JPH072130A - Method for controlling rear wheel steering device - Google Patents

Method for controlling rear wheel steering device

Info

Publication number
JPH072130A
JPH072130A JP14905093A JP14905093A JPH072130A JP H072130 A JPH072130 A JP H072130A JP 14905093 A JP14905093 A JP 14905093A JP 14905093 A JP14905093 A JP 14905093A JP H072130 A JPH072130 A JP H072130A
Authority
JP
Japan
Prior art keywords
coefficient
vehicle
yaw rate
rear wheel
wheel steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14905093A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
明 高橋
Minoru Hiwatari
穣 樋渡
Atsushi Mine
篤 美禰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14905093A priority Critical patent/JPH072130A/en
Publication of JPH072130A publication Critical patent/JPH072130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To surely prevent the spin or the like of a vehicle in turning and braking operation by making the increased correction of the yaw rate coefficient by the acceleration coefficient to be set according to the negative longitudinal acceleration in the braking operation and the jerk coefficient to be set not more than the set value of the differentiated value of the negative longitudinal acceleration. CONSTITUTION:When a sudden brake is applied during the turning operation, the negative longitudinal acceleration (-a) becomes a constant small value until a vehicle is stopped, and its differentiated value (-j) is rapidly reduced in the beginning of the braking. Thus, the acceleration coefficient Ka and the jerk coefficient Kj become positive large values in the beginning of the braking, and the yaw rate coefficient kgamma is corrected to be increased. Though the rear wheel steering angle Er is largely steered instantaneously in the direction of the same phase irrespective of the reduction of the vehicle speed, and the cornering force of the rear wheels is reinforced. This constitution suppresses the swing-out of the rear wheels and prevents the roll-in of the vehicle and the rapid change of the spin behavior even if a large turning moment caused by the inertia force in the rapid braking during the turning operation is applied to the vehicle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の車両の4輪
操舵システム(4WS)において、後輪を電子的に操舵
する後輪操舵装置の制御方法に関し、詳しくは、旋回制
動時の巻込みやスピンの防止対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a rear wheel steering system for electronically steering a rear wheel in a four wheel steering system (4WS) for a vehicle such as an automobile. Concerning measures to prevent crowding and spin.

【0002】[0002]

【従来の技術】近年、車両のヨーイング運動のヨーレー
ト(回転角速度)を高い精度で直接検出するヨーレート
センサが開発されてきている。このヨーレートセンサに
よると、前輪操舵の場合のみならず、路面状態、横風等
の外乱に対する車両の挙動の変化も迅速に検出すること
ができる。このため4輪操舵システムにヨーレートセン
サのヨーレートを積極的に用い、逆相舵角比例制御とヨ
ーレートフィードバック制御で後輪操舵することが提案
されている。
2. Description of the Related Art In recent years, a yaw rate sensor for directly detecting a yaw rate (rotational angular velocity) of a yawing motion of a vehicle with high accuracy has been developed. With this yaw rate sensor, not only in the case of steering the front wheels, but also changes in the behavior of the vehicle due to disturbances such as road surface conditions and side winds can be promptly detected. Therefore, it has been proposed that the yaw rate of a yaw rate sensor be positively used in a four-wheel steering system to steer the rear wheels by anti-phase steering angle proportional control and yaw rate feedback control.

【0003】従来、上記後輪操舵制御に関しては、例え
ば特開平2−262471号公報の先行技術がある。こ
の先行技術において、舵角係数を逆相方向に、ヨーレー
ト係数を同相方向にそれぞれ車速の関数で設定し、前輪
操舵角と舵角係数の乗算値、及びヨーレート係数とヨー
レートの乗算値を加算して目標後輪操舵角を算出する。
そして目標後輪操舵角と後輪操舵角の偏差の制御信号を
出力して、逆相舵角比例制御とヨーレートフィードバッ
ク制御で後輪操舵制御することが示されている。
Conventionally, as for the rear wheel steering control, there is a prior art disclosed in, for example, Japanese Patent Laid-Open No. 2-262471. In this prior art, the steering angle coefficient is set in the opposite phase direction and the yaw rate coefficient is set in the same phase direction as a function of the vehicle speed, and the multiplication value of the front wheel steering angle and the steering angle coefficient and the multiplication value of the yaw rate coefficient and the yaw rate are added. Then, the target rear wheel steering angle is calculated.
Then, it is shown that a control signal of a deviation between the target rear wheel steering angle and the rear wheel steering angle is output, and the rear wheel steering control is performed by the anti-phase steering angle proportional control and the yaw rate feedback control.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、逆相舵角と同相ヨーレートによる
制御だけであるから、以下のような不具合を生じる。即
ち、中高速旋回時には、後輪がヨーレートとヨーレート
係数とにより同相操舵して、車両の安定性が確保され
る。この状態でドライバがブレーキ操作して制動する
と、車速の低下に応じてヨーレート係数が減少し、後輪
は図6の一点鎖線のように速やかに中立方向に切り戻し
操舵される。この場合に緩制動では車両の回頭慣性力が
小さく、後輪のコーナリングフォースが切り戻し操舵し
ても比較的大きいことで車両が安定保持される。しかし
急制動時には車両の回頭慣性力が増大し、後輪では制動
力の増大や切り戻し操舵によりコーナリングフォースが
大幅に小さくなり、これらの関係により車両にオーバモ
ーメントがかかって巻込みやスピンを生じることがあ
る。
By the way, in the above-mentioned prior art, since the control is performed only by the anti-phase steering angle and the in-phase yaw rate, the following problems occur. That is, at the time of turning at medium and high speeds, the rear wheels are steered in phase by the yaw rate and the yaw rate coefficient, and the stability of the vehicle is ensured. When the driver operates the brakes in this state to perform braking, the yaw rate coefficient decreases as the vehicle speed decreases, and the rear wheels are quickly steered back in the neutral direction as indicated by the alternate long and short dash line in FIG. In this case, in the slow braking, the turning inertial force of the vehicle is small, and the cornering force of the rear wheels is relatively large even if the steering wheel is turned back and steered, so that the vehicle is stably held. However, during sudden braking, the turning inertial force of the vehicle increases, and on the rear wheels the cornering force is greatly reduced due to the increase of the braking force and the steering back, and due to these relationships, an over moment is applied to the vehicle and winding or spin occurs. Sometimes.

【0005】本発明は、このような点に鑑み、逆相舵角
比例制御とヨーレートフィードバック制御による後輪操
舵制御において、旋回制動時の車両のスピン等を確実に
防止するように補正することを目的とする。
In view of such a point, the present invention corrects the reverse wheel steering control by the anti-phase steering angle proportional control and the yaw rate feedback control so as to surely prevent the vehicle from spinning during turning braking. To aim.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
本発明は、ヨーレート、車速の関数で同相方向に設定さ
れるヨーレート係数、ハンドル角、車速の関数で逆相方
向に設定されるハンドル角係数により目標後輪舵角を演
算し、この目標後輪舵角に基づいて後輪を自動的に操舵
する後輪操舵装置において、制動時の負の前後加速度に
応じて設定される加速度係数と、負の前後加速度の微分
値の設定値以下に設定されるジャーク係数とを有し、制
動時にこれら加速度係数とジャーク係数によりヨーレー
ト係数を増大補正することを特徴とする。
To achieve this object, the present invention is directed to a yaw rate coefficient set in the in-phase direction as a function of yaw rate and vehicle speed, a steering wheel angle, and a steering wheel angle set in the opposite phase direction as a function of vehicle speed. In the rear wheel steering system that calculates the target rear wheel steering angle by the coefficient and automatically steers the rear wheels based on this target rear wheel steering angle, the acceleration coefficient set according to the negative longitudinal acceleration during braking. , And a jerk coefficient which is set below a set value of the differential value of the negative longitudinal acceleration, and the yaw rate coefficient is increased and corrected by these acceleration coefficient and jerk coefficient during braking.

【0007】[0007]

【作用】上記制御方法による本発明では、車両走行時に
ヨーレート、ヨーレート係数、ハンドル角、ハンドル角
係数により目標後輪舵角が演算され、この目標後輪舵角
に基づきモータ等のアクチュエータが作動する。そして
車速、ハンドル角、横風等の外乱で回頭する場合のヨー
レートにより、後輪が所望の舵角等を得るように自動的
に同相または逆相に操舵され、低速時の旋回性、高速時
と外乱に対する安定性が良くなる。一方、特に中高速旋
回時に急制動すると、前後加速度とその微分値が負の方
向に変化し、制動初期に加速度係数とジャーク係数とに
よりヨーレート係数が増大補正され、後輪が同相方向に
一瞬大きく操舵されてコーナリングフォースを強化す
る。そこで車両はこのコーナリングフォースにより巻込
やスピンすることが防止され、旋回急制動時の車両安定
性が向上する。
In the present invention based on the above control method, the target rear wheel steering angle is calculated by the yaw rate, the yaw rate coefficient, the steering wheel angle, and the steering wheel angle coefficient when the vehicle is traveling, and the actuator such as the motor is operated based on the target rear wheel steering angle. . Then, depending on the yaw rate when turning due to disturbance such as vehicle speed, steering wheel angle, side wind, etc., the rear wheels are automatically steered in the same phase or opposite phase to obtain the desired steering angle etc. Improves stability against disturbance. On the other hand, when the vehicle is suddenly braked especially during medium-to-high speed turning, the longitudinal acceleration and its differential value change in the negative direction, and the yaw rate coefficient is increased and corrected by the acceleration coefficient and jerk coefficient at the initial stage of braking, and the rear wheel momentarily increases in the in-phase direction. Steered to enhance cornering force. Therefore, the vehicle is prevented from being caught or spun by the cornering force, and the vehicle stability at the time of sudden turning braking is improved.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、車両の駆動系と4輪操舵系の概略
について説明する。先ず、車両1においてエンジン2が
クラッチ3、変速機4に連結され、変速機4の出力側が
フロントデフ5、車軸6等を介して前輪7に伝動構成さ
れる。また変速機4の出力側は、プロペラ軸8、リヤデ
フ9、車軸10等を介して後輪11にも伝動構成され、
4輪駆動走行する。また4輪操舵系として、前輪操舵装
置20と後輪操舵装置30を有する。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, an outline of the vehicle drive system and the four-wheel steering system will be described. First, in the vehicle 1, the engine 2 is connected to the clutch 3 and the transmission 4, and the output side of the transmission 4 is configured to be transmitted to the front wheels 7 via the front differential 5, the axle 6, and the like. The output side of the transmission 4 is also configured to be transmitted to the rear wheel 11 via the propeller shaft 8, the rear differential 9, the axle 10, and the like.
Four-wheel drive runs. Further, it has a front wheel steering device 20 and a rear wheel steering device 30 as a four-wheel steering system.

【0009】前輪操舵装置20は、ハンドル21を有す
るステアリングシャフト22が、油圧式の制御バルブ2
3とパワーシリンダ24、ロッド25、ナックルアーム
26を介して前輪7に連結され、ハンドル操作により前
輪7を手動操舵するように構成される。後輪操舵装置3
0は、電動モータ31を有し、このモータ31が減速用
のウォームギヤ32を介して偏芯軸33に連結され、こ
の偏芯軸33からリンク34、レバー35、ナックルア
ーム36等を介して後輪11に連結され、モータ駆動に
より後輪11を自動操舵するように構成される。また異
常時にモータ電源を切った場合には、ウォームギヤ32
の非可逆性により後輪11を路面外力に対して所定の舵
角状態に保持する。
In the front wheel steering system 20, a steering shaft 22 having a steering wheel 21 has a hydraulic control valve 2
3 is connected to the front wheels 7 via the power cylinder 24, the rod 25, and the knuckle arm 26, and the front wheels 7 are manually steered by operating the steering wheel. Rear wheel steering device 3
Reference numeral 0 denotes an electric motor 31, which is connected to an eccentric shaft 33 via a worm gear 32 for reduction, and which is connected to the eccentric shaft 33 via a link 34, a lever 35, a knuckle arm 36, and the like. It is connected to the wheels 11 and is configured to automatically steer the rear wheels 11 by driving a motor. In addition, when the motor power is turned off during an abnormality, the worm gear 32
Due to the non-reciprocity, the rear wheel 11 is maintained in a predetermined steering angle state with respect to the road surface external force.

【0010】制御系として、ハンドル角θを検出するハ
ンドル角センサ40、ハンドル角速度dθを検出するハ
ンドル角速度センサ41、後輪舵角Erを検出する後輪
舵角センサ42、後輪舵角速度ωrを検出する後輪舵角
速度センサ43を有する。また車両の回頭状態に応じた
回転角速度のヨーレートγを検出するヨーレートセンサ
44を有する。更に、制御用車速Vを演算するため前左
車輪速Nfrを検出する前左車輪速センサ45、後右車
輪速Nrlを検出する後右車輪速センサ46を有し、こ
れらセンサ信号が制御ユニット50に入力して電気的に
処理され、後輪の操舵方向、舵角、舵角速度に応じたモ
ータ信号をモータ31に出力する。
The control system includes a steering wheel angle sensor 40 for detecting the steering wheel angle θ, a steering wheel angular velocity sensor 41 for detecting the steering wheel angular velocity dθ, a rear wheel steering angle sensor 42 for detecting the rear wheel steering angle Er, and a rear wheel steering angular velocity ωr. It has a rear wheel steering angular velocity sensor 43 for detecting. Further, it has a yaw rate sensor 44 for detecting a yaw rate γ of a rotational angular velocity according to the turning state of the vehicle. Further, in order to calculate the control vehicle speed V, a front left wheel speed sensor 45 for detecting the front left wheel speed Nfr and a rear right wheel speed sensor 46 for detecting the rear right wheel speed Nrl are provided, and these sensor signals are used as the control unit 50. Is input to the motor 31 to be electrically processed, and a motor signal corresponding to the steering direction of the rear wheels, the steering angle, and the steering angular velocity is output to the motor 31.

【0011】制御ユニット50は、前左車輪速Nflと
後右車輪速Nrrが入力する車速算出部51を有し、制
御用の車速Vを、V=(Nfl+Nrr)/2により算
出する。車速Vはハンドル角係数設定部52に入力し
て、ハンドル角係数Kθを車速Vの関数で設定し、同時
にヨーレート係数設定部53に入力して、ヨーレート係
数Kγを同様に車速Vの関数で設定する。ハンドル角係
数Kθは、図3(a)の舵角ゲインマップのように車速
全域で逆相であり、低中速域において車速Vが低いほど
値の絶対値が減少変化する特性である。ヨーレート係数
Kγは、同図のヨーレートゲインマップのように車速全
域で同相であり、車速Vの上昇に応じて緩やかに増大変
化する特性である。そこでこのマップを参照して両係数
Kθ、Kγを設定する。
The control unit 50 has a vehicle speed calculator 51 for inputting the front left wheel speed Nfl and the rear right wheel speed Nrr, and calculates the control vehicle speed V by V = (Nfl + Nrr) / 2. The vehicle speed V is input to the steering wheel angle coefficient setting unit 52, the steering wheel angle coefficient Kθ is set as a function of the vehicle speed V, and simultaneously input to the yaw rate coefficient setting unit 53, and the yaw rate coefficient Kγ is similarly set as a function of the vehicle speed V. To do. The steering wheel angle coefficient Kθ has a reverse phase over the entire vehicle speed as shown in the steering angle gain map of FIG. 3A, and has a characteristic that the absolute value of the value decreases and decreases as the vehicle speed V decreases in the low and medium speed range. The yaw rate coefficient Kγ is in-phase throughout the vehicle speed as shown in the yaw rate gain map in the same figure, and has a characteristic that it gradually increases as the vehicle speed V increases. Therefore, both coefficients Kθ and Kγ are set with reference to this map.

【0012】ハンドル角θとハンドル角係数Kθは乗算
部54に入力して両者の乗算値Kθ・θを算出し、ヨー
レートγとヨーレート係数Kγも乗算部55に入力して
両者の乗算値Kγ・γを算出する。これら2つの乗算値
Kθ・θ、Kγ・γは目標後輪舵角演算部56に入力
し、目標後輪舵角ETを、 ET=Kγ・γ+Kθ・θ により算出する。従って、Kγ・γの項は車両を安定側
に保つ安定要素であり、Kθ・θの項は旋回を促進する
旋回要素である。
The steering wheel angle θ and the steering wheel angle coefficient Kθ are input to the multiplication unit 54 to calculate a multiplication value Kθ · θ of both, and the yaw rate γ and the yaw rate coefficient Kγ are also input to the multiplication unit 55 to calculate both multiplication values Kγ · θ. Calculate γ. These two multiplication values Kθ · θ and Kγ · γ are input to the target rear wheel steering angle calculation unit 56, and the target rear wheel steering angle ET is calculated by ET = Kγ · γ + Kθ · θ. Therefore, the term of Kγ · γ is a stabilizing element that keeps the vehicle on the stable side, and the term of Kθ · θ is a turning element that promotes turning.

【0013】ここでヨーレートγは車速全域で旋回や外
乱による車両回頭状態に応じて発生し、この係数Kγが
車速Vの増大関数の特性であるため、車速Vが大きいほ
どKγ・γの値が大きくなる。ハンドル角θは一般に中
高速域では非常に小さく、このため係数Kθが逆相方向
に小さい特性でもKθ・θの値は零付近になる。そこで
中高速域でヨーレートγを検出すると、Kγ・γの値に
より目標後輪舵角ETは同相方向になって、安定性重視
で制御される。ハンドル角θの大きい低速域では逆相方
向のKθ・θの値により旋回性重視で制御され、このと
きヨーレートγの同相方向のKγ・γの値で安定側に補
正される。
Here, the yaw rate γ is generated in accordance with the turning state of the vehicle due to turning or disturbance over the entire vehicle speed, and this coefficient Kγ is a characteristic of the increasing function of the vehicle speed V. Therefore, the value of Kγ · γ becomes larger as the vehicle speed V increases. growing. The steering wheel angle θ is generally very small in the medium-high speed range, and therefore the value of Kθ · θ becomes close to zero even if the coefficient Kθ is small in the opposite phase direction. Therefore, when the yaw rate γ is detected in the medium-high speed range, the target rear wheel steering angle ET is in the in-phase direction due to the value of Kγ · γ, and stability-oriented control is performed. In the low speed range where the steering wheel angle θ is large, the turning property is controlled with emphasis on the value of Kθ · θ in the opposite phase direction, and at this time, the yaw rate γ is corrected to the stable side by the value of Kγ · γ in the in-phase direction.

【0014】目標後輪舵角ETと後輪舵角Erは偏差算
出部57に入力して偏差EDを、ED=ET−Erによ
り算出する。この偏差EDは目標後輪転舵速度設定部5
8に入力し、図3(b)のマップにより偏差EDに応じ
た目標後輪転舵速度ωoを設定する。更に、目標後輪転
舵速度ωoと後輪舵角速度ωrは速度差算出部59に入
力して速度差ωdを、ωd=ωo−ωrにより算出す
る。そして速度差ωdは制御量設定部60に入力して、
速度差ωdに応じた比例成分の制御量Kpを設定し、駆
動部61により制御量Kpに応じた正転または逆転のモ
ータ電流Iをモータ31に供給するように構成される。
The target rear wheel steering angle ET and the rear wheel steering angle Er are input to the deviation calculating section 57 to calculate the deviation ED by ED = ET-Er. This deviation ED is the target rear wheel turning speed setting unit 5
8, and the target rear wheel turning speed ωo corresponding to the deviation ED is set by the map of FIG. 3 (b). Further, the target rear wheel turning speed ωo and the rear wheel steering angular speed ωr are input to the speed difference calculation unit 59, and the speed difference ωd is calculated by ωd = ωo−ωr. Then, the speed difference ωd is input to the control amount setting unit 60,
The control amount Kp of the proportional component is set according to the speed difference ωd, and the driving unit 61 supplies the forward or reverse motor current I according to the control amount Kp to the motor 31.

【0015】上記制御系において、旋回制動時の車両ス
ピン等の防止対策について説明する。先ず、制動は前後
加速度の負の方向の変化で判断でき、オーバモーメント
を生じる制動初期は前後加速度の負の方向の微分値の変
化により判断でき、不感帯を設けることで急制動を判断
できる。また旋回制動時の車両スピン等の回頭性はヨー
レート係数に依存するので、前後加速度とその微分値に
よりヨーレート係数を増大補正すれば良い。
In the control system described above, measures for preventing vehicle spin during turning braking will be described. First, braking can be judged by the change in the negative direction of the longitudinal acceleration, and at the initial stage of braking when an over moment occurs, it can be judged by the change in the differential value of the longitudinal acceleration in the negative direction, and sudden braking can be judged by providing a dead zone. Further, since the turning performance of the vehicle spin during turning braking depends on the yaw rate coefficient, the yaw rate coefficient may be increased and corrected by the longitudinal acceleration and its differential value.

【0016】そこで前後加速度aを検出する前後Gセン
サ47を有する。そして前後加速度aは加速度係数設定
部62に入力して負の前後加速度−aに応じた加速度係
数Ka(Ka≦1)を設定し、且つジャーク係数設定部
63に入力して負の前後加速度の微分値−jに応じたジ
ャーク係数Kj(Kj≦1)を設定する。加速度係数K
aは図3(c)のように、負の前後加速度−aが小さい
ほど順次増大した特性である。ジャーク係数Kjは同図
(d)のように、負の前後加速度の微分値−jが設定値
−js以下で小さいほど順次増大した特性である。
Therefore, a front / rear G sensor 47 for detecting the front / rear acceleration a is provided. The longitudinal acceleration a is input to the acceleration coefficient setting unit 62 to set the acceleration coefficient Ka (Ka ≦ 1) according to the negative longitudinal acceleration −a, and is input to the jerk coefficient setting unit 63 to determine the negative longitudinal acceleration. A jerk coefficient Kj (Kj ≦ 1) corresponding to the differential value −j is set. Acceleration coefficient K
As shown in FIG. 3C, a is a characteristic in which the smaller the negative longitudinal acceleration −a is, the more it gradually increases. The jerk coefficient Kj is, as shown in FIG. 7D, a characteristic that the smaller the differential value −j of the negative longitudinal acceleration is equal to or less than the set value −js, the more the characteristics gradually increase.

【0017】これら加速度係数Kaとジャーク係数Kj
は目標後輪舵角演算部56に入力し、ヨーレート係数K
γを増大補正する。即ち、これら係数Ka,Kjを加え
た全体の目標後輪舵角ETを、 ET=Kγ・γ(1+Ka・Kj)+Kθ・θ により算出するように構成される。
These acceleration coefficient Ka and jerk coefficient Kj
Is input to the target rear wheel steering angle calculation unit 56, and the yaw rate coefficient K
γ is increased and corrected. That is, the overall target rear wheel steering angle ET including these coefficients Ka and Kj is configured to be calculated by ET = Kγ · γ (1 + Ka · Kj) + Kθ · θ.

【0018】次に、この実施例の作用を説明する。先
ず、エンジン2を運転し、変速機4の変速動力が駆動系
により前輪7と後輪11に伝達することで、車両1が4
輪駆動で走行する。このときドライバがハンドル21を
操作すると、前輪操舵装置20により前輪7が転舵して
手動操舵される。また図4のフローチャートが所定時間
毎に実行して後輪操舵制御される。
Next, the operation of this embodiment will be described. First, the engine 2 is operated, and the transmission power of the transmission 4 is transmitted to the front wheels 7 and the rear wheels 11 by the drive system, so that the vehicle 1 moves
Drive with wheel drive. At this time, when the driver operates the steering wheel 21, the front wheels 7 are steered and manually steered by the front wheel steering device 20. Further, the flowchart of FIG. 4 is executed at predetermined time intervals to perform rear wheel steering control.

【0019】即ち、ステップS1でハンドル角θ、ヨー
レートγ、後輪舵角Er、後輪舵角速度ωr、前後加速
度aを読込み、ステップS2で車速Vを算出する。その
後ステップS3に進み車速Vに応じてハンドル角係数K
θとヨーレート係数Kγを設定し、ステップS4で負の
前後加速度−aに応じて加速度係数Kaを設定し、負の
前後加速度の微分値−jに応じてジャーク係数Kjを設
定する。そしてステップS5でハンドル角θ、その係数
Kθ、ヨーレートγ、その係数Kγ、加速度係数Ka、
ジャーク係数Kjを用いて上述の式により目標後輪舵角
ETを演算する。従って、定常及び加速の走行条件で
は、Ka=0,Kj=0となって、ヨーレート係数Kγ
に対する補正は行われない。
That is, the steering wheel angle θ, the yaw rate γ, the rear wheel steering angle Er, the rear wheel steering angular velocity ωr, and the longitudinal acceleration a are read in step S1, and the vehicle speed V is calculated in step S2. After that, the process proceeds to step S3, where the steering wheel angle coefficient K is determined according to the vehicle speed V.
θ and the yaw rate coefficient Kγ are set, and in step S4, the acceleration coefficient Ka is set according to the negative longitudinal acceleration −a, and the jerk coefficient Kj is set according to the differential value −j of the negative longitudinal acceleration. Then, in step S5, the steering wheel angle θ, its coefficient Kθ, yaw rate γ, its coefficient Kγ, acceleration coefficient Ka,
The target rear wheel steering angle ET is calculated by the above equation using the jerk coefficient Kj. Therefore, under steady and accelerated traveling conditions, Ka = 0 and Kj = 0, and the yaw rate coefficient Kγ
Is not corrected.

【0020】またステップS6で目標後輪舵角ETと後
輪舵角Erとの偏差EDを算出し、ステップS7で偏差
EDに応じた目標後輪転舵速度ωoを設定し、ステップ
S8で目標後輪転舵速度ωoと後輪舵角速度ωrとの速
度差ωdを算出する。その後ステップS9で速度差ωd
に応じた制御量Kpを定め、ステップS10で制御量K
pのモータ電流Iを出力してモータ31を駆動する。
Further, the deviation ED between the target rear wheel steering angle ET and the rear wheel steering angle Er is calculated in step S6, the target rear wheel turning speed ωo is set in accordance with the deviation ED in step S7, and the target rear wheel steering speed ωo is set in step S8. A speed difference ωd between the wheel turning speed ωo and the rear wheel steering angular speed ωr is calculated. After that, in step S9, the speed difference ωd
The control amount Kp is determined according to the
The motor current I of p is output to drive the motor 31.

【0021】このため後輪操舵装置30では、モータ3
1によりウォームギヤ32、偏芯軸33が回転し、リン
ク34、レバー35が左右に揺動して後輪11が自動的
に操舵される。この場合に後輪11は同相または逆相
で、所望の舵角や舵角速度を得るように、逆相舵角比例
制御とヨーレートフィードバック制御される。
Therefore, in the rear wheel steering system 30, the motor 3
1, the worm gear 32 and the eccentric shaft 33 rotate, the link 34 and the lever 35 swing left and right, and the rear wheel 11 is automatically steered. In this case, the rear wheels 11 are in-phase or anti-phase, and are subjected to anti-phase steering angle proportional control and yaw rate feedback control so as to obtain a desired steering angle or steering angular velocity.

【0022】そこで定常及び加速の走行条件で、低速時
にハンドル21を大きく切ると、目標後輪舵角ETがK
θ・θの値により負になり、後輪11が逆相操舵して小
回り旋回される。このとき急旋回したり、路面μにより
車両が回頭してヨーレートγが大きくなると、Kγ・γ
の値により後輪11の逆相操舵が減少補正され、車両の
挙動が安定化される。中高速時の旋回では目標後輪舵角
ETが主としてKγ・γの値により正になって、後輪1
1が同相操舵される。そこで後輪11のコーナリングフ
ォースFcrが増大し、遠心力Fgに対して前後輪7,
11のコーナリングフォースFcf,Fcrが余裕を持
って釣合うようになる。このため車両は所定の旋回円を
安定した姿勢で走行することができて、旋回安定性が良
くなる。この場合のハンドル角θ、ヨーレートγ、両係
数Kθ、Kγ、目標後輪舵角ETの関係を示すと、図5
のようになる。
Therefore, when the steering wheel 21 is greatly turned at low speed under steady and accelerated traveling conditions, the target rear wheel steering angle ET becomes K.
The value becomes negative depending on the values of θ and θ, and the rear wheel 11 is steered in a small turn by reverse-phase steering. At this time, if the yaw rate γ increases due to a sharp turn or the vehicle turning due to the road surface μ, Kγ · γ
By the value of, the reverse-phase steering of the rear wheels 11 is reduced and corrected, and the behavior of the vehicle is stabilized. When turning at medium and high speeds, the target rear wheel steering angle ET becomes positive mainly due to the value of Kγ · γ, and the rear wheel 1
1 is in-phase steered. Therefore, the cornering force Fcr of the rear wheel 11 increases and the front and rear wheels 7,
The cornering forces Fcf and Fcr of 11 are balanced with a margin. Therefore, the vehicle can travel on a predetermined turning circle in a stable posture, and the turning stability is improved. FIG. 5 shows the relationship among the steering wheel angle θ, the yaw rate γ, the coefficients Kθ and Kγ, and the target rear wheel steering angle ET in this case.
become that way.

【0023】また横風等の外乱で車両が左右に急激に回
頭すると、ヨーレートγが大きく増減変化してこの車両
1の挙動変化が迅速に検出される。そしてKγ・γの値
により後輪11は車両1が回頭するにもかかわず同相状
態を保持するように操舵される。このため車両1は、横
風により流されないように安定して対向した姿勢にな
り、且つスムースに元の進路に戻る。
When the vehicle suddenly turns to the left or right due to a disturbance such as a crosswind, the yaw rate γ changes greatly, and this behavior change of the vehicle 1 is quickly detected. Then, the rear wheel 11 is steered so as to maintain the in-phase state regardless of the turning of the vehicle 1 by the value of Kγ · γ. For this reason, the vehicle 1 stably assumes an opposite posture so as not to be swept away by a side wind, and smoothly returns to the original course.

【0024】一方、中高速旋回時に後輪11が同相操舵
して、車両1を安定側に保つように制御される状態にお
いて、ブレーキ操作により制動すると、制動状態に応じ
た負の前後加速度−aとその微分値−jを生じる。そこ
で緩制動の場合は、図3(c)のマップでKa>0であ
るが、微分値−jが設定値−jsより大きいことで
(d)のマップによりKj=0になり、上述と同様にK
γに対する補正は行われない。このため車速Vの低下に
応じてヨーレート係数Kγが減少するのに対応して、後
輪11が中立方向に速やかに切り戻し操舵され、遠心力
Fgの低下に応じて後輪11のコーナリングフォースF
crも減少したものになる。
On the other hand, when the rear wheels 11 are steered in the same phase at the time of medium- and high-speed turning to control the vehicle 1 so as to keep it on the stable side, when braking is performed by the brake operation, a negative longitudinal acceleration -a corresponding to the braking state is obtained. And its differential value −j. Therefore, in the case of gentle braking, Ka> 0 in the map of FIG. 3C, but since the differential value −j is larger than the set value −js, Kj = 0 in the map of (d), which is the same as above. To K
No correction is made for γ. Therefore, the yaw rate coefficient Kγ decreases as the vehicle speed V decreases, the rear wheels 11 are swiftly switched back in the neutral direction, and the cornering force F of the rear wheels 11 decreases as the centrifugal force Fg decreases.
cr is also reduced.

【0025】また上述の旋回時に急制動すると、図6の
ように負の前後加速度−aは停車する迄の間一定の小さ
い値になり、その微分値−jは同図のように制動初期に
急激に減少変化する。このため制動初期にKa・Kjが
正の大きい値になって、ヨーレート係数Kγが増大補正
される。このため後輪11は車速Vの低下にかかわらず
一瞬図6のように更に同相方向に大きく操舵され、後輪
11のコーナリングフォースFcrが強化される。そこ
で旋回急制動の際の慣性力により車両1に大きい回頭モ
ーメントが作用しても、後輪11の外への振り出しがそ
の強化されたコーナリングフォースFcrにより抑制さ
れ、こうして車両1の巻込やスピンの挙動の急変が防止
される。
Further, when the vehicle is suddenly braked during the above-mentioned turning, the negative longitudinal acceleration -a becomes a constant small value until the vehicle stops as shown in FIG. 6, and its differential value -j is at the initial stage of braking as shown in FIG. It rapidly decreases and changes. Therefore, Ka · Kj becomes a large positive value in the initial stage of braking, and the yaw rate coefficient Kγ is increased and corrected. Therefore, the rear wheels 11 are momentarily steered further in the in-phase direction as shown in FIG. 6 regardless of the decrease in the vehicle speed V, and the cornering force Fcr of the rear wheels 11 is strengthened. Therefore, even if a large turning moment acts on the vehicle 1 due to the inertial force at the time of sudden turning braking, the outward cornering force of the rear wheel 11 is suppressed by the enhanced cornering force Fcr, and thus the rolling or spinning of the vehicle 1 is prevented. The sudden change of the behavior of is prevented.

【0026】そして制動直後にKj=0になると、それ
以降は加速度係数Kaと車速Vの関数のヨーレート係数
Kγにより目標後輪舵角ETが徐々に減少する。このた
め後輪11は、車両の挙動変化の少ない状態で図6のよ
うに滑らかに中立方向に切り戻し操舵される。
When Kj = 0 immediately after braking, the target rear wheel steering angle ET gradually decreases thereafter by the yaw rate coefficient Kγ which is a function of the acceleration coefficient Ka and the vehicle speed V. Therefore, the rear wheels 11 are smoothly steered back in the neutral direction as shown in FIG. 6 in a state where there is little change in the behavior of the vehicle.

【0027】以上、本発明の実施例について説明した
が、これのみに限定されない。
The embodiment of the present invention has been described above, but the present invention is not limited to this.

【0028】[0028]

【発明の効果】以上に説明したように本発明によると、
逆相舵角比例制御とヨーレートフィードバック制御によ
り後輪を自動的に操舵する後輪操舵装置において、急制
動の初期に負の前後加速度とその微分値の係数によりヨ
ーレート係数を増大補正するので、旋回急制動時には後
輪のコーナリングフォースが強化されて車両の巻込やス
ピン等を有効に防止することができて、旋回急制動時の
車両安定性が向上する。制動初期後は後輪を滑らかに中
立方向に切り戻し操舵するので、車両挙動変化が少な
い。負の前後加速度とその微分値により、制動初期とそ
の後の制御を円滑に行うことができる。加速度係数とジ
ャーク係数はリニアな特性であるから、制動状態に応じ
て車両のスピン等を適切に防止できる。
As described above, according to the present invention,
In a rear wheel steering system that automatically steers the rear wheels by anti-phase steering angle proportional control and yaw rate feedback control, the yaw rate coefficient is increased and corrected by the coefficient of negative longitudinal acceleration and its differential value at the beginning of sudden braking, so At the time of sudden braking, the cornering force of the rear wheels can be strengthened to effectively prevent the vehicle from being caught or spun, and the vehicle stability at the time of sudden turning braking is improved. After the initial braking, the rear wheels are smoothly steered back to the neutral direction, so there is little change in vehicle behavior. By the negative longitudinal acceleration and its differential value, the initial braking and the subsequent control can be smoothly performed. Since the acceleration coefficient and the jerk coefficient are linear characteristics, it is possible to appropriately prevent the vehicle from spinning and the like depending on the braking state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る後輪操舵装置の制御方法に適した
制御系を示すブロック図である。
FIG. 1 is a block diagram showing a control system suitable for a control method for a rear wheel steering system according to the present invention.

【図2】車両の駆動系と4輪操舵系の概略を示す構成図
である。
FIG. 2 is a configuration diagram showing an outline of a vehicle drive system and a four-wheel steering system.

【図3】ハンドル角係数、ヨーレート係数、目標後輪転
舵速度、加速度係数、ジャーク係数のマップを示す図で
ある。
FIG. 3 is a diagram showing a map of a steering wheel angle coefficient, a yaw rate coefficient, a target rear wheel turning speed, an acceleration coefficient, and a jerk coefficient.

【図4】後輪操舵制御を示すフローチャートである。FIG. 4 is a flowchart showing rear wheel steering control.

【図5】左右旋回時の後輪操舵の状態を示す図である。FIG. 5 is a diagram showing a state of rear wheel steering when turning left and right.

【図6】急制動時の後輪操舵等の状態を示すタイムチャ
ートである。
FIG. 6 is a time chart showing a state such as rear wheel steering during sudden braking.

【符号の説明】[Explanation of symbols]

30 後輪操舵装置 31 電動モータ 40 ハンドル角センサ 44 ヨーレートセンサ 47 前後Gセンサ 50 制御ユニット 52 ハンドル角係数設定部 53 ヨーレート係数設定部 56 目標後輪舵角演算部 62 加速度係数設定部 63 ジャーク係数設定部 30 rear wheel steering device 31 electric motor 40 steering wheel angle sensor 44 yaw rate sensor 47 front-rear G sensor 50 control unit 52 steering wheel angle coefficient setting unit 53 yaw rate coefficient setting unit 56 target rear wheel steering angle calculation unit 62 acceleration coefficient setting unit 63 jerk coefficient setting Department

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B62D 113:00 117:00 137:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B62D 113: 00 117: 00 137: 00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ヨーレート、車速の関数で同相方向に設
定されるヨーレート係数、ハンドル角、車速の関数で逆
相方向に設定されるハンドル角係数により目標後輪舵角
を演算し、この目標後輪舵角に基づいて後輪を自動的に
操舵する後輪操舵装置において、制動時の負の前後加速
度に応じて設定される加速度係数と、負の前後加速度の
微分値の設定値以下に設定されるジャーク係数とを有
し、制動時にこれら加速度係数とジャーク係数によりヨ
ーレート係数を増大補正することを特徴とする後輪操舵
装置の制御方法。
1. A target rear wheel steering angle is calculated from a yaw rate coefficient set in the in-phase direction by a function of yaw rate and vehicle speed, and a steering wheel angle coefficient set in a reverse phase direction by a function of vehicle speed, and the target rear wheel steering angle is calculated. In a rear-wheel steering system that automatically steers the rear wheels based on the wheel steering angle, the acceleration coefficient is set according to the negative longitudinal acceleration during braking, and the differential coefficient of the negative longitudinal acceleration is set below the set value. A method for controlling a rear wheel steering system, wherein the yaw rate coefficient is increased and corrected by the acceleration coefficient and the jerk coefficient during braking.
【請求項2】 加速度係数とジャーク係数は、いずれも
負の前後加速度またはその微分値が小さいほど大きい特
性に設定されることを特徴とする請求項1記載の後輪操
舵装置の制御方法。
2. The control method for a rear wheel steering system according to claim 1, wherein both the acceleration coefficient and the jerk coefficient are set to have larger characteristics as the negative longitudinal acceleration or the derivative thereof is smaller.
JP14905093A 1993-06-21 1993-06-21 Method for controlling rear wheel steering device Pending JPH072130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14905093A JPH072130A (en) 1993-06-21 1993-06-21 Method for controlling rear wheel steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14905093A JPH072130A (en) 1993-06-21 1993-06-21 Method for controlling rear wheel steering device

Publications (1)

Publication Number Publication Date
JPH072130A true JPH072130A (en) 1995-01-06

Family

ID=15466561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14905093A Pending JPH072130A (en) 1993-06-21 1993-06-21 Method for controlling rear wheel steering device

Country Status (1)

Country Link
JP (1) JPH072130A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290650A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Motion controller of vehicle
US8744689B2 (en) 2007-07-26 2014-06-03 Hitachi, Ltd. Drive controlling apparatus for a vehicle
JP6254323B1 (en) * 2017-07-05 2017-12-27 株式会社ショーワ Suspension device and recording medium
JP2020045083A (en) * 2018-09-19 2020-03-26 現代自動車株式会社Hyundai Motor Company Control method of rear wheel steering system
CN114954632A (en) * 2021-02-24 2022-08-30 丰田自动车株式会社 Vehicle control method, vehicle control system and vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290650A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Motion controller of vehicle
JP4724593B2 (en) * 2006-04-27 2011-07-13 日立オートモティブシステムズ株式会社 Vehicle motion control device
US8744689B2 (en) 2007-07-26 2014-06-03 Hitachi, Ltd. Drive controlling apparatus for a vehicle
US9145165B2 (en) 2007-07-26 2015-09-29 Hitachi, Ltd. Drive controlling apparatus for a vehicle
JP6254323B1 (en) * 2017-07-05 2017-12-27 株式会社ショーワ Suspension device and recording medium
WO2019008777A1 (en) * 2017-07-05 2019-01-10 株式会社ショーワ Suspension device and recording medium
JP2019014341A (en) * 2017-07-05 2019-01-31 株式会社ショーワ Suspension device and recording medium
US11613151B2 (en) 2017-07-05 2023-03-28 Hitachi Astemo, Ltd. Suspension apparatus and recording medium
JP2020045083A (en) * 2018-09-19 2020-03-26 現代自動車株式会社Hyundai Motor Company Control method of rear wheel steering system
CN114954632A (en) * 2021-02-24 2022-08-30 丰田自动车株式会社 Vehicle control method, vehicle control system and vehicle
CN114954632B (en) * 2021-02-24 2024-05-24 丰田自动车株式会社 Vehicle control method, vehicle control system and vehicle

Similar Documents

Publication Publication Date Title
US6154696A (en) Steering control system for controlling torque steer
US6345218B1 (en) Vehicle steering control system based on vehicle body side slip angle
US5184298A (en) Rear wheel steering system for vehicle
JP2005343315A (en) Vehicular steering device
JPH01309879A (en) Control method for steering rear wheel of automobile
JP2742687B2 (en) Rear wheel steering control method for automobiles
JPH0773999B2 (en) Rear wheel control system for front and rear wheel steering vehicles
JPH072130A (en) Method for controlling rear wheel steering device
JP2940371B2 (en) Auxiliary steering angle control device for vehicles
JP3905142B2 (en) Trackless vehicle running characteristics stabilization system, power steering system, and hydraulic steering device
JP3182972B2 (en) Rear wheel steering control device for vehicle
JP2518245B2 (en) Rear wheel steering system for vehicles
JP3212182B2 (en) Control method of rear wheel steering device
JP3282698B2 (en) Auxiliary steering angle control device for vehicles
JPS6234584B2 (en)
JPH0891238A (en) Control method for rear wheel steering device
JP3212183B2 (en) Control method of rear wheel steering device
JP2770505B2 (en) Vehicle rear wheel steering angle control device
JPH072128A (en) Method for controlling rear wheel steering device
JP2000159138A (en) Vehicle movement control device
JP3040509B2 (en) Vehicle rear wheel steering system
JP2940370B2 (en) Auxiliary steering angle control device for vehicles
JPH04342667A (en) Rear wheel steering device for vehicle
JPH04331669A (en) Steering characteristic controller for vehicle
JP3354677B2 (en) Vehicle rear wheel steering system