JPH0773999B2 - Rear wheel control system for front and rear wheel steering vehicles - Google Patents

Rear wheel control system for front and rear wheel steering vehicles

Info

Publication number
JPH0773999B2
JPH0773999B2 JP61012783A JP1278386A JPH0773999B2 JP H0773999 B2 JPH0773999 B2 JP H0773999B2 JP 61012783 A JP61012783 A JP 61012783A JP 1278386 A JP1278386 A JP 1278386A JP H0773999 B2 JPH0773999 B2 JP H0773999B2
Authority
JP
Japan
Prior art keywords
rear wheel
wheel steering
vehicle
driving
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61012783A
Other languages
Japanese (ja)
Other versions
JPS62173372A (en
Inventor
隆 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61012783A priority Critical patent/JPH0773999B2/en
Publication of JPS62173372A publication Critical patent/JPS62173372A/en
Publication of JPH0773999B2 publication Critical patent/JPH0773999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、前後輪操舵車の後輪制御装置の改良に関す
る。
The present invention relates to an improvement of a rear wheel control device for a front and rear wheel steering vehicle.

【従来の技術】[Prior art]

従来、前後輪操舵車の後輪制御装置として、例えば、特
開昭57-60974号公報に開示されるように、車両旋回時の
加減速を検出し、これに応じて後輪を操舵するようにし
て、旋回時に車両を加減速させても旋回半径の変化を防
止することができるようにしたものが提案されている。 又、他の前後輪操舵車の後輪制御装置として、例えば、
特開昭57-11173号公報に開示されるように、車両の横滑
り角が小さくなるように、後輪操舵角を前輪操舵角の定
数k倍として後輪を操舵制御するようにしたものが提案
されてる。 又、乗物の操舵装置として、特公昭52-11485号公報に開
示されるように、操舵者の与える操舵角と車両の車体ヨ
ーレイトとを比較し、この比較結果を基にして前輪操舵
角を修正するようにしたものが提案されている。
Conventionally, as a rear wheel control device for a front and rear wheel steering vehicle, for example, as disclosed in JP-A-57-60974, acceleration / deceleration during vehicle turning is detected, and the rear wheels are steered accordingly. Thus, it has been proposed that the turning radius can be prevented from changing even if the vehicle is accelerated or decelerated during turning. Further, as another rear wheel control device for a front and rear wheel steering vehicle, for example,
As disclosed in Japanese Unexamined Patent Publication No. 57-11173, a proposal is made to control the rear wheels by setting the rear wheel steering angle to a constant k times the front wheel steering angle so that the sideslip angle of the vehicle becomes small. Has been done. Further, as a vehicle steering device, as disclosed in Japanese Patent Publication No. 52-11485, the steering angle given by the driver and the vehicle body yaw rate are compared, and the front wheel steering angle is corrected based on the comparison result. Something that has been done is proposed.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

しかしながら、上記従来の装置においては、車両の左右
車輪の駆動力あるいは制動力の差により生じる車体重心
鉛直軸回りのモーメントを考慮していない。 この車体重心鉛直軸回りのモーメントとは、いわゆるヨ
ーイングモーメント(単位:m・Kg等)と称するものであ
る。該車体重心鉛直軸回りのモーメント等、車体に作用
する諸作用力については、例えば、「新編 自動車工学
便覧<第2編>」(昭和57年11月26日初版発行 編集・
発行者 社団法人自動車技術会)の1-37頁等に説明され
ている(該車体重心鉛直軸回りのモーメントは、z軸回
りのモーメントMzとして示されている)。 従来、このような車体重心鉛直軸回りのモーメントを考
慮していないため、次のような問題点を有する。 まず、第1に、従来駆動力を増加させるためにデフアレ
ンシヤルギヤにリミテツドスリツプデフアレンシヤル
(以下LSDと称する)が用いられることがあるが、この
ようなLSDが用いられる車両にあつては、差動トルクの
発生により、旋回し難くなるという問題点を有する。 即ち、第7図に示す如く、LSD7を備えたFF(フロントエ
ンジンフロントドライブ)車8が、旋回中心Oを中心と
して旋回する場合、旋回時の内外輪差により第8図に示
すような差動トルクTdが発生し、これにより、左右前輪
9A、9Bの駆動力F1、F3がF1=Tq/2+Td、F3=Tq/2−Tdの
ように変化し、旋回時の外側車輪の駆動力F3に比べ内側
車輪の駆動力F1が増加し、車両旋回方向とは反対方向の
車体重心鉛直軸回りのモーメントが発生して、旋回しに
くくなるという、いわゆるアンダステアやトルクステア
の傾向を示すようになるという問題点を有する。 なお、前記第8図は、エンジン出力トルクとしてのデフ
アレンシヤルギヤのリングギヤトルクTqと差動トルクTd
との関係を示す線図であり、図中実線Pは通常のデフア
レンシヤルギヤ、破線QはLSDのものを示す。又、第7
図中符号7Aはエンジンを示す。上述したようなアンダス
テアやトルクステアの傾向は、LSDに限らず、通常のデ
フアレンシヤルギヤにおいても、大きいトルクで加減速
旋回する場合には、FF車、FR(フロントエンジンリヤド
ライブ)車にかかわらず発生する場合がある。 第2に、制動時の左右車輪の制動力の不均衡や、左右車
輪の接地路面の摩擦係数μが異なる場合には、左右の車
輪の制動力あるいは駆動力に差が生じ、この差によつて
車両に車体重心鉛直軸回りのモーメントが発生し、車体
を偏向させたりスピンさせたりするという問題点を有す
る。
However, the above-mentioned conventional device does not consider the moment about the vertical axis of the vehicle body center of gravity caused by the difference between the driving force or the braking force of the left and right wheels of the vehicle. The moment about the vertical axis of the vehicle body weight is referred to as a so-called yawing moment (unit: m · Kg, etc.). For various acting forces acting on the vehicle body, such as the moment about the vertical axis of the body weight of the vehicle, refer to, for example, "New Edition Automotive Engineering Handbook <Second Edition>" (published on November 26, 1982, first edition.
The issue is described on pages 1-37, etc. of the Japan Society of Automotive Engineers (the moment about the vertical axis of the body weight of the vehicle is shown as the moment Mz about the z axis). Conventionally, since the moment around the vertical axis of the vehicle body weight is not taken into consideration, there are the following problems. First, there is a case where a limited slip differential gear (hereinafter referred to as LSD) is used in the differential gear to increase the driving force in the related art, but for a vehicle in which such an LSD is used, Has a problem that it becomes difficult to turn due to generation of differential torque. That is, as shown in FIG. 7, when an FF (front engine front drive) vehicle 8 equipped with an LSD7 turns around a turning center O, a differential as shown in FIG. Torque Td is generated, which causes left and right front wheels
9A, the driving force of 9B F 1, F 3 is F 1 = Tq / 2 + Td , changes as F 3 = Tq / 2-Td , the driving force of the inner wheels as compared to the driving force F 3 of the outer wheel in turning There is a problem that F 1 increases and a moment about the vertical axis of the vehicle body center in the direction opposite to the vehicle turning direction is generated, which makes it difficult to turn, that is, there is a tendency of so-called understeer or torque steer. Note that FIG. 8 shows the ring gear torque Tq and the differential torque Td of the differential gear as the engine output torque.
And a solid line P in the figure shows a normal differential gear, and a broken line Q shows an LSD. Also, the seventh
Reference numeral 7A in the figure indicates an engine. The tendency of understeer and torque steer as described above is not limited to LSD, and even in a normal differential gear, when accelerating and decelerating turning with a large torque, FF vehicles and FR (front engine rear drive) vehicles are concerned. May occur without any action. Secondly, when the braking force of the left and right wheels is imbalanced during braking or when the friction coefficient μ of the ground contact road surface of the left and right wheels is different, a difference occurs in the braking force or the driving force of the left and right wheels. As a result, a moment is generated in the vehicle about the vertical axis of the weight of the vehicle, which causes the vehicle body to be deflected or spun.

【発明の目的】[Object of the Invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、車両の左右車輪の駆動力あるいは制動力の差によ
り生じる走行中の車体偏向や車両巻込み現象を防止する
ことのできる前後輪操舵車の後輪制御装置を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and front and rear wheels capable of preventing a vehicle body deflection during traveling or a vehicle rolling-in phenomenon caused by a difference in driving force or braking force between left and right wheels of a vehicle. An object of the present invention is to provide a rear wheel control device for a steered vehicle.

【問題点を解決するための手段】[Means for solving problems]

本発明は、前後輪操舵車の後輪制御装置において、第1
図にその要旨を示す如く、右車輪の駆動・制動力を検出
する右車輪・駆動・制動力検出手段と、左車輪の駆動・
制動力を検出する左車輪・駆動・制動力検出手段と、前
輪操舵角を検出する前輪操舵角検出手段と、前記検出右
車輪・駆動・制動力と前記検出左車輪・駆動・制動力と
の差、及び検出前輪操舵角に基づき、車両の左右車輪の
駆動力あるいは制動力の差により生じる車体重心鉛直軸
回りのモーメントを算出する車体回りモーメント算出手
段3と、車速を検出する車速検出手段4と、前記算出車
体回りモーメントと検出車速とに応じて前記検出車体回
りモーメントを解消するように後輪操舵角を算出する後
輪操舵角算出手段5と、前記算出後輪操舵角に基づき後
輪を操舵する後輪操舵機構6とを備えることにより、前
記目的を達成したものである。
The present invention relates to a rear wheel control device for a front and rear wheel steering vehicle, comprising:
As shown in the figure, the right wheel / driving / braking force detection means for detecting the driving / braking force of the right wheel and the driving / braking force of the left wheel are detected.
The left wheel / driving / braking force detecting means for detecting the braking force, the front wheel steering angle detecting means for detecting the front wheel steering angle, the detected right wheel / driving / braking force and the detected left wheel / driving / braking force Based on the difference and the detected steering angle of the front wheels, a vehicle body moment calculating means 3 for calculating a moment around the vertical axis of the vehicle body weight caused by a difference between the driving force or the braking force of the left and right wheels of the vehicle, and a vehicle speed detecting means 4 for detecting the vehicle speed. A rear wheel steering angle calculating means 5 for calculating a rear wheel steering angle so as to cancel the detected vehicle body moment according to the calculated vehicle body moment and the detected vehicle speed; and a rear wheel steering wheel based on the calculated rear wheel steering angle. The above object is achieved by including the rear wheel steering mechanism 6 for steering.

【作用】[Action]

本発明においては、まず、右車輪の駆動・制動力を検出
する。又、同時に、左車輪の駆動・制動力を検出する。
更に、前記検出右車輪・駆動・制動力と前記検出左車輪
・駆動・制動力との差、及び前輪操舵角から、車体重心
鉛直軸回りのモーメントを算出する。即ち、車両の左右
車輪の駆動力あるいは制動力の差により生じる、車体重
心鉛直軸回りのモーメントを算出すると共に、車速を検
出し、前記算出車体回りモーメントと検出車速とに応じ
て前記算出車体回りモーメントを打ち消すような後輪操
舵角を算出し、この算出後輪操舵角に基づき後輪を操舵
するようにしている。従つて、左右車輪の駆動力や制動
力の差によつて発生する車両偏向やスピンを防止して、
運転者の操舵操作に忠実に従う車両操縦性を得ることが
できるようになる。即ち、制動時の偏向(片効き)や駆
動時の偏向(トルクステア)を防止することができる。
In the present invention, first, the driving / braking force of the right wheel is detected. At the same time, the driving / braking force of the left wheel is detected.
Further, the moment about the vertical axis of the vehicle body weight is calculated from the difference between the detected right wheel / driving / braking force and the detected left wheel / driving / braking force and the front wheel steering angle. That is, the moment around the vertical axis of the vehicle body weight center generated by the difference between the driving force or the braking force of the left and right wheels of the vehicle is calculated, the vehicle speed is detected, and the calculated vehicle body rotation according to the calculated vehicle body moment and the detected vehicle speed. The rear wheel steering angle that cancels the moment is calculated, and the rear wheels are steered based on the calculated rear wheel steering angle. Therefore, vehicle deflection and spin that occur due to the difference in driving force and braking force between the left and right wheels are prevented,
The vehicle maneuverability that faithfully follows the steering operation of the driver can be obtained. That is, it is possible to prevent the deflection during braking (one-sided effect) and the deflection during driving (torque steer).

【実施例】【Example】

以下図面を参照して、本発明が採用された前後輪操舵車
の後輪制御装置の実施例を詳細に説明する。 第2図は、本発明の適用対象である車両の前輪操舵機構
Aと、後輪操舵機構Bと、この後輪操舵機構Bの電気制
御装置Cを示している。 前輪操舵機構Aは、ピニオンアンドラツク機構11と、こ
の機構11のラツク部に連結された左右一対のリレーロツ
ド12a、12bとを備えている。前記ピニオンアンドラツク
機構11はそのピニオン部にて操舵軸13を介して操舵ハン
ドル14に連結されており、操舵ハンドル14の回転運動を
リレーロツド12a、12bの往復運動に変換している。前記
左右リレーロツド12a、12bは図示しない左右タイロツド
及び左右ナツクルアーム15a、15bを介して左右前輪16
a、16bに各々連結されており、この左右リレーロツド12
a、12bにより左右前輪16a、16bは操舵される。 後輪操舵装置Bは、エンジンによつて駆動される油圧ポ
ンプ20と、この油圧ポンプ20の吐出油がサーボ弁21を介
して付与されて両後輪22a、22bを操舵する油圧シリンダ
23とを備えている。 前記油圧ポンプ20は、その流入口にて導管P1を介してリ
ザーバ24に接続され、その吐出口にて導管P2を介してサ
ーボ弁21に接続されている。 前記サーボ弁21は、その中立位置にて油圧シリンダ23の
右室23bに接続した導管P3を閉止し、且つ油圧シリンダ2
3の左室23aに接続した導管P4を閉止する。又、サーボ弁
21は、第2図において下方に変位された第1位置に切換
えられたとき、導管P2を導管P3に接続し、且つ導管P4
導管P5を介して前記リザーバ24に接続する。又、第2図
において上方に変位された第2位置に切換えられたとき
には、導管P2を導管P4に接続し、且つ導管P3を導管P5
介してリザーバ24に接続する。なお、このサーボ弁21の
切換え作動は、このサーボ弁21に設けられたトルクモー
タ21aの作動によりもたらされ、又トルクモータ21aの作
動は、前記電気制御装置Cから付与される制御信号によ
りもたらされる。 前記油圧シリンダ23は、内部に収容したピストン25に左
右一対のピストンロツド26a、26bを連結して構成され
る。前記左方のピストンロツド26aはタイロツド27a、ナ
ツクルアーム28aを介して後輪22aに連結されている。
又、右方のピストンロツド26bは、タイロツド27b、ナツ
クルアーム28bを介して後輪22bに連結されている。 前記電気制御装置Cは、右前輪に設けられた車速検出用
歯車16cの回転をピツクアツプし、車速に応じた周波数
のピツクアツプ信号を発生する車速センサ30と、車両の
各車輪16a、16b、22a、22bに取付けられるトルクセンサ
31a、31b、32a、32bと、前記操舵軸13に取付けられ前輪
16a、16bの前輪操舵角を検出して該前輪操舵角に対応し
た電圧値を示すアナログ信号を発生する前輪舵角センサ
34と、目標後輪操舵角に対する実操舵角を測定して、目
標操舵角への操舵角フイードバツク制御を行うための後
輪舵角センサ36と、これらの各センサ30、31a、31b、32
a、32b、34、36から付与される信号に基づき後述のプロ
グラムを実行することにより後輪の目標操舵角制御信号
を出力するマイクロコンピユータ38と、このマイクロコ
ンピユータ38の制御信号と、前記後輪舵角センサ36から
の実操舵角信号との差信号を出力する比較器40と、この
比較器40からの出力信号を増幅して前記サーボ弁21を駆
動するサーボアンプ41とを備えている。 前記マイクロコンピユータ38は、前記第1図における車
体回りモーメント算出手段3、車速検出手段4、後輪操
舵角算出手段5を構成するものであり、第3図に示すフ
ローチヤートに対応するプログラム及び後述する後輪操
舵係数C(v)(第5図参照)を算出するためのパラメ
ータを記憶する読出し専用メモリ(ROM)38aと、このプ
ログラムを実行する中央処理装置(CPU)38bと、このプ
ログラムに必要な変数及びフラグを一時的に記憶する書
込み可能メモリ(RAM)38cと、前記車速センサ32に図示
しない波形成形器を介して接続されると共に、トルクセ
ンサ31a〜b、32a〜b、前輪舵角センサ34、後輪舵角セ
ンサ36に図示しないアナログデジタル変換器(A/D変換
器)等を介して接続され、且つ前記比較器40に図示しな
いデジタルアナログ変換器(D/A変換器)を介して接続
される入出口インターフエース回路(I/O)38dと、これ
らのROM38a、CPU38b、RAM38c、I/O38dを各々共通に接続
するバス38eから構成される。 以上のように構成された車両用後輪操舵制御装置の動作
を第3図のフローチヤートを用いて説明する。 車両を始動させるために、図示しないイグニツシヨンス
イツチを閉成すると、CPU38bは、ステツプ100において
プログラムの実行を開始し、ステツプ102において、左
前輪16aのトルクセンサ31aにより左前輪駆動・制動トル
クF1を読込む。次に、ステツプ104に進み、右前輪16bの
トルクセンサ31bにより右前輪駆動・制動トルクF3を読
込む。次に、ステツプ106に進み、左後輪トルクセンサ3
2aにより左後輪22aの駆動・制動トルクF2を読込む。次
に、ステツプ108に進み、右後輪22bのトルクセンサ32b
により右後輪駆動・制動トルクF4を読込む。 次にステツプ110に進み、前出ステツプ102、104で検出
した左前輪駆動・制動トルクF1と右前輪駆動・制動トル
クF3との差の絶対値が所定値ΔFfより大きいか否かを判
定する。このステツプ110において否と判定される場
合、即ち左前輪駆動・制動トルクF1と右前輪駆動・制動
トルクF3との差の絶対値が所定値ΔFf以下と判断される
場合にはステツプ112に進む。 このステツプ112において、前記左後輪駆動・制動トル
クF2と右後輪・駆動制動トルクF4との差の絶対値が所定
値ΔFrより大きいか否かを判定する。このステツプ112
において正と判定される場合、即ち、左右の後輪の駆動
・制動トルクの差の絶対値が所定値ΔFrより大きいと判
断される場合には、ステツプ114に進む。ステツプ114に
おいては、前輪舵角センサ34から前輪操舵角θfを読込
む。 次に、ステツプ116に進み、前出各ステツプで求めた駆
動・制動トルクF1〜F4、前輪操舵角θfに基づいて、次
式の関係から車体重心鉛直軸回りのモーメントMg(以
降、単に、車体回りモーメントMgと称する)を算出す
る。 Mg=(F1−F3)(rcosθf−lfsinθf)+(F2−F4
r …(1) 上記(1)式は、第4図に示す如く、各車輪の駆動・制
動トルクF1〜F4を車両前後方向分力と車両幅方向分力と
にわけ、これら分力に各車輪から車体重心までの距離
r、lf乗じた後加算して車体回りモーメントMgを求める
ものである。 次に、ステツプ118に進み、前出ステツプ116で求めた車
体回りモーメントMgの絶対値が所定値ΔMより大きいか
否かを判定する。このステツプ118において正と判定さ
れる場合、即ち車体回りモーメントMgが所定値ΔMより
大きいと判定される場合には、この車体回りモーメント
Mgを打ち消すように後輪を操舵する必要があると判断し
てステツプ120に進む。 ステツプ120においては、車速センサ30により車速Vが
読込まれる。次に、ステツプ122に進み、第5図に示さ
れるような車速Vと後輪操蛇係数C(v)とのマツプデ
ータから後輪操蛇係数C(v)を算出する。この後輪操
蛇係数C(v)は車速Vの上昇に伴いその値が漸減する
ように設定される。 次に、ステツプ124に進み、前出ステツプ116で求めた車
体回りモーメントMgと前出ステツプ122で求めた後輪操
蛇係数C(v)とを乗じて、後輪操蛇角θr(=Mg・C
(v))を算出する。 次にステツプ126に進み、前出ステツプ124で求めた後輪
操蛇角θrに基づいて、後輪を操蛇制御し、次に、前出
ステツプ102に戻り、以下このルーチンを繰返して後輪
を操蛇制御する。 又、前出ステツプ110において、正と判定される場合、
即ち、左右前輪の駆動・制動トルクの差の絶対値|F1
F3|が所定値△Ffよりも大きいと判断されるときには、
前出ステツプ114に進む。 又、前出ステツプ112、118において、否と判定される場
合、即ち、左右後輪の駆動・制動トルクの差の絶対値|
F2−F4|、車体回りモーメントMgの絶対値|Mg|が、所定
値△Fr、△M以下と判定される場合には、車体重心鉛直
軸回りモーメントを打ち消すような後輪操蛇をする必要
がないと判断して、前出ステツプ102に戻る。 上記の動作説明からも理解できる通り、本実施例によれ
ば、トルクセンサ31a、31b、32a、32bから各車輪の駆動
・制動トルクF1〜F4を検出して、これら検出値及び前輪
操舵角θfに基づいて車体回りモーメントMgを算出し
て、この車体回りモーメントMgに基づいてこの車体回り
モーメントMgを打ち消すように後輪を操舵する必要があ
るかどうかを判定して、後輪操舵をする必要がある場合
には、前記車体回りモーメントMgに後輪操舵係数C
(v)を乗じて、後輪操舵角θrを決定し、この後輪操
舵角θrに基づいて後輪を操舵するようにしている。従
つて、左右車輪の駆動力や制動力の差によつて発生する
車体回りモーメントMgを打ち消すことができ、走行中の
車両偏向やスピンを防止することができる。 特に、本実施例においては、後輪操舵角θrを決定する
に際し、車速Vの上昇に伴ないその値が漸減する後輪操
舵係数C(v)を用いることによつて、車両偏向修正を
車速に応じて的確に行うことができる。 なお、前記実施例において、ステツプ110及びステツプ1
12にて、左右車輪の駆動・制動トルクの差の絶対値を求
め、この差の絶対値に基づいて予め後輪操舵が必要か否
かを判定するようにして制御の簡素化を図つているが、
本発明はこれに限定されることなく、例えば、前出ステ
ツプ110、112は省略して、直接各車輪の駆動・制動トル
クF1〜F4から車体回りモーメントMgを算出し、この車体
回りモーメントMgのみから後輪操舵が必要か否かを判定
するようにしたものとしてもよい。 又、前記実施例において、各車輪の駆動・制動トルクの
検出はトルクセンサにより行うようにされたが、本発明
はこれに限定されることなく、他の手段により各車輪の
駆動・制動力を検出するようにしてもよい。例えば、前
記トルクセンサに換えて、各車輪のサスペンシヨン前後
力を検出する前後力センサにより車輪の駆動・制動力を
検出するようにしたものでもよい。 又、上記実施例においては、車輪側に取付けられるトル
クセンサを用いて駆動力のみならず制動力をも検出し
て、これら駆動力、制動力に基づいて車両偏向、スピン
を防止するようにしたものであるが、本発明はこれに限
定されることなく、駆動時のみの車両偏向現象を改善す
るために本発明を適用するようしたものであつてもよ
い。この場合には、ドライブシヤフト等のデフアレンシ
ヤルギヤと車輪との間にトルクセンサを取付け、これに
より駆動力を検出することができる。 又、車輪側に取付けられるトルクセンサに換えて、エン
ジンの発生トルクを例えばリングギヤトルクTqを検出す
ることにより求め、このリングギヤトルクTqから前出第
8図に示されるデフアレンシヤルギヤの特性図に基づい
て差動トルクTdを算出し、この差動トルクTdから左右車
輪の駆動力の差を求め、この駆動力差に基づいて後輪を
操舵制御するようにしてもよい。 又、左右車輪の接地路面の摩擦係数の相違により生じる
車両偏向やスピン等の現象を防止するために、本発明を
適用する場合には、前記トルクセンサに替えて、路面の
摩擦係数Mを検出するμセンサを設け、このμセンサに
より検出される摩擦係数μと接地荷重Wとの積により、
駆動力F(=Wμ)を求めて、この駆動力Fに基づき車
体回りモーメントMgを算出して、後輪を操舵制御するも
のとしてもよい。又、μセンサを用いる代わりに、車体
の対地速度vと車輪の回転速度ωと接地荷重Wから、ス
リツプ率Sを求め(S=(rω−v/rω)、このスリツ
プ率Sに基づいて第6図に示されるスリツプ率Sと路面
摩擦係数μとの関係から路面摩擦係数μを求め、この摩
擦係数μに接地荷重Wを乗じて駆動力Fを求め、この駆
動力Fから車体回りモーメントMgを算出して、後輪を操
舵制御するようにしてもよい。
An embodiment of a rear wheel control device for a front and rear wheel steering vehicle to which the present invention is applied will be described in detail with reference to the drawings. FIG. 2 shows a front wheel steering mechanism A, a rear wheel steering mechanism B, and an electric control device C for the rear wheel steering mechanism B of a vehicle to which the present invention is applied. The front wheel steering mechanism A includes a pinion and rack mechanism 11 and a pair of left and right relay rods 12a and 12b connected to the rack portion of the mechanism 11. The pinion and rack mechanism 11 is connected to a steering handle 14 via a steering shaft 13 at its pinion portion, and converts the rotational movement of the steering handle 14 into the reciprocating movement of the relay rods 12a, 12b. The left and right relay rods 12a and 12b are connected to the left and right front wheels 16 via left and right tie rods and left and right knuckle arms 15a and 15b (not shown).
The left and right relay rods 12 are connected to a and 16b respectively.
The left and right front wheels 16a and 16b are steered by a and 12b. The rear wheel steering device B includes a hydraulic pump 20 driven by an engine, and a hydraulic cylinder that steers both rear wheels 22a and 22b by applying oil discharged from the hydraulic pump 20 via a servo valve 21.
It has 23 and. The hydraulic pump 20 is connected at its inflow port to the reservoir 24 via the conduit P 1, and at its discharge port to the servo valve 21 via the conduit P 2 . The servo valve 21 closes the conduit P 3 connected to the right chamber 23b of the hydraulic cylinder 23 at its neutral position, and
The conduit P 4 connected to the left chamber 23a of 3 is closed. Also, servo valve
21 connects the conduit P 2 to the conduit P 3 and the conduit P 4 to the reservoir 24 via the conduit P 5 when switched to the first position which is displaced downwards in FIG. Also, when switched to the second position displaced upward in FIG. 2, the conduit P 2 is connected to the conduit P 4 , and the conduit P 3 is connected to the reservoir 24 via the conduit P 5 . The switching operation of the servo valve 21 is effected by the operation of the torque motor 21a provided in the servo valve 21, and the operation of the torque motor 21a is effected by the control signal given from the electric control device C. Be done. The hydraulic cylinder 23 is configured by connecting a pair of left and right piston rods 26a and 26b to a piston 25 housed inside. The left piston rod 26a is connected to the rear wheel 22a via a tie rod 27a and a knuckle arm 28a.
The right piston rod 26b is connected to the rear wheel 22b via a tie rod 27b and a knuckle arm 28b. The electric control unit C picks up the rotation of the vehicle speed detecting gear 16c provided on the right front wheel and generates a pick up signal having a frequency corresponding to the vehicle speed, and a vehicle speed sensor 30 and wheels 16a, 16b, 22a of the vehicle, Torque sensor mounted on 22b
31a, 31b, 32a, 32b and front wheels attached to the steering shaft 13
A front wheel steering angle sensor that detects the front wheel steering angle of 16a, 16b and generates an analog signal indicating a voltage value corresponding to the front wheel steering angle
34, a rear wheel steering angle sensor 36 for measuring the actual steering angle with respect to the target rear wheel steering angle and performing steering angle feedback control to the target steering angle, and these sensors 30, 31a, 31b, 32
The microcomputer 38 that outputs a target steering angle control signal for the rear wheels by executing a program described below based on the signals given from a, 32b, 34, and 36, the control signal of the microcomputer 38, and the rear wheels. A comparator 40 that outputs a difference signal from the actual steering angle signal from the steering angle sensor 36 and a servo amplifier 41 that amplifies the output signal from the comparator 40 and drives the servo valve 21 are provided. The microcomputer 38 constitutes the vehicle body moment calculating means 3, the vehicle speed detecting means 4, and the rear wheel steering angle calculating means 5 in FIG. 1, and is a program corresponding to the flow chart shown in FIG. A read-only memory (ROM) 38a for storing parameters for calculating the rear wheel steering coefficient C (v) (see FIG. 5), a central processing unit (CPU) 38b for executing this program, and this program A writable memory (RAM) 38c for temporarily storing necessary variables and flags is connected to the vehicle speed sensor 32 via a waveform shaper (not shown), and torque sensors 31a-b, 32a-b, front wheel rudder. The angle sensor 34 and the rear wheel steering angle sensor 36 are connected to each other via an analog / digital converter (A / D converter) not shown, and the comparator 40 has a digital / analog converter (D / A converter) not shown. An input / output interface circuit (I / O) 38d connected via a switch and a bus 38e for commonly connecting the ROM 38a, the CPU 38b, the RAM 38c, and the I / O 38d. The operation of the vehicle rear wheel steering control device configured as described above will be described with reference to the flow chart of FIG. When the ignition switch (not shown) is closed to start the vehicle, the CPU 38b starts executing the program in step 100, and in step 102, the left front wheel drive / braking torque F is detected by the torque sensor 31a of the left front wheel 16a. Read 1 Next, in step 104, the right front wheel drive / braking torque F 3 is read by the torque sensor 31b of the right front wheel 16b. Next, at step 106, the left rear wheel torque sensor 3
The driving / braking torque F 2 of the left rear wheel 22a is read by 2a. Next, at step 108, the torque sensor 32b of the right rear wheel 22b is
Read the right rear wheel drive / braking torque F 4 . Next, in step 110, it is determined whether the absolute value of the difference between the left front wheel drive / braking torque F 1 and the right front wheel drive / braking torque F 3 detected in the preceding steps 102 and 104 is greater than a predetermined value ΔFf. To do. If it is determined to be no in this step 110, that is, if the absolute value of the difference between the left front wheel drive / braking torque F 1 and the right front wheel drive / braking torque F 3 is determined to be the predetermined value ΔFf or less, the step 112 is performed. move on. In step 112, it is determined whether or not the absolute value of the difference between the left rear wheel drive / braking torque F 2 and the right rear wheel / drive braking torque F 4 is larger than a predetermined value ΔFr. This step 112
If it is determined to be positive, that is, if the absolute value of the difference between the driving and braking torques of the left and right rear wheels is greater than the predetermined value ΔFr, the process proceeds to step 114. In step 114, the front wheel steering angle θf is read from the front wheel steering angle sensor 34. Next, in step 116, based on the drive / braking torques F 1 to F 4 and the front wheel steering angle θf obtained in the above-mentioned steps, the moment Mg about the vertical axis of the vehicle body weight center (hereinafter, simply , The vehicle body moment Mg) is calculated. Mg = (F 1 -F 3) (rcosθf-lfsinθf) + (F 2 -F 4)
r (1) As shown in FIG. 4, the above equation (1) divides the driving / braking torques F 1 to F 4 of the wheels into a vehicle front-rear direction component force and a vehicle width direction component force. Is multiplied by the distance r from each wheel to the center of gravity of the vehicle and lf, and then added to obtain the vehicle body moment Mg. Next, in step 118, it is determined whether or not the absolute value of the vehicle body moment Mg calculated in step 116 is larger than a predetermined value ΔM. If it is determined positive in step 118, that is, if the vehicle body moment Mog is determined to be larger than the predetermined value ΔM, the vehicle body moment
If it is determined that the rear wheels need to be steered to cancel Mg, the process proceeds to step 120. In step 120, the vehicle speed V is read by the vehicle speed sensor 30. Next, in step 122, the rear wheel steering coefficient C (v) is calculated from the map data of the vehicle speed V and the rear wheel steering coefficient C (v) as shown in FIG. The rear wheel steering coefficient C (v) is set so that its value gradually decreases as the vehicle speed V increases. Next, the routine proceeds to step 124, where the vehicle body moment Mg obtained in the preceding step 116 and the rear wheel steering coefficient C (v) obtained in the preceding step 122 are multiplied to obtain the rear wheel steering angle θr (= Mg・ C
(V)) is calculated. Next, the routine proceeds to step 126, where the rear wheel steering control is performed on the basis of the rear wheel steering angle θr obtained in the preceding step 124, and then the routine returns to the preceding step 102. Control the snake. Also, in the above-mentioned step 110, when it is determined to be positive,
That is, the absolute value of the difference between the driving and braking torques of the left and right front wheels | F 1
When it is judged that F 3 | is larger than the predetermined value ΔFf,
Go to step 114 above. Further, when it is determined to be no in the above steps 112 and 118, that is, the absolute value of the difference between the driving and braking torques of the left and right rear wheels |
When F 2 −F 4 | and the absolute value | Mg | of the vehicle body moment Mg are less than or equal to the predetermined values ΔFr and ΔM, the rear wheel steering that cancels the moment around the vertical axis of the vehicle body weight is used. If it is determined that there is no need to do so, the process returns to the above step 102. As can be understood from the above description of the operation, according to the present embodiment, the driving / braking torques F 1 to F 4 of the wheels are detected from the torque sensors 31a, 31b, 32a, 32b, and the detected values and the front wheel steering are detected. A vehicle body moment Mg is calculated based on the angle θf, and it is determined whether or not the rear wheels need to be steered so as to cancel the vehicle body moment Mg based on the vehicle body moment Mg. When it is necessary to adjust the vehicle body moment Mg to the rear wheel steering coefficient C
(V) is multiplied to determine the rear wheel steering angle θr, and the rear wheels are steered based on the rear wheel steering angle θr. Therefore, it is possible to cancel the vehicle body moment Mo generated by the difference between the driving force and the braking force of the left and right wheels, and prevent the vehicle from deflecting or spinning during traveling. Particularly, in the present embodiment, when determining the rear wheel steering angle θr, the vehicle deflection correction is performed by using the rear wheel steering coefficient C (v) whose value gradually decreases as the vehicle speed V increases. Can be done accurately according to It should be noted that, in the above embodiment, step 110 and step 1
At 12, the absolute value of the difference between the driving and braking torques of the left and right wheels is obtained, and based on the absolute value of the difference, whether or not rear wheel steering is necessary is determined in advance to simplify the control. But,
The present invention is not limited to this, for example, omitting the above-mentioned steps 110 and 112, directly calculating the vehicle body moment Mg from the driving / braking torques F 1 to F 4 of each wheel, and the vehicle body moment It is also possible to determine whether or not rear wheel steering is necessary only from Mg. Further, in the above-mentioned embodiment, the detection of the driving / braking torque of each wheel is performed by the torque sensor, but the present invention is not limited to this, and the driving / braking force of each wheel is not limited to this. You may make it detect. For example, instead of the torque sensor, a front / rear force sensor that detects the suspension front / rear force of each wheel may be used to detect the driving / braking force of the wheel. Further, in the above embodiment, not only the driving force but also the braking force is detected by using the torque sensor mounted on the wheel side, and the vehicle deflection and the spin are prevented based on the driving force and the braking force. However, the present invention is not limited to this, and the present invention may be applied to improve the vehicle deflection phenomenon only during driving. In this case, a torque sensor may be attached between the differential gear such as a drive shaft and the wheel to detect the driving force. Further, instead of the torque sensor mounted on the wheel side, the torque generated by the engine is obtained, for example, by detecting the ring gear torque Tq. From this ring gear torque Tq, the characteristic diagram of the differential gear shown in FIG. The differential torque Td may be calculated based on the differential torque Td, and the difference between the driving forces of the left and right wheels may be obtained from the differential torque Td, and the rear wheels may be steered based on the difference in the driving forces. Further, in order to prevent a phenomenon such as vehicle deflection or spin caused by a difference in friction coefficient of the road surface contacting the left and right wheels, when the present invention is applied, the friction coefficient M of the road surface is detected instead of the torque sensor. Is provided, and the product of the friction coefficient μ detected by this μ sensor and the ground load W is
The driving force F (= Wμ) may be obtained, the vehicle body moment Mg may be calculated based on the driving force F, and the rear wheels may be steering-controlled. Instead of using the μ sensor, the slip rate S is calculated from the ground speed v of the vehicle body, the rotation speed ω of the wheel, and the ground contact load W (S = (rω−v / rω), and the slip rate S is calculated based on the slip rate S. The road surface friction coefficient μ is obtained from the relationship between the slip ratio S and the road surface friction coefficient μ shown in FIG. 6, and the friction force μ is multiplied by the ground load W to obtain the driving force F. From this driving force F, the vehicle body moment Mg May be calculated to control the steering of the rear wheels.

【発明の効果】 以上説明した通り、本発明によれば、左右車輪の駆動・
制動力の差により生じる車体重心鉛直軸回りモーメント
を後輪操舵により打ち消し、車両偏向やスピン等の発生
を防止して、車両操縦安定性を向上することができると
いう優れた効果を有する。
As described above, according to the present invention, driving of the left and right wheels
This has an excellent effect that the moment around the vertical axis of the vehicle body weight caused by the difference in braking force is canceled by the rear wheel steering to prevent the occurrence of vehicle deflection, spin, etc., and improve the vehicle steering stability.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る前後輪操舵車の後輪制御装置の
要旨構成を示すブロツク線図、第2図は、本発明に係る
前後輪操舵車の後輪制御装置の実施例おける前輪操舵機
構、後輪操舵機構及び電気制御装置を示す、一部ブロツ
ク線図及び管路図を含む平面図、第3図は、同実施例に
おけるマイクロコンピユータの作用を示す流れ図、第4
図は、車体回りモーメントを算出するための各種パラメ
ータを示す平面図、第5図は、同実施例における車速と
後輪操舵係数との関係を示す線図、第6図は、他の実施
例におけるスリツプ率と路面摩擦係数との関係を示す線
図、第7図は、従来のFF車による旋回走行時の駆動力を
示す平面図、第8図は、同じく作動トルクとリングギヤ
トルクとの関係からデフアレンシヤルギヤの特性を示す
線図である。 A…前輪操舵機構、B…後輪操舵機構、C…電気制御装
置、11…ピニオンアンドラツク機構、16a、16b…前輪、
21…サーボ弁、22a、22b…後輪、23…油圧シリンダ、30
…車速センサ、31a、31b、32a、32b…トルクセンサ、34
…前輪舵角センサ、36…後輪蛇角センサ、38…マイクロ
コンピユータ、40…比較器、41……サーボアンプ。
FIG. 1 is a block diagram showing a schematic configuration of a rear wheel control system for a front and rear wheel steering vehicle according to the present invention, and FIG. 2 is a front wheel in an embodiment of a rear wheel control system for a front and rear wheel steering vehicle according to the present invention. FIG. 3 is a plan view showing a steering mechanism, a rear wheel steering mechanism, and an electric control device, including a partial block diagram and a conduit diagram; FIG. 3 is a flow chart showing the operation of the microcomputer in the embodiment;
FIG. 5 is a plan view showing various parameters for calculating the vehicle body moment, FIG. 5 is a diagram showing the relationship between vehicle speed and rear wheel steering coefficient in the same embodiment, and FIG. 6 is another embodiment. Fig. 7 is a diagram showing the relationship between the slip ratio and the road surface friction coefficient, Fig. 7 is a plan view showing the driving force when the conventional FF vehicle is turning, and Fig. 8 is a relationship between the operating torque and the ring gear torque. FIG. 7 is a diagram showing the characteristics of a differential gear. A ... Front wheel steering mechanism, B ... Rear wheel steering mechanism, C ... Electric control device, 11 ... Pinion and rack mechanism, 16a, 16b ... Front wheels,
21 ... Servo valve, 22a, 22b ... Rear wheel, 23 ... Hydraulic cylinder, 30
... Vehicle speed sensor, 31a, 31b, 32a, 32b ... Torque sensor, 34
… Front wheel steering angle sensor, 36… Rear wheel meandering angle sensor, 38… Micro computer, 40… Comparator, 41… Servo amplifier.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】右車輪の駆動・制動力を検出する右車輪・
駆動・制動力検出手段と、 左車輪の駆動・制動力を検出する左車輪・駆動・制動力
検出手段と、 前輪操舵角を検出する前輪操舵角検出手段と、 前記検出右車輪・駆動・制動力と前記検出左車輪・駆動
・制動力との差、及び検出前輪操舵角に基づき、車両の
左右車輪の駆動力あるいは制動力の差により生じる車体
重心鉛直軸回りのモーメントを算出する車体回りモーメ
ント算出手段と、 車速を検出する車速検出手段と、 前記算出車体回りモーメントと検出車速とに応じて前記
検出車体回りモーメントを解消するように後輪操舵角を
算出する後輪操舵角算出手段と、 前記算出後輪操舵角に基づき後輪を操舵する後輪操舵機
構と、を備えたことを特徴とする前後輪操舵車の後輪制
御装置。
1. A right wheel for detecting driving / braking force of the right wheel.
Driving / braking force detecting means, left wheel / driving / braking force detecting means for detecting driving / braking force of the left wheel, front wheel steering angle detecting means for detecting front wheel steering angle, and the detected right wheel / driving / braking force Based on the difference between power and the detected left wheel / driving / braking force, and the detected front wheel steering angle, the moment around the vehicle body that calculates the moment around the vertical axis of the vehicle body weight caused by the difference between the driving force or braking force of the left and right wheels of the vehicle Calculating means, vehicle speed detecting means for detecting a vehicle speed, and rear wheel steering angle calculating means for calculating a rear wheel steering angle so as to cancel the detected vehicle body moment according to the calculated vehicle body moment and the detected vehicle speed, A rear-wheel steering system comprising: a rear-wheel steering mechanism for steering the rear wheels based on the calculated rear-wheel steering angle.
JP61012783A 1986-01-23 1986-01-23 Rear wheel control system for front and rear wheel steering vehicles Expired - Fee Related JPH0773999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012783A JPH0773999B2 (en) 1986-01-23 1986-01-23 Rear wheel control system for front and rear wheel steering vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012783A JPH0773999B2 (en) 1986-01-23 1986-01-23 Rear wheel control system for front and rear wheel steering vehicles

Publications (2)

Publication Number Publication Date
JPS62173372A JPS62173372A (en) 1987-07-30
JPH0773999B2 true JPH0773999B2 (en) 1995-08-09

Family

ID=11814995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012783A Expired - Fee Related JPH0773999B2 (en) 1986-01-23 1986-01-23 Rear wheel control system for front and rear wheel steering vehicles

Country Status (1)

Country Link
JP (1) JPH0773999B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596030B2 (en) * 1987-12-26 1997-04-02 日本電装株式会社 Auxiliary steering system for vehicles
DE3826982C2 (en) * 1987-08-10 2000-11-30 Denso Corp Auxiliary steering system connected to an anti-lock control system for use in motor vehicles
JP2725184B2 (en) * 1988-06-10 1998-03-09 スズキ株式会社 Anti-spin control system for electric power steering
JPH0390481A (en) * 1989-09-01 1991-04-16 Nissan Motor Co Ltd Rear wheel steering control device
JP3626654B2 (en) * 2000-02-23 2005-03-09 光洋精工株式会社 Vehicle attitude control device
JP2006044465A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Road surface friction coefficient detecting device
JP2006096230A (en) * 2004-09-30 2006-04-13 Fuji Heavy Ind Ltd Vehicular motion control device and vehicular motion control method
JP4715185B2 (en) * 2004-12-14 2011-07-06 トヨタ自動車株式会社 Car equipped with front and rear wheel rudder angle ratio correction means
JP4923978B2 (en) * 2006-11-22 2012-04-25 株式会社アドヴィックス Steering angle control device for vehicle
JP5082402B2 (en) * 2006-11-22 2012-11-28 株式会社アドヴィックス Vehicle steering control device
JP5082403B2 (en) * 2006-11-22 2012-11-28 株式会社アドヴィックス Steering angle control device for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135370A (en) * 1983-12-23 1985-07-18 Honda Motor Co Ltd All-wheel-steering gear for vehicle

Also Published As

Publication number Publication date
JPS62173372A (en) 1987-07-30

Similar Documents

Publication Publication Date Title
US5343393A (en) Steering angle detecting apparatus for motor vehicles based on the phase difference between a steering angle detection signal and steering angle estimated signal
US6154696A (en) Steering control system for controlling torque steer
JP3463415B2 (en) Vehicle yawing behavior control device
US5018594A (en) Rear-wheel steering system for four-wheel steering vehicle
JPH06104455B2 (en) Vehicle motion condition estimation device
US6345218B1 (en) Vehicle steering control system based on vehicle body side slip angle
JP3819261B2 (en) Electric power steering device
JPH0773999B2 (en) Rear wheel control system for front and rear wheel steering vehicles
EP0415450A2 (en) Rear wheel steering control system for vehicle
EP0416480B1 (en) Rear wheel steering control system for vehicle
JP2600386B2 (en) Rear wheel steering control device
JPS6271761A (en) Rear-wheel steering controller for four-wheel steering vehicle
JPH0657536B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPH072130A (en) Method for controlling rear wheel steering device
JP3136777B2 (en) Vehicle front wheel steering angle detection device
JPS62131881A (en) Rear wheel steering control device for front and rear wheel steering vehicle
JP3478078B2 (en) Vehicle state quantity detection device
JP3033247B2 (en) Vehicle steering characteristic control device
JP3166388B2 (en) Steering force control device
JP3250493B2 (en) Vehicle rear wheel steering system
JPS63166664A (en) Rear-wheel steering controller for all-wheel drive vehicle
JPH06273444A (en) Correction apparatus of detected yaw rate
JP2001199323A (en) Recognizing method of asymmetrical brake intervention in vehicle and device therefor
JPH0316304B2 (en)
JP2601087B2 (en) Rear wheel steering system for front and rear wheel steering vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees