JPS62248969A - Defrostation operation control method of air conditioner - Google Patents
Defrostation operation control method of air conditionerInfo
- Publication number
- JPS62248969A JPS62248969A JP61091612A JP9161286A JPS62248969A JP S62248969 A JPS62248969 A JP S62248969A JP 61091612 A JP61091612 A JP 61091612A JP 9161286 A JP9161286 A JP 9161286A JP S62248969 A JPS62248969 A JP S62248969A
- Authority
- JP
- Japan
- Prior art keywords
- way valve
- defrosting
- compressor
- low
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000010257 thawing Methods 0.000 claims description 47
- 239000003507 refrigerant Substances 0.000 claims description 20
- 238000005057 refrigeration Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 241001556567 Acanthamoeba polyphaga mimivirus Species 0.000 description 1
- 240000003473 Grevillea banksii Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Defrosting Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、ヒートポンプ式空気調和機に係り、詳しくは
低外剣温時に室外熱交換器に付着する霜を融解する除霜
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to a defrosting method for melting frost adhering to an outdoor heat exchanger when the outside temperature is low.
従来の技術
従来のこのヒートポンプ式空気調和機の除霜運転制御方
法は四方弁を暖房運転状態から反転させて、圧縮機の高
温高圧ガスを室外熱交換器に送る方法か一般に知られて
いる。2. Description of the Related Art A conventional defrosting operation control method for a heat pump type air conditioner is generally known in which the four-way valve is reversed from the heating operation state and the high temperature, high pressure gas from the compressor is sent to the outdoor heat exchanger.
しかしながら、このような方法では、冷凍サイクルの配
管長が非常に長い場合において、吸入圧力が負圧域で運
転される時間が長くなることから、圧縮機の急激な温度
変化とオイルの粘性が低下し、冷凍との二相分離などで
圧縮機の信頼性が低下することや、室内熱交換器及び配
管の温度低下によって、暖房運転再開での立上り運転に
時間が掛る。However, with this method, when the piping length of the refrigeration cycle is extremely long, the suction pressure is operated in a negative pressure range for a long time, resulting in rapid temperature changes in the compressor and a decrease in oil viscosity. However, the reliability of the compressor decreases due to two-phase separation from the refrigeration system, and the temperature of the indoor heat exchanger and piping decreases, so it takes time to restart the heating operation.
寸だ第7図を参照しなから、従来の除霜方法の一例につ
いて説明する。An example of a conventional defrosting method will be described with reference to FIG.
第7図は、ヒートポンプ式空気調和機の冷凍ツーイクル
図であり、圧縮機101、四方弁102、非利用側熱交
換器103、冷房時通過の逆止弁104、冷房用キャピ
ラリチューブ105、利用側熱交換器106を順次環状
に接続し、暖房時通過の逆止弁107と暖房用膨張弁i
oaの直列回器を、冷房時通過の逆止弁104と冷房用
キャピラリチューブ1050間に並列に設けられる他に
、同じく並列に、バイパス回路を設け、このバイパス回
路中に、デフロスト時のみ開となる電磁弁109を設け
ている。FIG. 7 is a refrigeration cycle diagram of a heat pump type air conditioner, showing a compressor 101, a four-way valve 102, a heat exchanger 103 on the non-use side, a check valve 104 that passes during cooling, a capillary tube 105 for cooling, and a use side The heat exchangers 106 are sequentially connected in an annular manner, and the check valve 107 that passes during heating and the heating expansion valve i
In addition to installing the OA series circuit in parallel between the check valve 104 that passes during cooling and the cooling capillary tube 1050, a bypass circuit is also provided in parallel, and a bypass circuit is provided in the bypass circuit that is open only during defrosting. A solenoid valve 109 is provided.
発明が解決しようとする問題点
てキャピラリチューブをバイパスさせても、本体内の循
環量か太きいため、配管自身がキャピラリチューブ【抵
抗体)の役目となって、吸入状態の負圧域は基本的に変
わらないことやまたインパーク式圧縮機にて最高周波数
運転にて除霜能力を」−けようとしても負圧域か長くな
るたけてあり、さらに多冷媒において湿った冷媒か多量
に吸入へ帰ってくるという欠点かあった。The problem that the invention aims to solve is that even if the capillary tube is bypassed, the amount of circulation within the main body is large, so the piping itself acts as a capillary tube (resistance element), and the negative pressure region in the suction state is basically In addition, even if you try to increase the defrosting ability with an impark type compressor at the highest frequency operation, the negative pressure region will be longer, and in case of multiple refrigerants, a large amount of wet refrigerant will be sucked. There was a downside to coming back.
本発明は」1記問題点に鑑み、長配管となる冷凍サイク
ル及び多冷媒の除霜運転制御での対応を1」的としてい
る。In view of the problem described in item 1, the present invention aims to deal with the defrosting operation control of a refrigeration cycle with long pipes and multiple refrigerants.
問題点を解決するだめの手段
上記問題点を解決するために本発jJlの空気調和機の
除霜運転方法は、インバータ式圧縮機、四方弁、室内熱
交換器、第1の絞り装置、室外熱交換器、アキュームレ
ータを順次環状に配管で連結して冷凍サイクルを構成し
、前記第1の絞り装置と並列に、逆止弁第1の二方弁の
直列回路からなる第1のバイパス回路を設け、さらに常
に高温高圧冷媒が通る吐出配管と常に低湿低圧冷媒か通
る吸入配管の間に、第2の二方弁と第2の絞り装置の直
列回路からなる第2のバイパス1111路を設け、除霜
運転の開始と終了の検知を行う除霜検知手段と、この除
霜検知手段の出力によII)FJil記圧縮板圧縮機弁
、第1第2の各二方弁の作動を制御する手段を具備し、
除霜開始信号を受けるこ七により、前記圧縮機の運転周
波数を低周波数に落とし、その後四方弁を切換えて除霜
運転に入り、さらに四方弁の切換えとほぼ同時に前記第
1の二方弁と第2の二方弁を開放状態にしてから、運転
周波数を最高周波数まで」1昇させて除霜運転を行うも
のである。Means to Solve the Problems In order to solve the above problems, the defrosting operation method of JJL's air conditioner uses an inverter compressor, a four-way valve, an indoor heat exchanger, a first throttling device, and an outdoor A refrigeration cycle is constructed by sequentially connecting a heat exchanger and an accumulator in a ring with piping, and a first bypass circuit consisting of a series circuit of a first two-way valve and a check valve is arranged in parallel with the first throttling device. Further, a second bypass 1111 path consisting of a series circuit of a second two-way valve and a second throttle device is provided between the discharge pipe through which high-temperature high-pressure refrigerant always passes and the suction pipe through which low-humidity low-pressure refrigerant always passes, Defrost detection means for detecting the start and end of defrosting operation, and the output of this defrost detection means to control the operation of II) the compression plate compressor valve and the first and second two-way valves. equipped with the means;
Upon receiving the defrosting start signal, the compressor lowers the operating frequency to a low frequency, then switches the four-way valve to enter defrosting operation, and almost simultaneously switches the four-way valve and switches the compressor to the first two-way valve. After opening the second two-way valve, the operating frequency is increased by 1 to the highest frequency to perform defrosting operation.
作 用
本発明は上記構成より、運転周波数か低周波数運転時に
四方弁か切換りほぼ同時に第1の二方弁と第2の二方弁
が切換ることにより、除霜運転開始時間の冷媒音を減少
させるとともに第1の二方弁が開放状態となることによ
り、絞り装置で絞られていた低圧を」1昇させT循環量
を」二け、又第2の二方弁が開放状態になることにより
、吐出された冷媒の一部が吸入に流れこむだめさらに低
圧は上昇し、循環量が土留するとともに、室内熱交換器
及び配管の温度の低下を少なりシ、除霜を行ない吸入へ
戻ってきた凝縮冷媒の乾き度を−に肩させて、圧縮機内
への液バンクを防止し、さらに低圧か負圧にならないこ
とから運転周波数を最高周波数にできるため、高い除霜
能力が得られるものである。さらに四方弁の切換り前に
第1の二方弁と第2の二方弁を開放状態にしても除霜性
能としては変わりない0
実施例
以下本発明の一実施例の空気調和機の除霜運転制御方法
について、図面を参照しなから説明する。According to the above-mentioned configuration, the present invention switches between the four-way valve and the first two-way valve and the second two-way valve at the same time when the operating frequency is low or the operating frequency is low, thereby reducing the refrigerant noise at the start time of the defrosting operation. At the same time as the first two-way valve is opened, the low pressure that was throttled by the throttling device is increased by 1, the T circulation amount is increased by 2, and the second two-way valve is opened. As a result, a part of the discharged refrigerant flows into the suction, further increasing the low pressure, reducing the amount of circulation and reducing the temperature drop in the indoor heat exchanger and piping. The dryness of the condensed refrigerant returned to the compressor is reduced to a negative level, preventing liquid banks from entering the compressor, and since the pressure does not become low or negative, the operating frequency can be set to the highest frequency, resulting in high defrosting performance. It is something that can be done. Furthermore, even if the first two-way valve and the second two-way valve are opened before switching the four-way valve, the defrosting performance remains the same. The frost operation control method will be explained with reference to the drawings.
第1図は本発明の空気調和機の冷凍サイクル図を示すも
のである。FIG. 1 shows a refrigeration cycle diagram of an air conditioner according to the present invention.
同図において、インバータ式圧縮機1、四方弁2、室内
熱交換器3、第1の絞り装置4、室外熱交換器5、アキ
ュームレーク6を順次環状に配管で連結して冷凍サイク
ルを構成している。In the figure, an inverter compressor 1, a four-way valve 2, an indoor heat exchanger 3, a first throttling device 4, an outdoor heat exchanger 5, and an accumulation rake 6 are sequentially connected via piping to form a refrigeration cycle. ing.
そして、前記の第1の絞り装置4と並列に逆止弁7と第
1の二方弁8の直列回路からなる第1のバイパス回路9
を設け、さらに常に高温高圧冷媒が通る吐出配管1a吉
常に低湿低圧冷媒か捕る吸入配管1bの間に第2の二方
弁10と第2の絞り装置11の直列回路からなる第2の
バイパス回路12を設けた構成となっている。ここでに
、冷房運転においては省略し、暖房運転時の冷媒の流れ
を実線矢印及び除η丁運転(冷房)ftf転ツ〜イクル
)時の冷媒の流れを破線矢印で示し、除霜運転において
は、吐出された冷媒が、吸入管1bと四方弁2を通って
室外熱交換器5へ分かれて流れる回路である。A first bypass circuit 9 is arranged in parallel with the first throttle device 4 and includes a series circuit of a check valve 7 and a first two-way valve 8.
Furthermore, a second bypass circuit consisting of a series circuit of a second two-way valve 10 and a second throttling device 11 is provided between the discharge pipe 1a through which high-temperature, high-pressure refrigerant always passes, and the suction pipe 1b through which low-humidity, low-pressure refrigerant is always captured. The configuration includes 12. Here, cooling operation is omitted, and the refrigerant flow during heating operation is shown by solid line arrows, and the refrigerant flow during defrosting operation (cooling) ftf rotation cycle is shown by broken line arrows. is a circuit in which the discharged refrigerant passes through the suction pipe 1b and the four-way valve 2 and flows separately to the outdoor heat exchanger 5.
次に第2図により制御回路の概略構成図について説明す
る。Next, a schematic configuration diagram of the control circuit will be explained with reference to FIG.
PI 図はマイクロコンピュータ16を貝、侑fした制
御回路で、室外熱交換器温度を検知し取出すサーミスタ
15の信号をマイクロコンピュータのボート1で入力し
ている。The PI figure shows a control circuit using a microcomputer 16, and a signal from a thermistor 15 for detecting and extracting the temperature of the outdoor heat exchanger is inputted to the microcomputer boat 1.
そのインパーク部17より運転されるインバータ式圧縮
機1がある。また、ボート3より信号を出して四方弁2
のリレーコイル20に通電し、接点20aを投入して四
方弁2をONさせている。前述の動作と同様にボート4
.5.6.7から信号を出して、リレーコイル22.2
1.19.18に通電し、接点22a、21 a、 1
9a、 IE3aを投入し、室外側送風機14、室内側
送風機13、第2の二方弁10、第1の二方弁8をON
させている。さらに23は電源で、24は増幅器、25
は電源スィッチを示す。There is an inverter type compressor 1 operated by the impark section 17. Also, send a signal from boat 3 and use four-way valve 2.
The relay coil 20 is energized, the contact 20a is closed, and the four-way valve 2 is turned on. Boat 4 in the same way as above
.. 5.6.7 gives a signal and relay coil 22.2
1.19.18 is energized, contacts 22a, 21a, 1
9a, turn on the IE3a and turn on the outdoor side blower 14, indoor side blower 13, second two-way valve 10, and first two-way valve 8.
I'm letting you do it. Furthermore, 23 is a power supply, 24 is an amplifier, 25
indicates a power switch.
次に以上のように構成された空気調和機についてその動
作を第2図から第4図を参考に説明する。Next, the operation of the air conditioner configured as described above will be explained with reference to FIGS. 2 to 4.
電源スィッチ25かONしてから初期設定は、第3図に
示すように室外配管温度設定の除霜開始を決める温度T
o!、及び除霜終了を決める温度Tβカウント時間n−
oとして、四方弁2、室内側送風機13、室外側送風機
14、第1の二方弁8、第2の二方弁10及び圧縮機1
の運転周波数の」1昇と停止時間設定をhl、除霜開始
を検知してインパーク式圧縮機1を低周波数運転とする
周波数をfl、及び除霜運転時、インバータ式圧縮機1
の運転周波数を最高とする最高周波数f m a xと
して、初期化及び初期設定を行う(stepl)。After turning on the power switch 25, the initial setting is the temperature T that determines the start of defrosting of the outdoor piping temperature setting, as shown in Figure 3.
o! , and the temperature Tβ count time n− that determines the end of defrosting.
o, a four-way valve 2, an indoor blower 13, an outdoor blower 14, a first two-way valve 8, a second two-way valve 10, and a compressor 1
The operating frequency is increased by 1 and the stop time setting is set to hl, the frequency at which the impark type compressor 1 is set to low frequency operation upon detecting the start of defrosting is set to fl, and during defrosting operation, the inverter type compressor 1 is set to low frequency operation.
Initialization and initial setting are performed (step) as the highest frequency fmax with the operating frequency of .
上記初期化及び初期設定されるさ、この時第1の二方弁
8及び第2の二方弁10は閉状態でろり9・、
暖房運転が行われる。そして室外の配管センサー15で
室外の熱交換器温度Taを検知して設定温Tiと同じか
低くなれは、除霜を開始するべく、マイクロコンピュー
タ160入力ボート1へ、信号を送る( 5tsp2)
。そしてマイクロコンピュータ16の出力ポート2(以
後出力ポートと略する)から信号を出力してインバータ
式圧縮機1の運転周波数foを低周波数f1へ落とす(
5tep3 )。After the above-mentioned initialization and initial settings are performed, the first two-way valve 8 and the second two-way valve 10 are closed, and the heating operation is performed. Then, when the outdoor heat exchanger temperature Ta is detected by the outdoor piping sensor 15 and becomes equal to or lower than the set temperature Ti, a signal is sent to the microcomputer 160 input boat 1 to start defrosting (5tsp2).
. Then, a signal is output from the output port 2 (hereinafter referred to as the output port) of the microcomputer 16 to reduce the operating frequency fo of the inverter compressor 1 to the low frequency f1 (
5 step 3).
その後ある一定時間カウントする( 5top4 )。After that, count for a certain period of time (5top 4).
そして出力ポート3より信号を出して四方弁2を切換え
る( 5top5 )。さらに出力ポート4.5より信
号を出して室内側送風機(以後室内ファンと称す)13
及び室外側送風機(以後室外ファンと称す)14を停止
させる(stop6.7)。その結果除霜運転に入り、
カウント時間をn = o 、5初期化する( 5te
p8 )。そしである一定時間をカウントする( 5t
ep9 )。その時間が経過すると出力ポートロ、7よ
り信号を出して第1の二方弁8と第2の二方弁10を開
放状態(ON)にする(stepl 0.11 )。そ
して再びカウント時間をn=。と初期化する( s t
e p 12 )。そしである一定時間カウントする
(stepl3)。そのVt、 出力ポート1より信号
を出して、インバータ駆動部17よりインバータ式圧縮
機1の運転周波数fQを高周波数f m a x と
する(stepl4)oそして除霜運転を続け、室外の
配管センv−15で室外の熱交換器温度Taを検知して
、設定温度Tβと同じ力・高い値になれは、除霜運転を
終了させるべく、マイクロコンピュータ16の入力ボー
ト1へ信号を送る(stepl5)。これによりマイク
ロコンピュータ16は出力ポート2より信号を出してイ
ンバータ式圧縮機1を停止させる(stepl6)。Then, a signal is output from output port 3 to switch four-way valve 2 (5top5). Furthermore, a signal is output from the output port 4.5 to the indoor fan (hereinafter referred to as the indoor fan) 13.
And the outdoor side blower (hereinafter referred to as outdoor fan) 14 is stopped (stop6.7). As a result, it enters defrosting operation,
Initialize the count time n = o, 5 (5te
p8). Then count a certain amount of time (5t
ep9). When that time has elapsed, a signal is output from the output port 7 to turn the first two-way valve 8 and the second two-way valve 10 into an open state (ON) (step 0.11). Then count time n= again. Initialize ( s t
e p 12). Then, a certain period of time is counted (step 3). Vt, a signal is output from the output port 1, and the inverter drive unit 17 sets the operating frequency fQ of the inverter compressor 1 to the high frequency fmax (step 4). Then, the defrosting operation is continued and the outdoor piping sensor is V-15 detects the outdoor heat exchanger temperature Ta, and if it becomes the same power and high value as the set temperature Tβ, it sends a signal to the input port 1 of the microcomputer 16 to end the defrosting operation (step 5). ). As a result, the microcomputer 16 outputs a signal from the output port 2 to stop the inverter compressor 1 (step 6).
次に暖房運転開始の前に出力ポート3より信号1δ
;、19)。そしてカウント時間n−。L初期化する(
step20)。次にある一定時間カウントする(st
op21)。その時間か経過すると出力ポート2より信
号を出してインパーク式圧縮機111 ・
ファン盲3を運転させる(step23.24)。最後
にカウント時間n = oと初期化する( 5tep2
5)。Next, before starting the heating operation, a signal 1δ is sent from the output port 3;, 19). and count time n-. Initialize L (
step 20). Next, count for a certain period of time (st
op21). When that time has elapsed, a signal is output from the output port 2 to operate the impark type compressor 111 and fan blind 3 (steps 23 and 24). Finally, initialize the count time n = o (5tep2
5).
その結果暖房運転が行われる。As a result, heating operation is performed.
さらに」−記動作から冷凍サイクルの変化を示す第5図
表モリエル線図を示す第6図から冷媒の状態について説
明する。従来の四方弁切換え方法を破線で示し、本発明
の除霜方法を実線にて示している。Furthermore, the state of the refrigerant will be explained with reference to Figure 5, which shows changes in the refrigeration cycle from the operation described above, and Figure 6, which shows a Mollier diagram. The conventional four-way valve switching method is shown by a broken line, and the defrosting method of the present invention is shown by a solid line.
除霜開始T1からT3と長くかかる。しかし本発明の除
霜方法では実線で示すごとく、除霜開始T1から除霜運
転時において、吐出ガスの一部が吸入状態が0点にある
ことから若干スパーヒートがとPlにならないため、運
転周波数を除霜時に最高周波数まで上けることができる
。その結果インバータ式圧縮機1の入力も上昇して除霜
に与えられる能力も上昇する。さらに圧縮機自身の熱量
も利用している(吐出(タンク−1−) E点→○点)
ため、第5図のT2で示すように除霜時間も従来より短
縮できる。Defrosting takes a long time from T1 to T3. However, in the defrosting method of the present invention, as shown by the solid line, from the start of defrosting T1 to the defrosting operation, some of the discharged gas is in the suction state at the 0 point, so some superheat does not reach Pl. The frequency can be increased to the highest frequency during defrosting. As a result, the input power of the inverter type compressor 1 also increases, and the capacity provided for defrosting also increases. Furthermore, the compressor's own heat is used (discharge (tank-1-) point E → point ○)
Therefore, as shown by T2 in FIG. 5, the defrosting time can also be shortened compared to the conventional method.
このような除霜運転制御方法により、配管の大巾な延長
化にともなう低圧の負圧現象及び多冷媒による凝縮冷媒
の戻り現象に対して支障のない除霜運転が行なえる。With such a defrosting operation control method, defrosting operation can be carried out without any problems with low negative pressure phenomena caused by wide extension of piping and the return phenomenon of condensed refrigerant due to multiple refrigerants.
なお、本実施例においては、第1の三方弁8と第2の二
方弁10の動作を四方弁2の切換え後行うようにしたが
、四方弁2の切換えと同時あるいはその前に動作させる
ようにしても除霜性能は変わらず、本発明の要旨主税し
ない。但し第1の二方弁8及び第2の二方弁10の切換
え動作は、運転周波数を最高周波数とする前にしなけれ
ば低圧の負圧及び凝縮冷媒の戻りがある。また第1の三
方弁8と第2の二方弁10の相互の動作タイミン13・
・−・
グは同時または若干の時間の遅れを設けてもよい。In this embodiment, the first three-way valve 8 and the second two-way valve 10 are operated after the four-way valve 2 is switched, but it is also possible to operate them at the same time as or before the four-way valve 2 is switched. Even if this is done, the defrosting performance remains the same and is not the main point of the present invention. However, if the switching operation of the first two-way valve 8 and the second two-way valve 10 is not performed before the operating frequency is set to the highest frequency, low negative pressure and return of the condensed refrigerant will occur. Also, the mutual operation timing 13 of the first three-way valve 8 and the second two-way valve 10 is
・−・ The operations may be performed at the same time or with a slight time delay.
発明の効果
上記実施例でも明らかなように本発明は、除霜運転の開
始信号を受けてから、運転周波数を低周波数とし四方弁
を切換えて除霜運転を開始し、これとほぼ同時に第1の
二方弁と第2の二方弁を開放状態にして、運転周波数を
最高運転周波数に上昇させて除霜を行うだめ、冷凍サイ
クルの配管長さが大巾に延長されても除霜を行って吸入
へ戻ってきた凝縮冷媒の乾き度は土性−し、圧縮機内へ
の液バツクが防止できる。寸だ低圧の負圧運転を行なわ
ないことから、圧縮機の信頼性の向」二と室内熱交換器
及び配管の温度低下を少なくし、暖房運転復帰後の立」
ユリを速くできる。さらに低圧が負圧減にならないこと
で除霜運転周波数を最高運転周波数に上げることができ
るため、高い除霜能力が得られ、短時間にて除霜を終了
させることができる。Effects of the Invention As is clear from the above embodiments, the present invention starts the defrosting operation by setting the operating frequency to a low frequency and switching the four-way valve after receiving the defrosting operation start signal, and almost simultaneously with this, the first defrosting operation is started. Defrosting cannot be performed by opening the two-way valve and the second two-way valve and increasing the operating frequency to the maximum operating frequency, so even if the piping length of the refrigeration cycle is extended considerably, defrosting will not be possible. The dryness of the condensed refrigerant that has gone and returned to the suction is as dry as possible, and liquid backflow into the compressor can be prevented. Since there is no negative pressure operation at extremely low pressures, the reliability of the compressor is improved, and the temperature drop in the indoor heat exchanger and piping is reduced, making it easier to operate after returning to heating operation.
Can make Yuri faster. Furthermore, since the defrosting operation frequency can be increased to the maximum operating frequency since the low pressure does not become negative pressure reduction, high defrosting ability can be obtained and defrosting can be completed in a short time.
第1図は水元FI11の一実施例に係る空気調和機の冷
凍サイクル図、第2図は同空気調和機の除霜制御を行う
制御回路の概略構成図、第3図は同制御方法のフローチ
ャート図、第4図は同制御方法のタイムチャート図、第
5図は従来方法と本発明方法の高低匣変化図、第6図は
従来方法と本発明方法の比較を示すモリエル線図、第7
図は従来例を示す冷凍サイクル図である。
1・・・・・・インバータ式圧縮機、2・・・・・・四
方弁、3・・・・・・室内熱交換器、4・・・・・・第
1の絞り装置、5・・・・・・室外熱交換器、6・・・
・・・アキーームレータ、7・・・・・・逆止弁、8・
・・・・・第1の二方弁、9・・・・・・第1の794
27回路、10・・・・・・第2の二方弁、11・・・
・・・第2の絞り装置、12・・・・・・第2のバイパ
ス回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名\N
つ+カヵト句〉ミミ輩
凶
第5図
P
丁I 72 7’3
7i、rLa第6図
′1□−
第7図
/θ3
abFig. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of Mizumoto FI11, Fig. 2 is a schematic configuration diagram of a control circuit that performs defrosting control of the air conditioner, and Fig. 3 is a diagram of the control method. Flow chart diagram, Figure 4 is a time chart diagram of the same control method, Figure 5 is a height change diagram of the conventional method and the method of the present invention, Figure 6 is a Mollier diagram showing a comparison between the conventional method and the method of the present invention, 7
The figure is a refrigeration cycle diagram showing a conventional example. 1... Inverter compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... First expansion device, 5... ...Outdoor heat exchanger, 6...
... Achimulator, 7... Check valve, 8.
...First two-way valve, 9...First 794
27 circuits, 10...second two-way valve, 11...
...Second aperture device, 12...Second bypass circuit. Name of agent: Patent attorney Toshio Nakao and one other person\N
tsu+kakato haiku〉Mimi hai kyou no 5 P cho I 72 7'3
7i, rLa Fig. 6'1□- Fig. 7/θ3 ab
Claims (1)
り装置、室外熱交換器、アキュームレータを順次環状に
配管で連結して冷凍サイクルを構成し、前記の第1の絞
り装置と並列に、逆止弁と第1の二方弁の直列回路から
なる第1のバイパス回路を設け、さらに常に高温高圧冷
媒が通る吐出配管と常に低温低圧冷媒が通る吸入配管の
間に、第2の二方弁と第2の絞り装置の直列回路からな
る第2のバイパス回路を設け、さらに除霜運転の開始と
終了の検知を行う除霜検知手段と、この除霜検知手段の
出力により前記圧縮機、四方弁、第1、第2の各二方弁
の作動を制御する手段を具備し、除霜開始信号を受ける
ことにより、前記圧縮機の運転周波数を低周波数に落と
し、その後四方弁を切換えて除霜運転に入り、さらに前
記四方弁の切換えとほぼ同時に前記第1の二方弁と第2
の二方弁を開放状態にしてから、運転周波数を最高周波
数まで上昇させて除霜運転を行なうようにした空気調和
機の除霜運転制御方法。An inverter compressor, a four-way valve, an indoor heat exchanger, a first throttling device, an outdoor heat exchanger, and an accumulator are sequentially connected in a ring shape with piping to form a refrigeration cycle, and are connected in parallel with the first throttling device. , a first bypass circuit consisting of a series circuit of a check valve and a first two-way valve is provided, and a second bypass circuit is provided between the discharge pipe through which high-temperature, high-pressure refrigerant always passes and the suction pipe through which low-temperature, low-pressure refrigerant always passes. A second bypass circuit consisting of a series circuit of a direct valve and a second throttling device is provided, and further includes a defrost detection means for detecting the start and end of defrosting operation, and an output of the defrost detection means to detect the compressor. , a four-way valve, and means for controlling the operation of each of the first and second two-way valves, and upon receiving a defrosting start signal, reduce the operating frequency of the compressor to a low frequency, and then switch the four-way valves. Then, almost simultaneously with switching the four-way valve, the first two-way valve and the second two-way valve are switched.
A defrosting operation control method for an air conditioner, in which defrosting operation is performed by opening a two-way valve and then increasing the operating frequency to the highest frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61091612A JPS62248969A (en) | 1986-04-21 | 1986-04-21 | Defrostation operation control method of air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61091612A JPS62248969A (en) | 1986-04-21 | 1986-04-21 | Defrostation operation control method of air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62248969A true JPS62248969A (en) | 1987-10-29 |
JPH0550670B2 JPH0550670B2 (en) | 1993-07-29 |
Family
ID=14031389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61091612A Granted JPS62248969A (en) | 1986-04-21 | 1986-04-21 | Defrostation operation control method of air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62248969A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012007800A (en) * | 2010-06-24 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | Heat pump type hot-water supply and air-conditioning system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828936A (en) * | 1981-08-13 | 1983-02-21 | Toshiba Corp | Operation controlling method of compressor with inverter |
JPS5995350A (en) * | 1982-11-22 | 1984-06-01 | 三菱電機株式会社 | Controller for capacity control type refrigeration cycle |
JPS60243458A (en) * | 1984-05-17 | 1985-12-03 | 三菱電機株式会社 | Controller for operation of compressor for air conditioner by inverter |
JPS6136669A (en) * | 1984-07-26 | 1986-02-21 | 株式会社東芝 | Refrigeration cycle |
-
1986
- 1986-04-21 JP JP61091612A patent/JPS62248969A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828936A (en) * | 1981-08-13 | 1983-02-21 | Toshiba Corp | Operation controlling method of compressor with inverter |
JPS5995350A (en) * | 1982-11-22 | 1984-06-01 | 三菱電機株式会社 | Controller for capacity control type refrigeration cycle |
JPS60243458A (en) * | 1984-05-17 | 1985-12-03 | 三菱電機株式会社 | Controller for operation of compressor for air conditioner by inverter |
JPS6136669A (en) * | 1984-07-26 | 1986-02-21 | 株式会社東芝 | Refrigeration cycle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012007800A (en) * | 2010-06-24 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | Heat pump type hot-water supply and air-conditioning system |
Also Published As
Publication number | Publication date |
---|---|
JPH0550670B2 (en) | 1993-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07120121A (en) | Drive controller for air conditioner | |
JP3341404B2 (en) | Operation control device for air conditioner | |
KR20050086189A (en) | A hotting drive method of heat pump multi-air conditioner | |
JP2500522B2 (en) | Refrigeration system operation controller | |
JPH04222353A (en) | Operation controller for air conditioner | |
JP2551238B2 (en) | Operation control device for air conditioner | |
JPS62248969A (en) | Defrostation operation control method of air conditioner | |
JP2760218B2 (en) | Oil recovery operation control device for air conditioner | |
JP3343916B2 (en) | Refrigeration equipment | |
JP3303689B2 (en) | Binary refrigeration equipment | |
JP2555779B2 (en) | Operation control device for air conditioner | |
JPH07243726A (en) | Two-stage cooler | |
JPH0772647B2 (en) | Pressure equalizer for air conditioner | |
JP3134350B2 (en) | Defrost control device | |
JPH0217370A (en) | Operation control device for air conditioning device | |
JPH02157568A (en) | Refrigerant residence suppressing device for air conditioning device | |
JP2669069B2 (en) | Heating and cooling machine | |
EP0153557A2 (en) | Refrigeration cycle apparatus | |
EP0247638B1 (en) | Refrigeration cycle apparatus | |
JPS62237260A (en) | Defrostation control method of heat pump type air conditioner | |
JPS6346350B2 (en) | ||
JPS5971963A (en) | Heat pump type refrigeration cycle | |
JP2503743B2 (en) | Refrigeration system operation controller | |
JPH0579901B2 (en) | ||
JPH0810087B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |