめっきにより厚付けめっきを
行った2重構造の電極層を形成したことを特徴とするマ
イクロ波用誘電体共振器の電極形成方法。
1. A surface of a dielectric resonator ceramic is treated in the order of degreasing, chemical etching, sensitization, and activation, and then electroless Ni-P plating as a base electrode has a thickness of 0.1 μm or more and a skin depth of An electrode forming method for a dielectric resonator for microwaves, comprising forming an electrode layer having a double structure by forming a film having a thickness of 1/10 or less and then performing thick plating by electroless Cu plating.
JP29078891A 1991-10-11 1991-10-11 Electrode forming method for microwave use dielectric resonator Pending JPH05110321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29078891A JPH05110321A (en) 1991-10-11 1991-10-11 Electrode forming method for microwave use dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29078891A JPH05110321A (en) 1991-10-11 1991-10-11 Electrode forming method for microwave use dielectric resonator

Publications (1)

Publication Number Publication Date
JPH05110321A true JPH05110321A (en) 1993-04-30

Family

ID=17760514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29078891A Pending JPH05110321A (en) 1991-10-11 1991-10-11 Electrode forming method for microwave use dielectric resonator

Country Status (1)

Country Link
JP (1) JPH05110321A (en)

Similar Documents

Publication Publication Date Title
EP0591198B1 (en) Method for coating a dielectric ceramic piece
US4668925A (en) Dielectric resonator and method for making
US3172074A (en) Electrical resistors
JP2637804B2 (en) Substrate with plating
JP5947401B2 (en) Copper metallized wiring ceramic substrate and manufacturing method thereof
TWI231315B (en) Electronic part and method for manufacturing the same
JPH05110321A (en) Electrode forming method for microwave use dielectric resonator
JP3348705B2 (en) Electrode formation method
JP3925724B2 (en) Surface treatment method for non-conductive materials
JP4207394B2 (en) Method for forming copper electrode of ceramic electronic component
JPS59176907A (en) Dielectric resonator ceramics for microwave
RU2815518C1 (en) Method for galvanic gold coating of semiconductor device housings
JP4048427B2 (en) Electronic component manufacturing method and electronic component
JP2002302778A (en) Method of forming electroconductive part on anodic- oxidized film of aluminum alloy
JPS6313504A (en) Dielectric resonator ceramics for microwave
JPH07161567A (en) Electrode for electronic part and its manufacture
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
JP3846708B2 (en) Electronic component plating method and electronic component manufacturing method
JPH0888104A (en) Chip-shaped electronic component and its manufacture
JPS6295894A (en) Formation of through hole substrate
SU1366294A1 (en) Method of obtaining porous cellular material
JPH03108901A (en) Manufacture of dielectric resonator
JPH0878801A (en) Circuit substrate and manufacture thereof
JPH05101972A (en) Method for forming electrode on ceramic
JP2003231972A (en) Method for manufacturing electronic parts, and electronic parts