JPS62247980A - Rear wheel steering control device for front and rear wheel steering car - Google Patents

Rear wheel steering control device for front and rear wheel steering car

Info

Publication number
JPS62247980A
JPS62247980A JP9296386A JP9296386A JPS62247980A JP S62247980 A JPS62247980 A JP S62247980A JP 9296386 A JP9296386 A JP 9296386A JP 9296386 A JP9296386 A JP 9296386A JP S62247980 A JPS62247980 A JP S62247980A
Authority
JP
Japan
Prior art keywords
steering angle
vehicle
wheel steering
rear wheel
angle ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9296386A
Other languages
Japanese (ja)
Other versions
JPH0761790B2 (en
Inventor
Hideki Kusunoki
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61092963A priority Critical patent/JPH0761790B2/en
Publication of JPS62247980A publication Critical patent/JPS62247980A/en
Publication of JPH0761790B2 publication Critical patent/JPH0761790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To ensure the running stability of a vehicle by relaxing the change in a rear wheel steering angle by means of an output means comprising an electric control device when the rear wheel is steered by a predetermined angle in accordance with the change in a vehicle running condition related with the acceleration of the vehicle during cornering. CONSTITUTION:Each of a front wheel 2 and a rear wheel 4 is steered by each of a front and a rear wheel steering mechanism 3 and 5 depending on the rotation of a steering handle 1. And the rear wheel steering mechanism 5 is controlled by an electric control device 8 in such a way that the rear wheel steering angle is changed by a predetermined angle in response to the change in a vehicle running condition related with the acceleration of a vehicle during cornering based on each signal from a front wheel steering angle sensor 6 and an acceleration sensor 7. In the aforementioned device, the electric control device 8 is composed of a means 8a which judges the vehicle running condition based on both a front wheel steering angle and the quantity of acceleration, and a means 8b which outputs a control signal for the rear wheel steering mechanism 5 so that a rear wheel steering angle is gradually changed to a predetermined angle in response to the change in a judged vehicle running condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前輪操舵機構及び後輪操舵機構を備えた前後
輪操舵車に係り、特に旋回中の該車両の加速に関係した
車両走行状態の変化に対応して、後輪操舵角を所定角度
だけ変更するように後輪操舵機構を制御する前後輪操舵
車の後輪操舵制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a front and rear wheel steered vehicle equipped with a front wheel steering mechanism and a rear wheel steering mechanism, and particularly relates to vehicle running conditions related to acceleration of the vehicle during turning. The present invention relates to a rear wheel steering control device for a front and rear wheel steered vehicle that controls a rear wheel steering mechanism to change a rear wheel steering angle by a predetermined angle in response to a change in the rear wheel steering angle.

〔従来技術〕[Prior art]

従来、この種の制御装置は、特開昭57−60974号
公報に示されるように、前輪操舵角を検出する前輪操舵
角センサ及び車両の走行加速度を検出する加速度センサ
を備え、前記両センサ出力に基づき、旋回中における車
両の加速を検出し、当該車両が後輪駆動型(又は前輪駆
動型)の車両であれば、前記加速の検出時に、後輪を前
輪に対して同相(又は逆相)方向に所定量操舵して、旋
回中の同車両の加速に伴い駆動輪である後輪(又は前輪
)がスリップすることに起因して生じる同車両のスピン
(又はドリフトアウト)を防止するようにしている。
Conventionally, this type of control device includes a front wheel steering angle sensor that detects the front wheel steering angle and an acceleration sensor that detects the running acceleration of the vehicle, as shown in Japanese Patent Application Laid-open No. 57-60974, and the outputs of both of the sensors are If the vehicle is a rear-wheel drive (or front-wheel drive) vehicle, the rear wheels are in phase (or out of phase) with respect to the front wheels when the acceleration is detected. ) to prevent the vehicle from spinning (or drifting out) caused by the rear (or front) driving wheels slipping as the vehicle accelerates while turning. I have to.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の装置においては、旋回中における
車両の加速が検出されると、該検出時に後輪は所定量だ
け操舵され、その結果、後輪操舵角が前記所定量分だけ
急激に変化するので、この変化の過程において車両の走
行安定性が悪化するという問題がある。また、車両の旋
回又は加速が解除されて前記検出がされなくなると、該
検出がされなくなった時点で前記後輪操舵を復帰させる
ために後輪が前記とは逆方向に所定量だけ操舵され、そ
の結果、後輪操舵角が前記と同様に前記所定量分だけ急
激に変化するので、この場合も前記場合と同様に車両の
走行安定性が悪化する。
However, in the conventional device described above, when acceleration of the vehicle during a turn is detected, the rear wheels are steered by a predetermined amount at the time of detection, and as a result, the rear wheel steering angle rapidly changes by the predetermined amount. Therefore, there is a problem that the running stability of the vehicle deteriorates in the process of this change. Further, when the turning or acceleration of the vehicle is canceled and the detection is no longer performed, the rear wheels are steered by a predetermined amount in the opposite direction to the above in order to restore the rear wheel steering at the time when the detection is no longer performed; As a result, the rear wheel steering angle abruptly changes by the predetermined amount in the same manner as described above, and in this case as well, the running stability of the vehicle deteriorates as in the above case.

本発明は、上記問題に鑑み案出されたもので、その目的
とするところは、上記後輪の操舵に伴う後輪操舵角の変
化を緩和することによって、上記車両の走行安定性の悪
化を防止するようにした前後輪操舵車の後輪操舵制御装
置を提供することにある。
The present invention has been devised in view of the above problem, and its purpose is to alleviate the deterioration of the running stability of the vehicle by alleviating the change in the rear wheel steering angle caused by the steering of the rear wheels. An object of the present invention is to provide a rear wheel steering control device for a vehicle with front and rear wheel steering, which prevents the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題を解決して上記目的を達成するために、本発
明の構成上の特徴は、第1図に示すように、操舵ハンド
ル1の回動に応じて前輪2を操舵する前輪操舵機構3と
、後輪4を操舵する後輪操舵機構5と、前輪操舵角を検
出する前輪操舵角センサ6と、車両の走行加速度を検出
する加速度センサ7と、前記前輪操舵角センサ6及び前
記加速度センサ7からの信号に基づき旋回中の車両の加
速に関係した車両走行状態の変化に対応して後輪操舵角
を所定角度だけ変更するように前記後輪操舵機構5を制
御する電気制御装置8とを有する前後輪操舵車の後輪操
舵制御装置において、前記電気制御装置8を、前記検出
前輪操舵角及び前記検出加速度の大きさに基づき前記車
両走行状態を判別する判別手段8aと、前記判別した車
両走行状態の変化に応答して後輪操舵角が前記所定角度
まで除々に変化するように前記後輪操舵機構5を駆動制
御する制御信号を出力する出力手段8bとにより構成し
たことにある。
In order to solve this problem and achieve the above object, the structural features of the present invention are as shown in FIG. , a rear wheel steering mechanism 5 that steers the rear wheels 4, a front wheel steering angle sensor 6 that detects the front wheel steering angle, an acceleration sensor 7 that detects the running acceleration of the vehicle, and the front wheel steering angle sensor 6 and the acceleration sensor 7. an electric control device 8 that controls the rear wheel steering mechanism 5 to change the rear wheel steering angle by a predetermined angle in response to a change in the vehicle running state related to the acceleration of the vehicle during turning based on a signal from the In the rear wheel steering control device for a front and rear wheel steered vehicle, the electric control device 8 is configured to include a determining means 8a for determining the vehicle running state based on the detected front wheel steering angle and the magnitude of the detected acceleration; and an output means 8b for outputting a control signal for driving and controlling the rear wheel steering mechanism 5 so that the rear wheel steering angle gradually changes to the predetermined angle in response to changes in the running condition.

〔発明の作用〕[Action of the invention]

上記のように構成した本発明においては、判別手段8a
が、前輪操舵角センサ6及び加速度センサ7により各々
検出される前輪操舵角及び車両の走行加速度に基づいて
、旋回中の車両の加速度に関係した車両走行状態を判別
するので、当該車両が旋回中に加速したり、旋回中に加
速した当該車両が直進状態に復帰したりして、前記車両
走行状態が変化した場合、該変化が判別手段8aにより
検出される。この車両走行状態の変化の検出に応答し、
出力手段8bが、後輪操舵角が所定角度まで除々に変化
するように、後輪操舵機構5を駆動制御する制御信号を
同機構5に出力するので、この場合、後輪4は後輪操舵
機構5により除々に前記所定角度まで操舵される。
In the present invention configured as described above, the determining means 8a
However, since the vehicle running state related to the acceleration of the turning vehicle is determined based on the front wheel steering angle and the vehicle running acceleration detected by the front wheel steering angle sensor 6 and the acceleration sensor 7, respectively, it is possible to determine whether the vehicle is turning. When the vehicle running state changes, such as when the vehicle accelerates during a turn or returns to a straight-ahead state after accelerating during a turn, the change is detected by the determining means 8a. In response to the detection of this change in vehicle running condition,
The output means 8b outputs a control signal for driving and controlling the rear wheel steering mechanism 5 to the rear wheel steering mechanism 5 so that the rear wheel steering angle gradually changes to a predetermined angle. The mechanism 5 gradually steers the vehicle to the predetermined angle.

〔発明の効果〕〔Effect of the invention〕

上記作用説明からも理解できる通り、旋回中の車両の加
速度に関係した車両走行状態が変化して、後輪4が所定
角度だけ操舵される場合、後輪4の操舵に伴う後輪操舵
角の変化が出力手段8bの作用により緩和されるので、
上記従来装置のように後輪操舵角の急激な変化に起因し
た車両の走行安定性の悪化が防止されて、車両の走行安
定性が良好となる。
As can be understood from the above operation explanation, when the vehicle running state related to the acceleration of the vehicle during turning changes and the rear wheels 4 are steered by a predetermined angle, the rear wheel steering angle due to the steering of the rear wheels 4 changes. Since the change is alleviated by the action of the output means 8b,
Unlike the conventional device described above, deterioration of the running stability of the vehicle due to sudden changes in the rear wheel steering angle is prevented, and the running stability of the vehicle is improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。第2
図は、前輪操舵機構20と、後輪操舵機構30と、後輪
駆動装置4oと、後輪操舵機構30を制御する電気制御
装置5oとを備えた車両を概略的に示している。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure schematically shows a vehicle including a front wheel steering mechanism 20, a rear wheel steering mechanism 30, a rear wheel drive device 4o, and an electric control device 5o that controls the rear wheel steering mechanism 30.

前輪操舵機構20は、ラックアンドビニオン機構21と
、同機構21のラック部に連結された左右一対のリレー
ロッド22a、22bとを備えてイル。ランクアンドビ
ニオン機構21はソノビニオン部にて操舵軸23を介し
て操舵ハンドル24に連結されており、操舵ハンドル2
4の回転運動をリレーロッド22a、22bの往復運動
に変換している。左右リレーロッド22a、22bは左
右タイロッド25a、25b及び左右ナックルア−ム2
6a、26bを介して左右前輪27a、27bに各々連
結されて左右前輪27a、27bを操舵する。
The front wheel steering mechanism 20 includes a rack and binion mechanism 21 and a pair of left and right relay rods 22a and 22b connected to the rack portion of the mechanism 21. The rank and binion mechanism 21 is connected to the steering handle 24 via the steering shaft 23 at the sonobinion part.
4 is converted into reciprocating motion of the relay rods 22a and 22b. The left and right relay rods 22a, 22b are connected to the left and right tie rods 25a, 25b and the left and right knuckle arms 2.
It is connected to left and right front wheels 27a and 27b via 6a and 26b, respectively, and steers the left and right front wheels 27a and 27b.

後輪操舵機構30は左右前輪27a、27bの操舵に連
動して左右後輪31a、31bを操舵するための揺動レ
バー32と、この揺動レバー32の支点32aを変位さ
せるためのリニアアクチェエータ33と、左右後輪31
a、31bを連動させるリレーロッド34を備えている
。揺動レバー32は左ナックルアーム26aに連結され
た前側連結ロッド35を枢着した力点32bと後側連結
ロッド36を枢着した作用点32Cとを備え、支点32
aが力点32bと作用点32cとの間にある場合には作
用点32cを力点32bと逆方向に変位させ、支点32
aが作用点32cに対し力点32bと反対側にある場合
には作用点32Cを力点32bと同方向に変位させ、さ
らに支点32aが作用点32C上にある場合には作用点
32cを変位させないようにして、支点32aの位置に
基づき支点32a、力点32b間の距離と、支点32a
2作用点32C間の距離との比により舵角比を設定する
ようにしている。リニアアクチェエータ33は支点32
aに連結したアクチュエータロッド33aを備え、アク
チュエータロッド33aを車体横方向に移動することに
より支点32aを同方向に変位させる。リレーロッド3
4は左右後輪31a、31bを左右タイロッド37a、
37b及び左右ナックルアーム38a、38bを介して
各々連結する。左ナックルアーム38aには後側連結ロ
ッド36が連結されており、揺動レバー32の揺動に基
づき駆動される後側連結ロッド36によって後輪31a
、31bが操舵されるようになっている。
The rear wheel steering mechanism 30 includes a swinging lever 32 for steering the left and right rear wheels 31a, 31b in conjunction with the steering of the left and right front wheels 27a, 27b, and a linear actuator for displacing the fulcrum 32a of the swinging lever 32. Eta 33 and left and right rear wheels 31
It is equipped with a relay rod 34 that interlocks a and 31b. The swing lever 32 includes a force point 32b to which a front connecting rod 35 connected to the left knuckle arm 26a is pivoted, and an action point 32C to which a rear connecting rod 36 is pivotally connected.
If a is between the force point 32b and the force point 32c, the force point 32c is displaced in the opposite direction to the force point 32b, and the fulcrum 32
When a is on the opposite side of the point of force 32b to the point of action 32c, the point of action 32C is displaced in the same direction as the point of force 32b, and when the fulcrum 32a is above the point of action 32C, the point of action 32c is not displaced. Then, based on the position of the fulcrum 32a, the distance between the fulcrum 32a and the point of force 32b, and the fulcrum 32a
He is trying to set a steering angle ratio by the ratio with the distance between two points of action 32C. The linear actuator 33 is at the fulcrum 32
The actuator rod 33a is connected to the vehicle body, and by moving the actuator rod 33a in the lateral direction of the vehicle body, the fulcrum 32a is displaced in the same direction. Relay rod 3
4 connects the left and right rear wheels 31a, 31b to left and right tie rods 37a,
37b and left and right knuckle arms 38a, 38b. A rear connecting rod 36 is connected to the left knuckle arm 38a, and the rear connecting rod 36, which is driven based on the swinging of the swinging lever 32, connects the rear wheel 31a.
, 31b are steered.

後輪駆動装置40は、運転席に配設されたアクセルペダ
ル41と、車体の前側に配設されたエンジン42と、差
動機構43とを備えている。アクセルペダル41により
制御されるエンジン42の駆動力はエンジン42と差動
機構43間に接続された主駆動軸44を介して差動機構
43に伝達される。この伝達された駆動力は、差動機構
43と左右後輪31a、31b間に各々接続された左右
後輪駆動軸45a、45bを介して左右後輪31a、3
1bに伝達され、これにより左右後輪31a、31bは
エンジン42出力に基づき駆動される。
The rear wheel drive device 40 includes an accelerator pedal 41 disposed on the driver's seat, an engine 42 disposed on the front side of the vehicle body, and a differential mechanism 43. The driving force of the engine 42 controlled by the accelerator pedal 41 is transmitted to the differential mechanism 43 via a main drive shaft 44 connected between the engine 42 and the differential mechanism 43. The transmitted driving force is transmitted to the left and right rear wheels 31a, 31b via the differential mechanism 43 and left and right rear wheel drive shafts 45a, 45b connected between the left and right rear wheels 31a, 31b, respectively.
1b, and thereby the left and right rear wheels 31a, 31b are driven based on the output of the engine 42.

電気制御装置50は、車速Vを検出する車速センサ51
と、アクセルペダル41の踏込みilaを検出する踏込
み量センサ52と、前輪操舵角θrを検出する前輪操舵
角センサ53と、これらの各センサ51,52.53か
ら発生される信号に基づき目標舵角比Kを算出してこの
目標舵角比Kに対応した制御信号を出力するマイクロコ
ンピュータ54と、この制御信号を入力してリニアアク
チュエータ33を制御する差動増幅器55を備えている
The electric control device 50 includes a vehicle speed sensor 51 that detects the vehicle speed V.
, a depression amount sensor 52 that detects the depression ila of the accelerator pedal 41, a front wheel steering angle sensor 53 that detects the front wheel steering angle θr, and a target steering angle based on signals generated from each of these sensors 51, 52, and 53. It includes a microcomputer 54 that calculates the ratio K and outputs a control signal corresponding to the target steering angle ratio K, and a differential amplifier 55 that inputs this control signal and controls the linear actuator 33.

車速センサ51は変速機の出力軸の回転をピックアップ
して車速Vに比例した周波数のピックアップ信号を発生
し、このピックアップ信号は波形整形器51aにより矩
形波信号に変換されてマイクロコンピュータ54に供給
される。踏込み量センサ52はアクセルペダル41の踏
込み量aを検出して該検出した踏込み量aを表すアナロ
グ信号を発生し、このアナログ信号はアナログディジタ
ル変換器(以下A/D変換器という)52aによりディ
ジタル信号に変換されて踏込み量データとしてマイクロ
コンピュータ54に供給される。前輪操舵角センサ53
はリレーロフト22a、22bの軸方向の変位量又は操
舵軸23の回転変位量を検出して、該検出した変位量に
比例した前輪操舵角θfを表すアナログ信号を発生し、
このアナログ信号はA/D変換器53aによりディジタ
ル信号に変換されて前輪操舵角データとしてマイクロコ
ンピュータ54に供給される。この場合、前輪操舵角θ
rは左右前輪27a、27bの左方向の操舵に対応して
負の値をとり、右方向の操舵に対応して正の値をとる。
The vehicle speed sensor 51 picks up the rotation of the output shaft of the transmission and generates a pickup signal with a frequency proportional to the vehicle speed V. This pickup signal is converted into a rectangular wave signal by the waveform shaper 51a and supplied to the microcomputer 54. Ru. The depression amount sensor 52 detects the depression amount a of the accelerator pedal 41 and generates an analog signal representing the detected depression amount a, and this analog signal is converted into a digital signal by an analog-to-digital converter (hereinafter referred to as an A/D converter) 52a. The signal is converted into a signal and supplied to the microcomputer 54 as depression amount data. Front wheel steering angle sensor 53
detects the axial displacement amount of the relay lofts 22a, 22b or the rotational displacement amount of the steering shaft 23, and generates an analog signal representing a front wheel steering angle θf proportional to the detected displacement amount,
This analog signal is converted into a digital signal by the A/D converter 53a and supplied to the microcomputer 54 as front wheel steering angle data. In this case, front wheel steering angle θ
r takes a negative value corresponding to leftward steering of the left and right front wheels 27a, 27b, and takes a positive value corresponding to rightward steering.

マイクロコンピュータ54は、第3図に示すフローチャ
ートに対応するプログラム及び第4図に′示す車速対応
舵角比Kvを算出するための舵角比パターンデータを記
憶する読出し専用メモリ (以下単にROMという)5
4aと、このプ。グラエを実行する中央処理装置(以下
単にCPUという)54bと、このプログラムの実行に
必要なデータを一時的に記憶する書込み可能メモリ (
以下単にRAMという)54cと、各センサ51.52
゜53から供給される信号を入力する入出力インターフ
ェイス(以下単にIloという)54dと、ROM54
 a、CPU54 b、RAM54 c及び11054
dを共通に接続するバス54eからなる。また、l10
54dにはマイクロコンピュータ54から出力される目
標舵角比Kを表すディジタル信号をアナログ信号に変換
して、差動増幅器55の非反転入力に供給するディジタ
ルアナログ変換器(以下単にD/A変換器という)55
aが接続されている。
The microcomputer 54 is a read-only memory (hereinafter simply referred to as ROM) that stores a program corresponding to the flowchart shown in FIG. 3 and steering angle ratio pattern data for calculating the vehicle speed corresponding steering angle ratio Kv shown in FIG. 4. 5
4a and this pu. A central processing unit (hereinafter simply referred to as CPU) 54b that executes the program, and a writable memory that temporarily stores data necessary for executing this program (
(hereinafter simply referred to as RAM) 54c, and each sensor 51.52
An input/output interface (hereinafter simply referred to as Ilo) 54d that inputs signals supplied from the ROM 54
a, CPU54 b, RAM54 c and 11054
It consists of a bus 54e that commonly connects d. Also, l10
54d is a digital-to-analog converter (hereinafter simply referred to as a D/A converter) which converts the digital signal representing the target steering angle ratio K output from the microcomputer 54 into an analog signal and supplies it to the non-inverting input of the differential amplifier 55. ) 55
a is connected.

差動増幅器55は、その反転入力に、アクチュエータロ
ッド33aの変位量すなわち支点32aの位置を検出す
る位置センサ56から前記位置を表すアナログ信号を入
力し、その非反転入力及び反転入力に供給される両信号
の差信号をリニアアクチュエータ33に出力して、揺動
レバー32にて設定される舵角比が目標舵角比Kに等し
くなるようにリニアアクチュエータ33を制御する。
The differential amplifier 55 inputs to its inverting input an analog signal representing the position from a position sensor 56 that detects the displacement amount of the actuator rod 33a, that is, the position of the fulcrum 32a, and is supplied to its non-inverting input and inverting input. A difference signal between both signals is output to the linear actuator 33, and the linear actuator 33 is controlled so that the steering angle ratio set by the swing lever 32 becomes equal to the target steering angle ratio K.

以上のように構成した上記実施例の動作を第3図のフロ
ーチャートを用いて説明する。最初に、該動作の概略を
説明すると、車両を始動させるために、運転者がイグニ
ッションスイッチ(図示しない)を閉成すると、CPU
54 bは、ステップ60にてプログラムの実行を開始
し、ステップ61にてRAM54cに記憶されて車速対
応操舵角Kuを表す車速対応操舵角比データを、車速V
が零のときの車速対応舵角比−Ko(第4図)に初期設
定するとともに、RAM54Cに記憶されて目標舵角比
にの設定状態を表すフラグFLGを“0”に初期設定す
る。なお、このフラグFLGは、“O”にて目標舵角比
Kが車速対応舵角比KVに設定制御される状態を表し、
“1”にて目標舵角比Kが車速対応舵角比Kvを所定値
αにより修正した修正値Kv+αに設定制御される状態
を表す。
The operation of the above-described embodiment configured as described above will be explained using the flowchart shown in FIG. First, to explain the outline of the operation, when the driver closes the ignition switch (not shown) to start the vehicle, the CPU
54b starts execution of the program in step 60, and in step 61, the vehicle speed corresponding steering angle ratio data stored in the RAM 54c and representing the vehicle speed corresponding steering angle Ku is transferred to the vehicle speed V.
The vehicle speed corresponding steering angle ratio -Ko (FIG. 4) when is zero is initialized, and a flag FLG, which is stored in the RAM 54C and represents the setting state of the target steering angle ratio, is initialized to "0". Note that this flag FLG represents a state in which the target steering angle ratio K is set to the vehicle speed corresponding steering angle ratio KV at "O",
"1" indicates a state in which the target steering angle ratio K is controlled to be set to a modified value Kv+α obtained by modifying the vehicle speed corresponding steering angle ratio Kv by a predetermined value α.

また、この所定値αは駆動輪である左右後輪31a、3
1bのスリップに起因して、当該後輪駆動車が旋回中に
スピンしないようにする程度の正の値に設定されている
Further, this predetermined value α is the left and right rear wheels 31a, 3 which are driving wheels.
The value is set to a positive value to prevent the rear wheel drive vehicle from spinning during a turn due to the slip of 1b.

このステップ61の初期設定後、CPU54 bは、ス
テップ62にて波形整形器51aがらl1054dを介
して入力される矩形波信号に基づき車速■を算出して、
該算出した車速Vを表すデータを車速データとしてRA
M54 Cに記憶する。
After the initial setting in step 61, the CPU 54b calculates the vehicle speed ■ based on the rectangular wave signal inputted from the waveform shaper 51a through the l1054d in step 62.
The data representing the calculated vehicle speed V is used as vehicle speed data RA
Store in M54C.

次に、CPU54bはステップ62.63にてA/D変
換器52a、53aがらl1054dを介してアクセル
ペダル41の踏込み量aを表す踏込み量データ及び前輪
操舵角θfを表す前輪操舵角データを各々読込み、該読
込んだ踏込み量データ及び前輪操舵角データをRAM5
4Cに各々記憶する。このようなステップ62〜64の
処理による各種データの記憶後、CPU54bはステッ
プ70〜72からなる「車両走行状態判別ルーチン」に
て前記記憶した踏込み量データ及び前輪操舵角データに
基づき旋回中の車両の加速に関係した車両走行状態を判
別し、該判別結果に基づいて、ステップ80〜84から
なる「車速対応舵角比設定ルーチン」にて前記記憶した
車速データによって目標舵角比Kを車速対応舵角比KV
に設定制御するか、又はステップ90〜92からなる「
修正舵角比設定ルーチン」にて目標舵角比Kを前記車速
対応舵角比Kvの修正値KV+αに設定制御して、プロ
グラムをステップ65に進める。
Next, in step 62.63, the CPU 54b reads the depression amount data representing the depression amount a of the accelerator pedal 41 and the front wheel steering angle data representing the front wheel steering angle θf from the A/D converters 52a and 53a through the l1054d. , the read pedal stroke amount data and front wheel steering angle data are stored in RAM5.
Each is stored in 4C. After storing various data through the processing in steps 62 to 64, the CPU 54b performs a "vehicle running state determination routine" consisting of steps 70 to 72 to determine whether the vehicle is turning based on the stored depression amount data and front wheel steering angle data. Based on the determination result, the target steering angle ratio K is determined based on the vehicle speed data stored in the "vehicle speed corresponding steering angle ratio setting routine" consisting of steps 80 to 84. Rudder angle ratio KV
or control the setting to "
In the "corrected steering angle ratio setting routine", the target steering angle ratio K is set to the corrected value KV+α of the vehicle speed corresponding steering angle ratio Kv, and the program proceeds to step 65.

ステップ65にて、CPU54bは前記目標舵角比Kを
表すディジタル信号をl1054dを介してD/A変換
器55aに出力し、D/A変換器55aはこのディジタ
ル信号をアナログ信号に変換して差動増幅器55に供給
し、差動増幅器55が位置センサ56との協働によりリ
ニアアクチュエータ33を制御して、揺動レバー32の
設定舵角比が目標舵角比Kになるように支点32aを変
位させる。ステップ65の処理後、CPU54 bはプ
ログラムをステップ62に戻し、以降、ステップ62〜
64の処理、「車両走行状態判別ルーチン」の処理、「
車速対応舵角比設定ルーチン」の処理、「修正舵角比設
定ルーチン」の処理、及びステップ65の処理からなる
循環処理を実行し続け、車両走行状態及び車速■に応じ
て目標舵角比Kを算出して、揺動レバー32の設定舵角
比を上記目標舵角比Kに設定する。なお、上記CPU5
4bから出力される目標舵角比Kを示すディジタル信号
は、新たな同ディジタル信号がCPU54bから出力さ
れるまで11054dに記憶されている。かかる状態に
て、操舵ハンドル24の回動に応じて左右前輪27a、
27bが操舵されると、左右後輪31a、31bは前記
揺動レバー32の設定舵角比に応じて左右前輪27a、
27bに対して逆相又は同相に操舵される。
In step 65, the CPU 54b outputs the digital signal representing the target steering angle ratio K to the D/A converter 55a via the l1054d, and the D/A converter 55a converts this digital signal into an analog signal and converts the difference. The differential amplifier 55 controls the linear actuator 33 in cooperation with the position sensor 56 to set the fulcrum 32a so that the set steering angle ratio of the swing lever 32 becomes the target steering angle ratio K. Displace. After the processing in step 65, the CPU 54b returns the program to step 62, and thereafter executes steps 62 to 62.
64 processing, “vehicle running state determination routine” processing, “
The cyclic process consisting of the vehicle speed corresponding steering angle ratio setting routine, the corrected steering angle ratio setting routine, and the process of step 65 is continued, and the target steering angle ratio K is set according to the vehicle running state and vehicle speed. is calculated, and the set steering angle ratio of the swing lever 32 is set to the target steering angle ratio K. In addition, the above CPU5
The digital signal indicating the target steering angle ratio K output from the CPU 54b is stored in the CPU 54b until a new digital signal is output from the CPU 54b. In this state, depending on the rotation of the steering wheel 24, the left and right front wheels 27a,
When the left and right rear wheels 27b are steered, the left and right rear wheels 31a and 31b are rotated according to the set steering angle ratio of the swing lever 32.
It is steered in opposite phase or in phase with respect to 27b.

次に、上記循環処理中実行されるステップ70〜72か
らなる「車両走行状態判別ルーチン」、ステップ80〜
84からなる「車速対応舵角比設定ルーチン」、及びス
テップ90〜92からなる「修正舵角比設定ルーチン」
の処理について、車両走行状態毎に詳細に説明する。
Next, a "vehicle running state determination routine" consisting of steps 70 to 72 executed during the above circulation process, and steps 80 to 72 are performed.
"Vehicle speed corresponding steering angle ratio setting routine" consisting of steps 84 and "corrected steering angle ratio setting routine" consisting of steps 90 to 92.
The processing will be explained in detail for each vehicle running state.

fl)当該車両の発進後、フラグFLGが上記ステップ
61の初期設定により“0”に設定されたままであり、
かつ当該車両が加速状態にない場合について説明する。
fl) After the vehicle starts, the flag FLG remains set to "0" due to the initial setting in step 61 above,
A case in which the vehicle is not in an accelerating state will be explained.

この場合、ステップ62〜64の各種データの更新後、
CPU54 bは、ステップ70にて、車両の加速度が
太き(ないすなわちアクセルペダル41の踏込みiaが
小さいことに基づき、rNOJすなわち踏込みiJaが
所定値a。
In this case, after updating various data in steps 62 to 64,
In step 70, the CPU 54b determines that rNOJ, that is, the depression iJa, is a predetermined value a based on the fact that the acceleration of the vehicle is large (i.e., the depression ia of the accelerator pedal 41 is small).

より大きくないと判定し、ステップ71にて、フラグF
LGが上記のように“O”であることに基づき、rNO
Jと判定して、プログラムを「車速対応舵角比設定ルー
、チン」に進める。なお、前記所定値aoは例えばアク
セルペダル41の全踏込み量に対して70パ一セント程
度の踏込み量に対応した値に設定されている。
It is determined that the flag is not larger than F, and in step 71, the flag F is set.
Based on the fact that LG is “O” as mentioned above, rNO
It is judged as J, and the program advances to the "vehicle speed corresponding steering angle ratio setting routine". The predetermined value ao is set, for example, to a value corresponding to a depression amount of about 70% of the total depression amount of the accelerator pedal 41.

この「車速対応舵角比設定ルーチン」においては、CP
U54bはステップ80にて、ステップ62の処理によ
りRAM54 Cに記憶されている車速Vを表す車速デ
ータとROM54aに記憶されている舵角比パターンデ
ータとに基づいて車速対応舵角比Kv(第4図)を算出
し、該算出した車速対応舵角比KVを表すデータを車速
対応舵角比データとしてRAM54 Cに記憶する。ス
テ。
In this "vehicle speed corresponding steering angle ratio setting routine", CP
In step 80, U54b calculates the vehicle speed corresponding steering angle ratio Kv (fourth ) is calculated, and data representing the calculated steering angle ratio KV corresponding to vehicle speed is stored in the RAM 54C as steering angle ratio data corresponding to vehicle speed. Ste.

プ80の処理後、CPU54bはステップ81にて前記
算出した車速対応舵角比KVと前回の循環処理によりR
AM54Cに記憶されている目標舵角比データにより示
された目標舵角比にとの差Kv−にの絶対値l KV−
K lが所定値βより小さいか否かを判断する。なお、
所定値βは目標舵角比にの最大変化幅を示しており、当
該車両が通常に走行しているとき、上記循環処理に要す
る時間内における車速Vの変化によって、車速対応舵角
比Kvが変化する量よりも若干大きな値に設定されてい
る。また、上記車速対応舵角比KVを修正するための所
定値αとの関係においては、所定値βはβくαの関係に
ある。このような値に所定値βが設定されているため、
車両が通常の走行をしている限り、上記ステップ81の
判断においてはrYEsJすなわち上記絶対値1Kv−
Klがβ未満であると判定され、CPU54 bはステ
ップ82にてRAM54cに記憶されて目標舵角比Kを
表す目標舵角比データを上記算出した車速対応舵角比K
vにより更新し、ステップ84にてフラグF L Gを
以前と同じ状態の“0”に設定してプログラムをステッ
プ65に進める。ステップ65においては、上述したよ
うに、目標舵角比Kを表すディジタル信号がD/A変換
器55aに出力され、揺動レバー32における設定舵角
比は目標舵角比にすなわち車速対応舵角比Kv(第4図
)に設定制御される。これにより、このような車両走行
状態では、車速■が小さいとき、左右後輪31a、31
bは左右前輪27a、27bに対して逆相に操舵され、
車速Vが大きくなるに従って左右後輪31a、31bは
左右前輪27a、27bに対して同相に操舵されるよう
になる。
After the process in step 80, the CPU 54b proceeds to step 81 to calculate R based on the calculated vehicle speed corresponding steering angle ratio KV and the previous circulation process.
Absolute value l of the difference Kv- from the target steering angle ratio indicated by the target steering angle ratio data stored in AM54C KV-
It is determined whether Kl is smaller than a predetermined value β. In addition,
The predetermined value β indicates the maximum variation width in the target steering angle ratio, and when the vehicle is normally traveling, the vehicle speed corresponding steering angle ratio Kv changes due to a change in the vehicle speed V within the time required for the above-mentioned circulation process. It is set to a value slightly larger than the amount of change. Further, in relation to the predetermined value α for correcting the vehicle speed corresponding steering angle ratio KV, the predetermined value β has a relationship of β×α. Since the predetermined value β is set to such a value,
As long as the vehicle is running normally, rYEsJ, that is, the absolute value 1Kv-
It is determined that Kl is less than β, and the CPU 54b stores the target steering angle ratio data in the RAM 54c in step 82 and expresses the target steering angle ratio K using the vehicle speed corresponding steering angle ratio K as calculated above.
In step 84, the flag FLG is set to "0", which is the same state as before, and the program proceeds to step 65. In step 65, as described above, a digital signal representing the target steering angle ratio K is output to the D/A converter 55a, and the set steering angle ratio at the swing lever 32 is set to the target steering angle ratio, that is, the steering angle corresponding to the vehicle speed. The setting is controlled to the ratio Kv (Fig. 4). As a result, in such a vehicle running state, when the vehicle speed ■ is small, the left and right rear wheels 31a, 31
b is steered in the opposite phase with respect to the left and right front wheels 27a and 27b,
As the vehicle speed V increases, the left and right rear wheels 31a and 31b are steered in the same phase with respect to the left and right front wheels 27a and 27b.

また、車両の急制動等の理由による車速■の急降下に伴
って車速対応舵角比KVが急変して、上記絶対値IKv
−Klが所定値β以上になると、CPU54 bは上記
ステップ81 にてrNOJと判定し、ステップ83に
て目標舵角比Kを表す目標舵角比データを下記(式1)
により更新する。
Furthermore, as the vehicle speed ■ suddenly drops due to reasons such as sudden braking of the vehicle, the steering angle ratio KV corresponding to the vehicle speed changes suddenly, and the above absolute value IKv
-Kl becomes equal to or greater than the predetermined value β, the CPU 54b determines rNOJ in step 81, and in step 83 converts the target steering angle ratio data representing the target steering angle ratio K to the following (Equation 1).
Updated by.

上記(式1)において、左辺の値には今回のステップ8
3の処理により更新された目標舵角比を表し、右辺の値
には更新される前の目標舵角比すなわち前回の循環処理
により設定されていた目標舵角比を表すので、これによ
り更新された目標舵角比には上記絶対値IKv−Klの
m分の1だけ車速対応舵角比Kvに近づいた値になる。
In the above (Equation 1), the value on the left side is the current step 8.
The value on the right side represents the target steering angle ratio updated by the process in step 3, and the value on the right side represents the target steering angle ratio before being updated, that is, the target steering angle ratio that was set by the previous circulation process. The target steering angle ratio has a value that approaches the vehicle speed corresponding steering angle ratio Kv by 1/m of the above-mentioned absolute value IKv-Kl.

なお、値mは目標舵角比にの変化(KV−K)/mが、
同舵角比にの更新タイミングとの関係において、車両の
走行安定性を悪くしない程度の値に設定されている。そ
して、循環処理毎にこのステップ83の処理により上記
絶対値lKv−KIOm分の1ずつ目標舵角比Kが車速
対応舵角比Kvに漸近していく。但し、この場合、車速
■が変化すれば、それに応じてステップ80の処理によ
る車速対応舵角比Kvも変化する。このように目標舵角
比Kが車速対応舵角比KVに漸近した結果、絶対値IK
v−Klが所定値β未満になると、上述のようにステッ
プ81にてrYESJと判定されて、目標舵角比Kvは
車速対応舵角比Kvに設定される。
In addition, the value m is the change in target steering angle ratio (KV-K)/m,
In relation to the timing of updating to the same steering angle ratio, the value is set to a value that does not deteriorate the running stability of the vehicle. Then, in each circulation process, the target steering angle ratio K asymptotically approaches the vehicle speed corresponding steering angle ratio Kv by 1/the absolute value lKv-KIOm. However, in this case, if the vehicle speed {circle around (2)} changes, the vehicle speed corresponding steering angle ratio Kv in the process of step 80 also changes accordingly. As a result of the target steering angle ratio K asymptotic to the vehicle speed corresponding steering angle ratio KV, the absolute value IK
When v-Kl becomes less than the predetermined value β, rYESJ is determined in step 81 as described above, and the target steering angle ratio Kv is set to the vehicle speed corresponding steering angle ratio Kv.

このように、車速Vの急降下に伴い車速対応舵角比KV
が急変した場合、目標舵角比には(K v −K)/m
ずつ除々に車速対応舵角比Kvに近づいてい(ので、左
右後輪31a、31bの操舵角が急変することがな(な
り車両の走行安定性が良好となる。
In this way, as the vehicle speed V suddenly decreases, the vehicle speed corresponding steering angle ratio KV
If there is a sudden change in the target steering angle ratio, (K v - K)/m
The vehicle speed-corresponding steering angle ratio Kv is gradually approached (therefore, the steering angles of the left and right rear wheels 31a, 31b do not change suddenly (therefore, the running stability of the vehicle is improved).

(2)次に、上記(1)の状態にて略直進走行している
当該車両のアクセルペダル41が深く踏込まれて、当該
車両が加速した場合について説明する。この場合、ステ
ップ62〜64の各種データの更新後、CPU54bは
、ステップ70にて、車両の加速度が大きいすなわち踏
込み量aが大きいことに基づいて、rYESJすなわち
踏込み量aが所定値aoより大きいと判定し、ステップ
72にて前輪操舵角θfの絶対値1θf1が所定角度θ
fo以上であるか否かを比較判断する。所定角度θf。
(2) Next, a case will be described in which the accelerator pedal 41 of the vehicle, which is traveling substantially straight in the state of (1) above, is depressed deeply and the vehicle accelerates. In this case, after updating various data in steps 62 to 64, the CPU 54b determines in step 70 that rYESJ, that is, the depression amount a is larger than the predetermined value ao, based on the fact that the acceleration of the vehicle is large, that is, the depression amount a is large. In step 72, the absolute value 1θf1 of the front wheel steering angle θf is equal to the predetermined angle θ.
A comparison is made to determine whether or not the value is greater than or equal to fo. Predetermined angle θf.

は5度程度の値に設定されており、この場合、当該車両
は略直進状態にあるので、CPU54bは同ステップ7
2にて「NO」すなわち前輪操舵角θrの絶対値1θ【
1は所定角度θto以上にないと判定して、プログラム
を「車速対応舵角比設定ルーチン」に進める。この「車
速対応舵角比設定ルーチン」では、目標舵角比Kが上記
(i)の場合と同様に設定制御されるので、左右後輪3
1 a。
is set to a value of about 5 degrees, and in this case, the vehicle is traveling substantially straight, so the CPU 54b executes step 7.
2 is “NO”, that is, the absolute value of the front wheel steering angle θr is 1θ [
1, it is determined that the angle is not greater than the predetermined angle θto, and the program proceeds to the "vehicle speed corresponding steering angle ratio setting routine". In this "vehicle speed corresponding steering angle ratio setting routine", the target steering angle ratio K is set and controlled in the same way as in the case (i) above, so the left and right rear wheels
1 a.

31bも上記(1)の場合と同様に操舵される。31b is also steered in the same manner as in the case (1) above.

(3)次に、当該車両が加速状態にありかつ旋回状態に
ある場合について説明する。この場合、ステップ63.
64にて設定される踏込み量a及び前輪操舵角θfの絶
対値1θf1は大きいので、CPU54bはステップ7
0にてrYEsJすなわち踏込み量aが所定値aoより
大きいと判定し、ステップ72にて前輪操舵角θfの絶
対値1θf1が所定角度θfo以上であると判定して、
プログラムを「修正舵角比設定ルーチン」に進める。
(3) Next, a case where the vehicle is in an acceleration state and in a turning state will be described. In this case, step 63.
Since the absolute value 1θf1 of the depression amount a and the front wheel steering angle θf set in step 64 is large, the CPU 54b
At step 0, it is determined that rYEsJ, that is, the depression amount a, is greater than the predetermined value ao, and at step 72, it is determined that the absolute value 1θf1 of the front wheel steering angle θf is greater than or equal to the predetermined angle θfo.
Proceed the program to the "corrected steering angle ratio setting routine."

この「修正舵角比設定ルーチン」においては、最初、目
標舵角比にと車速対応舵角比Kvが、前回の循環処理の
ステップ80.82の処理により、同じ値に設定されて
いるので、CPU54 bはステップ90にてK<KV
+αに基づきrYEsJと判定し、ステップ91にて目
標舵角比Kを表す目標舵角比データを下記(式2)によ
り更新する。
In this "corrected steering angle ratio setting routine", the target steering angle ratio and the vehicle speed corresponding steering angle ratio Kv are initially set to the same value by the process of steps 80 and 82 of the previous circulation process, so The CPU 54b determines K<KV at step 90.
+α is determined to be rYEsJ, and in step 91, target steering angle ratio data representing the target steering angle ratio K is updated using the following (Formula 2).

仄 に−に+−・・・ (式2) 前記(式2)も、上述の(式1)の場合と同様、循環処
理毎に目標舵角比Kをα/nずつ上昇させるものである
。なお、値nは、上記(式1)の値mと同様、目標舵角
比にの変化α/nが、同舵角比にの更新タイミングとの
関係において、車両の走行安定性を悪くシない程度の値
に設定されているが、同値nは上記(式1)の場合より
も速く左右後輪31a、31bを左右前輪27a、27
bに対して同相方向に操舵するためにmよりも若干小さ
く  (n<m)設定されている。ステップ91の処理
後、CPU54bはステップ92にてフラグFLC4−
″1”に設定し、ステップ65にて目標舵角比Kを表す
ディジタル信号をD/A変換器55aに出力して、プロ
グラムをステップ62に戻す。
Slightly +-... (Formula 2) The above (Formula 2) also increases the target steering angle ratio K by α/n in each circulation process, as in the case of (Formula 1) above. . Note that the value n is similar to the value m in (Equation 1) above, so that the change α/n in the target steering angle ratio can degrade the driving stability of the vehicle in relation to the update timing of the target steering angle ratio. However, the same value n moves the left and right rear wheels 31a, 31b to the left and right front wheels 27a, 27 faster than in the case of (Equation 1) above.
In order to steer in the same phase direction with respect to b, it is set slightly smaller than m (n<m). After the process in step 91, the CPU 54b goes to step 92 to flag FLC4-.
"1", and in step 65 a digital signal representing the target steering angle ratio K is output to the D/A converter 55a, and the program returns to step 62.

そして、当該車両が上記と同様に加速状態にありかつ旋
回状態にある限り、CPU54 bはステップ70及び
ステップ72にてrYEsJと判定し、上述と同様のス
テップ90.91の処理により目標舵角比Kを循環処理
毎にα/nずつ上昇させる。この循環処理中、目標舵角
比Kかに≧KV+αの関係になると、CPU54bはス
テップ90にて「NO」と判定し、ステップ91の処理
を実行せず、プログラムをステップ92に進める。
Then, as long as the vehicle is in the acceleration state and turning state as described above, the CPU 54b determines rYEsJ in steps 70 and 72, and sets the target steering angle ratio by the processing in steps 90 and 91 similar to the above. K is increased by α/n for each circulation process. During this circulation process, if the relationship of target steering angle ratio K≧KV+α is established, the CPU 54b makes a "NO" determination in step 90, does not execute the process in step 91, and advances the program to step 92.

これらのステップ90〜92の処理により、目標舵角比
にはこの「修正舵角比設定ルーチン」を実行する前の車
速対応舵角比KVからα/nずつ修正値KV+αまで除
々に上昇する。なお、この場合、車速対応舵角比KVは
ステップ80の非実行により車速■が変化しても同一値
に維持される。
Through the processing of steps 90 to 92, the target steering angle ratio gradually increases by α/n from the vehicle speed corresponding steering angle ratio KV before executing the "corrected steering angle ratio setting routine" to the corrected value KV+α. In this case, the steering angle ratio KV corresponding to the vehicle speed is maintained at the same value even if the vehicle speed ■ changes due to non-execution of step 80.

その結果、旋回中の当該車両が加速した場合、左右後輪
31a、31bは車速対応舵角比KVにより設定される
操舵角よりも、左右前輪27a、27bの操舵方向に対
し同相方向に所定値αに対応した舵角化分操舵されるの
で、旋回中の当該車両の加速に伴い駆動輪である左右後
輪31a、31bがスリツブすることに起因して生じる
同車両のスピンがより良(防止される。さらに、左右後
輪31a、31bの前記操舵修正はα/nずつ除々に行
われるので、該操舵修正に伴う後輪操舵角の変化が緩和
されて後輪操舵角の急変による車両の走行安定性の悪化
がより良く防止される。
As a result, when the vehicle in question accelerates while turning, the left and right rear wheels 31a and 31b are set to a predetermined value in the same phase direction with respect to the steering direction of the left and right front wheels 27a and 27b, rather than the steering angle set by the vehicle speed corresponding steering angle ratio KV. Since the vehicle is steered by the steering angle corresponding to α, it is possible to prevent the vehicle from spinning, which is caused by the left and right rear wheels 31a and 31b, which are the drive wheels, slipping as the vehicle accelerates during a turn. Further, since the steering correction of the left and right rear wheels 31a, 31b is performed gradually by α/n, changes in the rear wheel steering angle due to the steering correction are alleviated, and the vehicle movement caused by sudden changes in the rear wheel steering angle is reduced. Deterioration of running stability is better prevented.

(4)次に、上記(3)の状態から、当該車両を旋回さ
せたまま同車両の加速を解除した場合について説明する
。この場合、前記加速の解除に伴いアクセルペダル41
の踏込みが解除されて、ステップ63にて設定される踏
込み量aが小さくなるので、CPU54bはステップ7
0にてrNOJすなわち踏込み量aが所定値aOより大
きくないと判定し、ステップ71にてフラグFLGが“
1″であるか否かを判断する。この判断においては、上
記(3)で説明したように、フラグFLGはステップ9
2の処理により“1″に設定されているので、CPU5
4bはrYEsJと判定してプログラムをステップ72
に進める。この場合、当該車両は未だ旋回中であって前
輪操舵角θrの絶対値1θf1は大きな値であるので、
CPU54 bはステップ72にてrYEsJすなわち
同絶対値1θr1か所定角度θfo以上であると判定し
て、プログラムをステップ90〜92からなる「修正舵
角比設定ルーチン」に進めるので、当該車両の舵角比は
上記(3)の場合と同様に設定されるとともに、左右後
輪31a、31bも上記(3)の場合と同様に操舵され
る。これにより、旋回中の当該車両の加速が解除されて
も、舵角比が変更されることはなく、前輪操舵角が変更
されなければ後輪操舵角も変化せず、旋回中の当該車両
は同一状態を維持したまま旋回走行を続行でき、旋回時
の走行安定性が向上する。
(4) Next, a case will be described in which the acceleration of the vehicle is canceled from the state of (3) above while the vehicle is turning. In this case, as the acceleration is released, the accelerator pedal 41
Since the depression amount a is released and the depression amount a set in step 63 becomes smaller, the CPU 54b performs step 7.
0, it is determined that rNOJ, that is, the depression amount a is not larger than the predetermined value aO, and in step 71, the flag FLG is set to "
1''. In this judgment, as explained in (3) above, the flag FLG is set at step 9.
Since it is set to “1” by the process in step 2, CPU5
4b is determined to be rYEsJ and the program is executed at step 72.
Proceed to. In this case, the vehicle is still turning and the absolute value 1θf1 of the front wheel steering angle θr is a large value, so
The CPU 54b determines in step 72 that rYEsJ, that is, the same absolute value 1θr1 is greater than or equal to the predetermined angle θfo, and advances the program to the "corrected steering angle ratio setting routine" consisting of steps 90 to 92, so that the steering angle of the vehicle is The ratio is set in the same manner as in the case (3) above, and the left and right rear wheels 31a, 31b are also steered in the same manner as in the case (3) above. As a result, even if the acceleration of the vehicle in question is canceled while turning, the steering angle ratio will not be changed, and unless the front wheel steering angle is changed, the rear wheel steering angle will not change, and the vehicle in question while turning is It is possible to continue turning while maintaining the same state, improving driving stability when turning.

(5)次に、上記(4)の当該車両の加速を解除した状
態からさらに同車両を略直進状態に復帰させた場合、又
は上記(3)の旋回加速状態から当該車両を略直進状態
に復帰させた場合について説明する。この場合、「車両
走行状態判別ルーチン」において、CPU54bはステ
ップ70.71の処理後又はステップ71の処理後、ス
テップ72にて、ステップ64にて設定した前輪操舵角
θfの絶対値1θf1が小さいことに基づき、rNOJ
すなわち同絶対値1θf1が所定値θfo以上でないと
判定して、プログラムを「車速対応舵角比設定ルーチン
」に進める。この「車速対応舵角比設定ルーチン」にお
いては、CPU54 bは上記(1)の場合と同様の処
理をして当該車両の舵角比を目標舵角比にすなわち車速
対応舵角比Kvに設定する。この場合、通常、目標舵角
比には、最初、今まで実行されていたステップ90〜9
2からなる「舵角比修正ルーチン」の処理により車速対
応舵角比KVに所定値αを加算した値に設定されている
ので、ステップ81の判断において「NO」すなわち目
標舵角比にと車速対応舵角比の関係は1Kv−KIくβ
にないと判定される。その結果は、目標舵角比にはステ
ップ83の処理により循環処理毎に(KV−K)/mず
つ変更されて除々に車速対応舵角比Kvに漸近していく
。これにより、上述のように後輪操舵角が急変すること
がなくなり車両の走行安定性が良好となる。なお、この
とき、車両Vが大きくなっていて車速対応舵角比Kvと
ステップ90〜92からなる[修正舵角比設定ルーチン
」にて設定されていた目標舵角比Kが偶然にも略一致し
ていれば、CPU54 bはステップ81にてrYES
Jと判定し、ステップ82の処理により目標舵角比Kを
車速対応舵角比KVに設定する。
(5) Next, when the vehicle is returned to a substantially straight-ahead state from the state in which the acceleration of the vehicle in (4) above is canceled, or the vehicle is returned to a substantially straight-ahead state from the turning acceleration state in (3) above. The case where it is restored will be explained. In this case, in the "vehicle running state determination routine", the CPU 54b determines in step 72 after the processing of step 70.71 or after the processing of step 71 that the absolute value 1θf1 of the front wheel steering angle θf set in step 64 is small. Based on rNOJ
That is, it is determined that the absolute value 1θf1 is not greater than the predetermined value θfo, and the program proceeds to the “vehicle speed corresponding steering angle ratio setting routine”. In this "vehicle speed corresponding steering angle ratio setting routine", the CPU 54b performs the same process as in the case (1) above to set the steering angle ratio of the vehicle to the target steering angle ratio, that is, to the vehicle speed corresponding steering angle ratio Kv. do. In this case, normally the target steering angle ratio is initially determined by steps 90 to 9 that have been executed up to now.
2, the steering angle ratio corresponding to the vehicle speed is set to the value obtained by adding the predetermined value α to the steering angle ratio KV. The relationship between the corresponding steering angle ratio is 1Kv - KI × β
It is determined that there is no As a result, the target steering angle ratio is changed by (KV-K)/m in each circulation process by the process of step 83, and gradually approaches the vehicle speed corresponding steering angle ratio Kv. This prevents the rear wheel steering angle from changing suddenly as described above, and improves the running stability of the vehicle. At this time, the vehicle V has become large, and the vehicle speed corresponding steering angle ratio Kv and the target steering angle ratio K, which was set in the "corrected steering angle ratio setting routine" consisting of steps 90 to 92, coincidentally become approximately the same. If so, the CPU 54 b selects rYES in step 81.
J is determined, and the target steering angle ratio K is set to the vehicle speed corresponding steering angle ratio KV through the process of step 82.

また、この「車速対応舵角比設定ルーチン」においては
、ステップ82.83の処理後、ステップ84にてフラ
グFLGが10″に設定変更されるので、この状態でフ
ラグFLGは初期状態に戻される。
In addition, in this "vehicle speed corresponding steering angle ratio setting routine", after the processing in steps 82 and 83, the flag FLG is set to 10'' in step 84, so in this state, the flag FLG is returned to the initial state. .

以上のような動作説明からも理解できる通り、上記実施
例によれば、旋回中の車両の加速に関係した車両走行状
態がステップ70〜72からなる「車両走行状態判別ル
ーチン」の処理により判別され、該判別に応じて車速対
応舵角比KVが修正される場合又は該修正が解除される
場合、ステップ80〜84からなる「車速対応舵角比設
定ルーチン」又はステップ90〜92からなる「修正舵
角比設定ルーチン」の処理により、舵角比が除々に修正
されるので、この舵角比の緩やかな変化に基づき後輪操
舵角が急変することがな(なり、車両の走行安定性が良
好となる。
As can be understood from the above explanation of the operation, according to the above embodiment, the vehicle running state related to the acceleration of the turning vehicle is determined by the processing of the "vehicle running state determination routine" consisting of steps 70 to 72. , if the vehicle speed corresponding steering angle ratio KV is modified or the modification is cancelled, the "vehicle speed corresponding steering angle ratio setting routine" consisting of steps 80 to 84 or the "correction" consisting of steps 90 to 92 is performed. As the steering angle ratio is gradually corrected through the process of "Steering angle ratio setting routine", the rear wheel steering angle does not suddenly change based on the gradual change in the steering angle ratio (this prevents the running stability of the vehicle from being changed). Becomes good.

なお、上記実施例においては、車両の走行加速度をアク
セルペダル41の踏込み量に応じた信号を発生する踏込
み量センサ52により検出するようにしたが、同加速度
を、車体に組付けられて慣性を利用して車体の加速度を
検出する加速度センサにより検出するようにしてもよい
。また、同加i[を、マイクロコンピュータ54のプロ
グラム処理により検出車速■を微分して算出するように
してもよい。
In the above embodiment, the running acceleration of the vehicle is detected by the depression amount sensor 52 that generates a signal according to the depression amount of the accelerator pedal 41. The detection may be performed using an acceleration sensor that detects the acceleration of the vehicle body. Further, the addition i[ may be calculated by differentiating the detected vehicle speed ■ by program processing of the microcomputer 54.

また、上記実施例では、揺動レバー32によって設定さ
れる舵角比を除々に変更するために、ステップ83.9
1の演算処理により目標舵角比にの変化を緩和するよう
にしたが、積分回路をマイクロコンピュータ54とD/
A変換器55aとの間又はD/A変換器55aと差動増
幅器55の間に設けるようにして、差動増幅器55に供
給される制御信号のレベル変化を緩和するようにしても
よい。この場合、マイクロコンピュータ54は揺動レバ
ー32にて最終的に設定されるべき目標舵角比Kを表す
ディジタル信号を出力するのみでよい。
Further, in the above embodiment, in order to gradually change the steering angle ratio set by the swing lever 32, step 83.9 is performed.
Although the change in the target steering angle ratio is alleviated by the arithmetic processing in step 1, the integration circuit is connected to the microcomputer 54 and D/
It may also be provided between the A converter 55a or between the D/A converter 55a and the differential amplifier 55 to alleviate level changes in the control signal supplied to the differential amplifier 55. In this case, the microcomputer 54 only needs to output a digital signal representing the target steering angle ratio K to be finally set by the swing lever 32.

また、上記実施例においては、本発明を後輪駆動型の車
両に通用した場合について説明したが、本発明は前輪駆
動型の車両にも通用されるものである。ただし、前輪駆
動型の車両においては、その加速時に、駆動輪である左
右前輪のスリップ率が高くなって、旋回中の当該車両は
アンダーステア傾向になリドリフトアウトする傾向にあ
る。そのため、ステップ90.91(第3図)の処理に
て車速対応舵角比Kvを修正するための所定値αを負す
なわち一αに設定する必要がある。これにより、旋回中
の車両が加速した場合、左右後輪は左右前輪に対して逆
相方向に修正されるようになるので、前輪駆動型の車両
における旋回加速時のドリフトアウトが防止される。な
お、この場合も、当然、舵角比の修正又は復帰時には同
舵角比の変化を緩和する。
Further, in the above embodiment, the case where the present invention is applied to a rear wheel drive type vehicle has been described, but the present invention can also be applied to a front wheel drive type vehicle. However, in a front-wheel drive vehicle, when the vehicle accelerates, the slip ratio of the left and right front wheels, which are drive wheels, increases, and the vehicle tends to understeer and drift out while turning. Therefore, in the process of steps 90 and 91 (FIG. 3), it is necessary to set the predetermined value α for correcting the vehicle speed corresponding steering angle ratio Kv to a negative value, that is, to one α. As a result, when a turning vehicle accelerates, the left and right rear wheels are corrected in a direction opposite to the left and right front wheels, thereby preventing drift-out during turning acceleration in a front-wheel drive vehicle. In this case, of course, the change in the steering angle ratio is relaxed when correcting or returning the steering angle ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲に記載した発明の構成に対応す
る図、第2図は本発明の一実施例を示す車両の概略図、
第3図は第2図のマイクロコンピュータで実行されるプ
ログラムに対応するフローチャート、及び第4図は車速
に対する舵角比を示す特性グラフである。 符号の説明 20・・・前輪操舵機構、24・・・操舵ハンドル、2
7a、27b・・・前輪、30・・・後輪操舵機構、3
1a、31b・・・後輪、32・・・揺動レバー、33
・・・リニアアクチュエータ、40・・・後輪駆動装置
、41・・・アクセルペダル、42・・・エンジン、5
0・・・電気制御装置、51・・・車速センサ、52・
・・踏込み量センサ、53・・・前輪操舵角センサ、5
4・・・マイクロコンピュータ、55・・差動増幅器、
56・ ・・位置センサ。 出願人  トヨタ自動車株式会社 代理人  弁理士 長 谷 照 − (外1名)
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a schematic diagram of a vehicle showing an embodiment of the invention,
FIG. 3 is a flowchart corresponding to the program executed by the microcomputer in FIG. 2, and FIG. 4 is a characteristic graph showing the steering angle ratio with respect to vehicle speed. Explanation of symbols 20...Front wheel steering mechanism, 24...Steering handle, 2
7a, 27b...front wheel, 30...rear wheel steering mechanism, 3
1a, 31b... Rear wheel, 32... Rocking lever, 33
... Linear actuator, 40 ... Rear wheel drive device, 41 ... Accelerator pedal, 42 ... Engine, 5
0... Electric control device, 51... Vehicle speed sensor, 52.
・・Depression amount sensor, 53 ・・Front wheel steering angle sensor, 5
4...Microcomputer, 55...Differential amplifier,
56...Position sensor. Applicant Toyota Motor Corporation Representative Patent Attorney Teru Hase - (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 操舵ハンドルの回動に応じて前輪を操舵する前輪操舵機
構と、後輪を操舵する後輪操舵機構と、前輪操舵角を検
出する前輪操舵角センサと、車両の走行加速度を検出す
る加速度センサと、前記前輪操舵角センサ及び前記加速
度センサからの信号に基づき旋回中の車両の加速に関係
した車両走行状態の変化に対応して後輪操舵角を所定角
度だけ変更するように前記後輪操舵機構を制御する電気
制御装置とを有する前後輪操舵車の後輪操舵制御装置に
おいて、前記電気制御装置を、前記検出前輪操舵角及び
前記検出加速度の大きさに基づき前記車両走行状態を判
別する判別手段と、前記判別した車両走行状態の変化に
応答して後輪操舵角が前記所定角度まで除々に変化する
ように前記後輪操舵機構を駆動制御する制御信号を出力
する出力手段とにより構成したことを特徴とする前後輪
操舵車の後輪操舵制御装置。
A front wheel steering mechanism that steers the front wheels according to rotation of a steering wheel, a rear wheel steering mechanism that steers the rear wheels, a front wheel steering angle sensor that detects the front wheel steering angle, and an acceleration sensor that detects the running acceleration of the vehicle. , the rear wheel steering mechanism is configured to change the rear wheel steering angle by a predetermined angle in response to a change in the vehicle running state related to the acceleration of the vehicle during turning based on the signals from the front wheel steering angle sensor and the acceleration sensor. In the rear wheel steering control device for a front and rear wheel steered vehicle, the electric control device is configured to control the electric control device by determining the vehicle running state based on the detected front wheel steering angle and the detected acceleration. and an output means for outputting a control signal for driving and controlling the rear wheel steering mechanism so that the rear wheel steering angle gradually changes up to the predetermined angle in response to the determined change in the vehicle running state. A rear wheel steering control device for a front and rear wheel steering vehicle, characterized by:
JP61092963A 1986-04-22 1986-04-22 Front and rear wheel steering vehicle rear wheel steering control device Expired - Lifetime JPH0761790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61092963A JPH0761790B2 (en) 1986-04-22 1986-04-22 Front and rear wheel steering vehicle rear wheel steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092963A JPH0761790B2 (en) 1986-04-22 1986-04-22 Front and rear wheel steering vehicle rear wheel steering control device

Publications (2)

Publication Number Publication Date
JPS62247980A true JPS62247980A (en) 1987-10-29
JPH0761790B2 JPH0761790B2 (en) 1995-07-05

Family

ID=14069084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092963A Expired - Lifetime JPH0761790B2 (en) 1986-04-22 1986-04-22 Front and rear wheel steering vehicle rear wheel steering control device

Country Status (1)

Country Link
JP (1) JPH0761790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343871A (en) * 1986-08-09 1988-02-24 Nippon Denso Co Ltd Steering device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135371A (en) * 1983-12-23 1985-07-18 Honda Motor Co Ltd All-wheel-steering gear for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135371A (en) * 1983-12-23 1985-07-18 Honda Motor Co Ltd All-wheel-steering gear for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343871A (en) * 1986-08-09 1988-02-24 Nippon Denso Co Ltd Steering device for vehicle

Also Published As

Publication number Publication date
JPH0761790B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US5285390A (en) Signal processing circuit for yaw-rate sensor
JP4032985B2 (en) Vehicle motion control device
JPS6271761A (en) Rear-wheel steering controller for four-wheel steering vehicle
JPH0773999B2 (en) Rear wheel control system for front and rear wheel steering vehicles
JPS62247980A (en) Rear wheel steering control device for front and rear wheel steering car
JP2023114989A (en) Method for determining gear ratio of power steering system as function of vehicle speed and steering wheel angle
JP3225766B2 (en) Vehicle behavior control device
JP3182972B2 (en) Rear wheel steering control device for vehicle
JP2001106103A (en) Vehicle steering unit
JP2876817B2 (en) Vehicle rear wheel steering angle control device
JPH072130A (en) Method for controlling rear wheel steering device
JP4882409B2 (en) Vehicle steering device
JPH0557948B2 (en)
JPH07465B2 (en) Rear wheel steering control device for front and rear wheel steering vehicles
JPS6374772A (en) Rear wheel steering controller for front/rear wheel
JP2726306B2 (en) Vehicle front and rear wheel steering system
JP2024033834A (en) Steering control device
JPS63166664A (en) Rear-wheel steering controller for all-wheel drive vehicle
JPS6220758A (en) Rear wheel steering control device for vehicle
JPS62116357A (en) Rear wheel steering controller for front and rear wheel steering car
JPH07186987A (en) Auxiliary steering angle controller for vehicle
JPS6331879A (en) Rear wheel steering controller for 4wd steering vehicle
JP3013586B2 (en) Rear wheel steering system for four-wheel steering vehicles
JPH02234881A (en) Rear wheel steering device for vehicle
JPH04342667A (en) Rear wheel steering device for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term