JPS6271761A - Rear-wheel steering controller for four-wheel steering vehicle - Google Patents

Rear-wheel steering controller for four-wheel steering vehicle

Info

Publication number
JPS6271761A
JPS6271761A JP21326585A JP21326585A JPS6271761A JP S6271761 A JPS6271761 A JP S6271761A JP 21326585 A JP21326585 A JP 21326585A JP 21326585 A JP21326585 A JP 21326585A JP S6271761 A JPS6271761 A JP S6271761A
Authority
JP
Japan
Prior art keywords
wheel
vehicle
wheels
steering
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21326585A
Other languages
Japanese (ja)
Inventor
Hideki Kusunoki
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21326585A priority Critical patent/JPS6271761A/en
Publication of JPS6271761A publication Critical patent/JPS6271761A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1581Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by comprising an electrical interconnecting system between the steering control means of the different axles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To aim at preventing a spin due to a slip from occurring, by installing each revolving speed detecting device for both front and rear wheels, and a controlled variable setting device, setting a controlled variable which steers rear wheels according to the speed difference as well as an outputting device. CONSTITUTION:A car speed U is calculated out of a car speed sensor 51a by a central processing unit 52b and stored in a random access memory 52c, while a revolving speed data is stored into the RAM 52c by wheel revolving speed sensors 51b-51e. A smaller side of a front-wheel revolving speed is subtracted from a larger side of a rear-wheel revolving speed on the basis of the revolving speed data by the CPU 52b whereby a speed difference (g) is calculated and stored into the RAM 52c. Next, a car speed corresponding steering angle ratio K is calculated by the steering angle ratio pattern data stored in a read-only memory 52a on the basis of the car speed data by the CPU 52b, adding a functional value (f) to be increased in proportion as this speed difference (g) increases, thus the desired steering angle ratio K+f is calculated. With this constitution, steering control takes place as the same phase or opposite phase to front wheels according to a slip state in rear wheels so that a spin due to a slip is prevented from occurring without fail.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前輪操舵機構と後輪操舵機構を備えた前後輪
操舵車両に係り、特に旋回中の前記車両が加速した場合
における同車両のスピン又はドリフトアウトを防止する
ように後輪の操舵量を制御する前後輪操舵車両の後輪操
舵制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a front and rear wheel steering vehicle equipped with a front wheel steering mechanism and a rear wheel steering mechanism, and particularly relates to a front wheel steering vehicle equipped with a front wheel steering mechanism and a rear wheel steering mechanism. The present invention relates to a rear wheel steering control device for a front and rear wheel steered vehicle that controls the amount of steering of the rear wheels to prevent spin or drift out.

〔従来技術〕[Prior art]

従来、この種の制御装置は、特開昭57−60974号
公報に示されるように、旋回中の車両の加速度を、車両
の前後加速度を検出するセンサ、車両の横加速度を検出
するセンサ又はアクセルペダルの踏込みを検出するセン
サにより検出し、当該車両が後輪駆動型(又は前輪駆動
型)の車両であれば、旋回中の同車両の加速時に、前記
検出加速度に基づき後輪を前輪に対して同相(又は逆相
)方向に操舵して、旋回中の同車両の加速に伴い駆動輪
である後輪(又・は前輪)がスリップすることに起因し
て生じる同車両のスピン(又はドリフトアウト)を防止
するようにしている。
Conventionally, this type of control device uses a sensor that detects the acceleration of a turning vehicle, a sensor that detects the longitudinal acceleration of the vehicle, a sensor that detects the lateral acceleration of the vehicle, or an accelerator, as shown in Japanese Patent Application Laid-Open No. 57-60974. It is detected by a sensor that detects pedal depression, and if the vehicle is a rear wheel drive type (or front wheel drive type), when the vehicle accelerates while turning, the rear wheels are moved relative to the front wheels based on the detected acceleration. The vehicle spins (or drifts) caused by the rear (or front) driving wheels slipping as the vehicle accelerates while turning. We are trying to prevent this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の装置においては、上記加速度を上
記車両の前後加速度を検出するセンサにより検出した場
合、同センサは通常車体の一部に設けられるものであり
、この車体は路面の凹凸及び上記加速によりピッチング
現象を起すので、同センサが車体とともに車両の前後方
向に振動して同センサによる検出加速度は不正確になる
。また、上記加速度を上記車両の横加速度を検出するセ
ンサにより検出した場合、同センサも通常車体の一部に
設けられるものであり、この車体は路面の凹凸及び上記
旋回によりローリング現象を起すので、同センサが車体
とともに車両の横方向に1辰動して同センサによる検出
加速度も不正確になる。さらに、上記加速度を、アクセ
ルペダルの踏込みを検出するセンサにより検出した場合
、アクセルペダルの踏込みから車両が加速するまでには
時間遅れがあり、かつアクセルペダルを踏込んでも車両
の走行状態により車両の加速状態は異なるので、車両の
加速度とアクセルペダルの踏込みは一対一ニ対応せず、
この場合も検出加速度は不正確となる。
However, in the above-mentioned conventional device, when the above-mentioned acceleration is detected by a sensor that detects the longitudinal acceleration of the above-mentioned vehicle, the sensor is usually provided in a part of the vehicle body, and this vehicle body is This causes a pitching phenomenon, and the sensor vibrates in the longitudinal direction of the vehicle together with the vehicle body, making the acceleration detected by the sensor inaccurate. Furthermore, when the above-mentioned acceleration is detected by a sensor that detects the lateral acceleration of the above-mentioned vehicle, the sensor is also usually installed in a part of the vehicle body, and this vehicle body causes a rolling phenomenon due to the unevenness of the road surface and the above-mentioned turning. The sensor moves in the lateral direction of the vehicle along with the vehicle body, and the acceleration detected by the sensor also becomes inaccurate. Furthermore, when the above acceleration is detected by a sensor that detects the depression of the accelerator pedal, there is a time delay between the depression of the accelerator pedal and the acceleration of the vehicle, and even if the accelerator pedal is depressed, the speed of the vehicle may vary depending on the driving condition of the vehicle. Since the acceleration conditions are different, there is no one-to-one correspondence between vehicle acceleration and accelerator pedal depression.
In this case as well, the detected acceleration will be inaccurate.

かかる不正確な車両加速度の検出に伴い、上記センサに
基づく後輪の操舵制御では、同制御が適確になされない
ので、旋回中の車両の加速時に発生する駆動輪のスリッ
プに基づく車両のスピン又はドリフトアウトが防止され
ないことがあり、その結果車両の操安性が悪化する。
Due to such inaccurate detection of vehicle acceleration, the rear wheel steering control based on the above-mentioned sensor does not perform the same control properly, so the vehicle spins due to the slip of the drive wheels that occurs when the vehicle accelerates during a turn. Alternatively, drift-out may not be prevented, resulting in poor vehicle handling.

本発明の目的は、上記問題に対処するため、車両の加速
時に発生する駆動輪のスリップ状態を駆動輪と非駆動輪
との回転数差を検出し、該回転数差に応じて後輪を操舵
制御して、旋回中の車両の加速時に発生する駆動輪のス
リップに基づく車両のスピン又はドリフトアウトを確実
に防止するようにした前後輪操舵車両の後輪操舵制御装
置を提供しようとするものである。
SUMMARY OF THE INVENTION In order to solve the above problem, an object of the present invention is to detect the slip state of the driving wheels that occurs when the vehicle accelerates by detecting the rotational speed difference between the driving wheels and the non-driving wheels, and to adjust the rear wheels according to the rotational speed difference. An object of the present invention is to provide a rear wheel steering control device for a vehicle with front and rear wheel steering, which performs steering control to reliably prevent the vehicle from spinning or drifting out due to slipping of the drive wheels that occurs when the vehicle accelerates while turning. It is.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題の解決にあたり、本発明の構成上の特徴は、
第1図に示すように、操舵ハンドルlの回動に応じて前
輪2aを操舵する前輪操舵機構3aと、後輪2bを操舵
する後輪操舵機構3bと、後輪2b(又は前輪2a)を
駆動する後輪駆動装置4(又は前輪駆動装置4)を備え
た後輪(又は前輪)駆動型の前後輪操舵車両において、
前輪2aの回転数を検出する前輪回転数検出手段5aと
、後輪2bの回転数を検出する後輪回転数検出手段5b
と、前記検出した前輪回転数と後輪回転数との差が増加
するに従って増加し、かつ前輪2aの操舵に応じて後輪
2bを前輪2aに対し同相(又は逆相)方向に操舵する
制御量を決定する制御量決定手段6と、前記決定制御量
に対応する制御信号を後輪操舵機構3bに出力して後輪
2bを同制御量に応じて操舵制御する出力手段7とを備
えたことにある。
In solving this problem, the structural features of the present invention are as follows:
As shown in FIG. 1, a front wheel steering mechanism 3a that steers the front wheels 2a according to the rotation of the steering handle l, a rear wheel steering mechanism 3b that steers the rear wheels 2b, and a rear wheel steering mechanism 3b that steers the rear wheels 2b (or the front wheels 2a). In a rear wheel (or front wheel) drive type front and rear wheel steered vehicle equipped with a rear wheel drive device 4 (or front wheel drive device 4) that drives,
Front wheel rotation speed detection means 5a detects the rotation speed of the front wheel 2a, and rear wheel rotation speed detection means 5b detects the rotation speed of the rear wheel 2b.
and control to increase as the difference between the detected front wheel rotation speed and the rear wheel rotation speed increases, and to steer the rear wheels 2b in the same phase (or opposite phase) direction with respect to the front wheels 2a in accordance with the steering of the front wheels 2a. control amount determining means 6 for determining the determined control amount; and output means 7 for outputting a control signal corresponding to the determined control amount to the rear wheel steering mechanism 3b and controlling the steering of the rear wheels 2b in accordance with the control amount. There is a particular thing.

〔発明の作用効果〕[Function and effect of the invention]

上記のように構成した本発明においては、前輪回転数検
出手段5aが非駆動輪(又は駆動輪)である前輪2aの
回転数を検出し、°後輪回転数検出手段5bが駆動輪(
又は非駆動輪)である後輪2bの回転数を検出し、制御
量決定手段6が、前記両回転数差に応じた制御量であっ
て、前輪2aの操舵に応じて後輪2bを前輪2aに対し
て同相(又は逆相)に操舵する制御量を決定し、この制
御量に基づき出力手段7及び後輪操舵機構3bが後輪2
bを操舵する。これにより、前記制御量は駆動輪である
後輪2b(又は前輪2a)の車両加速に伴うスリップ状
態を表すことになり、後輪2bは前記スリップ状態に応
じて前輪2aに対して同相(又は逆相)に操舵制御され
るので、旋回中の後輪駆動型(又は前輪駆動型)の車両
の加速時に発生する後輪2b(又は前輪2a°)のスリ
ップに起因する同車両のスピン(又はドリフトアウト)
が確実に防止されて、その結果車両の操安性が向上する
In the present invention configured as described above, the front wheel rotation speed detection means 5a detects the rotation speed of the front wheel 2a which is a non-driving wheel (or a driving wheel), and the rear wheel rotation speed detection means 5b detects the rotation speed of the front wheel 2a which is a non-driving wheel (or a driving wheel).
The control amount determining means 6 detects the rotation speed of the rear wheel 2b which is a non-driven wheel), and the control amount determining means 6 determines a control amount according to the difference between the two rotation speeds. 2a, and based on this control amount, the output means 7 and the rear wheel steering mechanism 3b steer the rear wheels 2a in the same phase (or in opposite phase).
Steer b. As a result, the control amount represents the slip state of the rear wheel 2b (or front wheel 2a), which is the driving wheel, accompanying vehicle acceleration, and the rear wheel 2b is in phase (or Since the steering control is performed in opposite phases, the vehicle is prevented from spinning (or drift out)
This is reliably prevented, and as a result, the handling stability of the vehicle is improved.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明すると、第2図
は本発明の通用対象である車両の前輪操舵機構20と、
後輪操舵機構30と、後輪駆動装置40と、後輪操舵機
構30を制御する電気制御装置50を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a front wheel steering mechanism 20 of a vehicle to which the present invention is applicable;
A rear wheel steering mechanism 30, a rear wheel drive device 40, and an electric control device 50 that controls the rear wheel steering mechanism 30 are shown.

前輪操舵機構20は、ラックアンドピニオン機構21と
、同機構21のラック部に連結された左右一対のリレー
ロッド22a、22bとを備えている。ランクアンドピ
ニオン機構21はそのピニオン部にて操舵軸23を介し
て操舵ハンドル24に連結されており、操舵ハンドル2
4の回転運動をリレーロッド22a、22bの往復運動
に変換している。左右リレーロッド22a、22bは左
右タイロッド25a、25b及び左右ナックルアーム2
6a、26bを介して左右前輪27a、27bに各々連
結されて左右前輪27a、27bを操舵する。
The front wheel steering mechanism 20 includes a rack and pinion mechanism 21 and a pair of left and right relay rods 22a and 22b connected to a rack portion of the mechanism 21. The rank and pinion mechanism 21 is connected at its pinion portion to a steering handle 24 via a steering shaft 23.
4 is converted into reciprocating motion of the relay rods 22a and 22b. The left and right relay rods 22a, 22b are connected to the left and right tie rods 25a, 25b and the left and right knuckle arms 2.
It is connected to the left and right front wheels 27a and 27b via 6a and 26b, respectively, and steers the left and right front wheels 27a and 27b.

後輪操舵機構30は前輪27a、27bの操舵に連動し
て後輪31a、31bを操舵するための揺動レバー32
と、この揺動レバー32の可動支点32aを変位させる
ためのリニアアクチュエータ33と、左右後輪31a、
31bを連動させるリレーロッド34を備えている。揺
動レバー32は左ナックルアーム26aに連結された前
側連結ロッド35を枢着した力点32bと後側連結ロッ
ド36を枢着した作用点32cとを備え、支点32aが
力点32bと作用点32Cとの間にある場合には作用点
32cを力点32bと逆方向に変位させ、支点32aが
作用点32Cに対し力点32bと反対側にある場合には
作用点32cを力点32bと同方向に変位させ、さらに
支点32aが作用点32c上にある場合には作用点32
Cを変位させないようにして、支点32aの位置に基づ
き支点32a、力点32b間の距離と、支点32a、作
用点32c間の距離との比により舵角比を設定するよう
にしている。リニアアクチュエータ33は可動支点32
aに連結したアクチュエータロッド33aを備え、アク
チュエータロッド33aを車体横方向に移動することに
より可動支点32aを同方向に変位させる。リレーロッ
ド34は左右後輪31a、31bを左右タイロッド37
a、37b及び左右ナックルアーム38a、38bを介
して各々連結し、左ナックルアーム38aには後側連結
ロッド36が連結されて揺動レバー32の揺動により後
輪31a、31bを操舵している。
The rear wheel steering mechanism 30 includes a swing lever 32 for steering the rear wheels 31a, 31b in conjunction with the steering of the front wheels 27a, 27b.
A linear actuator 33 for displacing the movable fulcrum 32a of the swing lever 32, left and right rear wheels 31a,
31b is provided. The swinging lever 32 includes a force point 32b to which a front connecting rod 35 connected to the left knuckle arm 26a is pivoted, and an action point 32c to which a rear connecting rod 36 is pivotally connected, and the fulcrum 32a has a force point 32b and an action point 32C. If the fulcrum 32a is on the opposite side of the force point 32b with respect to the force point 32C, the force point 32c is displaced in the same direction as the force point 32b. , furthermore, when the fulcrum 32a is on the point of action 32c, the point of action 32
C is not displaced, and the steering angle ratio is set based on the position of the fulcrum 32a based on the ratio of the distance between the fulcrum 32a and the point of effort 32b and the distance between the fulcrum 32a and the point of action 32c. The linear actuator 33 is a movable fulcrum 32
The movable fulcrum 32a is displaced in the same direction by moving the actuator rod 33a in the lateral direction of the vehicle body. The relay rod 34 connects the left and right rear wheels 31a, 31b to the left and right tie rods 37.
a, 37b, and left and right knuckle arms 38a, 38b, and a rear connecting rod 36 is connected to the left knuckle arm 38a, and the rear wheels 31a, 31b are steered by the swinging of the swinging lever 32. .

後輪駆動装置40は、車体の前側に配設されたエンジン
41と、差動機構42を備えてなり、エンジン41の駆
動力はエンジン41と差動機構42間に接続された主駆
動軸43を介して差動機構42に伝達される。この伝達
された駆動力は、差動機構42と左右後輪31a、31
b間に各々接続された左右後輪駆動軸44a、44bを
介して左右後輪31a、31bに伝達され、これにより
左右後輪31a、31bはエンジン41出力に基づき駆
動される。
The rear wheel drive device 40 includes an engine 41 disposed on the front side of the vehicle body and a differential mechanism 42, and the driving force of the engine 41 is transmitted through a main drive shaft 43 connected between the engine 41 and the differential mechanism 42. is transmitted to the differential mechanism 42 via. This transmitted driving force is transmitted to the differential mechanism 42 and the left and right rear wheels 31a, 31.
The power is transmitted to the left and right rear wheels 31a, 31b via the left and right rear wheel drive shafts 44a, 44b connected between the rear wheels 44a, 44b, respectively, and thereby the left and right rear wheels 31a, 31b are driven based on the output of the engine 41.

電気制御装置50は、車速Uを検出する車速センサ51
aと、各車輪27a、27b、31a。
The electric control device 50 includes a vehicle speed sensor 51 that detects the vehicle speed U.
a, and each wheel 27a, 27b, 31a.

31bの回転数を各々検出する車輪回転数センサ51b
、51c、51d、51eと、これらの各センサ51a
、51b、51c、51d、51eから発生される信号
に基づき目標舵角用に*を算出してこの目標舵角比に*
に対応した制御信号を出力するマイクロコンピュータ5
2と、この制御信号を入力してリニアアクチュエータ3
3を制御する差動増幅器53を備えている。
Wheel rotation speed sensor 51b that detects the rotation speed of wheel rotation speed 31b.
, 51c, 51d, 51e, and each of these sensors 51a
, 51b, 51c, 51d, and 51e, * is calculated for the target steering angle based on the signals generated from 51b, 51c, 51d, and 51e.
A microcomputer 5 that outputs a control signal corresponding to
2, and by inputting this control signal, the linear actuator 3
A differential amplifier 53 is provided to control 3.

車速センサ51aは変速機の出力軸の回転をピックアッ
プして車速Uに比例した周波数のピックアンプ信号を発
生し、このピックアップ信号は波形整形器54aにより
矩形波信号に変換されてマイクロコンピュータ52に供
給される。車輪回転数センサ51b、51c、51d、
51eは各車輪27 a、  27 b、  31 a
、  3 l bの各回転をピックアップして各車輪2
7a、27b、31a。
The vehicle speed sensor 51a picks up the rotation of the output shaft of the transmission and generates a pick amplifier signal with a frequency proportional to the vehicle speed U, and this pickup signal is converted into a rectangular wave signal by the waveform shaper 54a and supplied to the microcomputer 52. be done. Wheel rotation speed sensors 51b, 51c, 51d,
51e is each wheel 27a, 27b, 31a
, 3 l b pick up each rotation of each wheel 2
7a, 27b, 31a.

31bの回転数に比例した周波数のピックアップ信号を
各々発生し、これらのピックアップ信号は各々波形整形
器54 b、  54 c、  54 d、  54 
eにより矩形波信号に変換されてマイクロコンピュータ
52に供給される。
31b, each of which has a frequency proportional to the number of rotations, and these pickup signals are passed through the waveform shapers 54b, 54c, 54d, 54, respectively.
e converts the signal into a rectangular wave signal and supplies it to the microcomputer 52.

マイクロコンピュータ52は、第3図に示すフローチャ
ートに対応するプログラム及び車速対応舵角比Kを算出
するための舵角比パターンデータを記憶する読出し専用
メモリ (以下単にROMという)52aと、このプロ
グラムを実行する中央処理装置(以下単にCPUという
)52bと、このプログラムの実行に必要なデータを一
時的に記憶する書込み可能メモリ (以下単にRAMと
いう)52cと、各センサ51a、51b、51c、5
1d、51eから供給される信号を入力する人出カイン
ターフェイス(以下単にIloという)52dと、RO
M52a、CPU52 b、RAM52C及びl105
2dを共通に接続するバス52eからなる。また、l1
052dにはマイクロコンピュータ52から出力される
目標舵角比に*を表すディジタル信号をアナログ信号に
変換して、差動増幅器53の非反転入力に供給するディ
ジタルアナログ変換器(以下単にD/A変換器という)
55が接続されている。
The microcomputer 52 includes a read-only memory (hereinafter simply referred to as ROM) 52a that stores a program corresponding to the flowchart shown in FIG. A central processing unit (hereinafter simply referred to as CPU) 52b that executes the program, a writable memory (hereinafter simply referred to as RAM) 52c that temporarily stores data necessary for executing this program, and each sensor 51a, 51b, 51c, 5
A turnout interface (hereinafter simply referred to as Ilo) 52d that inputs signals supplied from 1d and 51e, and RO
M52a, CPU52b, RAM52C and l105
A bus 52e commonly connects the 2d. Also, l1
At 052d, a digital-to-analog converter (hereinafter simply referred to as D/A converter) converts the digital signal representing * to the target steering angle ratio outputted from the microcomputer 52 into an analog signal and supplies it to the non-inverting input of the differential amplifier 53. (called a vessel)
55 is connected.

差動増幅器53は、その反転入力に、アクチュエータロ
ッド33aの変位量すなわち支点32aの位置を検出す
る位置センサ56から、前記位置を表すアナログ信号を
入力し、その非反転入力及び反転入力に供給される両信
号の差信号をリニアアクチュエータ33に出力して、揺
動レバー32にて設定される舵角比が目標舵角比に*に
等しくなるようにリニアアクチュエータ33を制御する
The differential amplifier 53 inputs to its inverting input an analog signal representing the position from a position sensor 56 that detects the displacement amount of the actuator rod 33a, that is, the position of the fulcrum 32a, and is supplied to its non-inverting input and inverting input. A difference signal between both signals is output to the linear actuator 33, and the linear actuator 33 is controlled so that the steering angle ratio set by the swing lever 32 becomes equal to the target steering angle ratio.

以上のように構成した上記実施例の動作を第3図のフロ
ーチャートを用いて説明する。車両を始動させるために
、運転者がイグニッションスイッチ(図示しない)を閉
成すると、CPU52 bは、ステップ60にてプログ
ラムの実行を開始し、ステップ61にて車速センサ51
aから波形整形器54a及びl1052dを介して供給
されるピックアンプ信号に基づき車速Uを算出してこの
車速Uを表す車速データをRAM52Cに記憶し、ステ
ップ62にて各車輪回転数センサ51b、51c、51
d、51eから各々波形整形器54b。
The operation of the above-described embodiment configured as described above will be explained using the flowchart shown in FIG. When the driver closes the ignition switch (not shown) to start the vehicle, the CPU 52b starts executing the program in step 60, and in step 61, the CPU 52b starts executing the program.
The vehicle speed U is calculated based on the pick amplifier signal supplied from A through the waveform shaper 54a and l1052d, and vehicle speed data representing this vehicle speed U is stored in the RAM 52C.In step 62, each wheel rotation speed sensor 51b, 51c , 51
d, 51e to waveform shapers 54b, respectively.

54 c、  54 d、  54 e及び−l105
2dを介して供給されるピックアップ信号に基づき各車
輪27a、27b、31a、31bの回転数NrL。
54 c, 54 d, 54 e and -l105
The rotation speed NrL of each wheel 27a, 27b, 31a, 31b based on the pickup signal supplied via 2d.

Nf2.Nrl、Nf2を算出し、これらの各回転数N
f 1.Nf 2.Nr 1.Nf2を各々表す車輪回
転数データをRAM52Cに記憶する。上記演算後、C
PU52 bは、ステップ63にて、上記車輪回転数デ
ータに基づき後輪回転数Nrl。
Nf2. Calculate Nrl and Nf2, and calculate each rotation speed N
f1. Nf 2. Nr 1. Wheel rotation speed data each representing Nf2 is stored in the RAM 52C. After the above calculation, C
In step 63, the PU 52b determines the rear wheel rotation speed Nrl based on the wheel rotation speed data.

Nf2の内大きい方の値から前輪回転数Nfl。The front wheel rotation speed Nfl is determined from the larger value of Nf2.

Nf2の内小さい方の値を減算することにより前後輪回
転数差gを算出し、この前後輪回転数差gを表す回転数
差データをRAM52Gに記憶する。
By subtracting the smaller value of Nf2, a front and rear wheel rotational speed difference g is calculated, and rotational speed difference data representing this front and rear wheel rotational speed difference g is stored in the RAM 52G.

この前後輪回転数差gの算出は、上記のように、後輪駆
動装置40を備えた後輪駆動型の車両の加速時に、駆動
輪である左右後輪31a、31bに発生するスリップ状
態を検出することを意味する。
As described above, the calculation of the front and rear wheel rotational speed difference g is based on the slip condition that occurs in the left and right rear wheels 31a and 31b, which are drive wheels, when a rear wheel drive type vehicle equipped with the rear wheel drive device 40 accelerates. It means to detect.

なお、上記演算では、前後輪回転数差gは、後輪回転数
Nrl、Nr2の内大きい方の値から前輪回転数Nfl
、Nf2の内小さい方の値を減算することにより算出さ
れるようにしたが、後輪回転数Nrl、Nr2の平均値
から前輪回転数Nfl。
In addition, in the above calculation, the front wheel rotation speed difference g is calculated from the larger value of the rear wheel rotation speeds Nrl and Nr2 to the front wheel rotation speed Nfl.
, Nf2, the front wheel rotation speed Nfl is calculated from the average value of the rear wheel rotation speeds Nrl and Nr2.

Nfの平均値を減算することにより算出されるようにし
て、もよい。
It may be calculated by subtracting the average value of Nf.

次に、CPU52 bは、上記記憶した車速データに基
づきROM52aに記憶した舵角比パターンデータを読
出し、上記算出車速Uとの関係により第4図の実線で示
された舵角比パターンに従って車速対応舵角比Kを決定
する。その結果、車速対応舵角比には、車速Uが大きく
なるに従ってその絶対値が大きな負の値からその絶対値
が大きな正の値に連続して変化する値に設定される。な
お、舵角比が負(又は正)とは左右後輪31a、31b
が左右前輪27a、27bに対して逆相(又は同相)に
操舵されることを意味する。この車速対応舵角比にの演
算後、CPL152bは、ステップ65にて、上記記憶
した車輪回転数データに基づき、前後輪回転数差gが増
加するに従って増加する関数値f(g)、例えばf (
g) =α・g、を算出して、この値f  (g)を車
速対応舵角比Kに加算することにより目標舵角比に* 
(−に+f  (g))を算出する。なお、係数αは正
の定数であり、上記演算により、目標舵角比に*は、前
後輪回転数差gが増加するに従って増加し、このことは
前後輪回転数差gが増加する程すなわち左右後輪31a
、31bのスリップ率が太き(なる程、車速対応舵角比
Kにより決定される左右後輪31a、31bの操舵角が
左右前輪27a、27bに対し同相方向に大きく修正さ
れることを意味する。
Next, the CPU 52b reads the steering angle ratio pattern data stored in the ROM 52a based on the stored vehicle speed data, and adjusts the vehicle speed according to the steering angle ratio pattern shown by the solid line in FIG. 4 based on the relationship with the calculated vehicle speed U. Determine the steering angle ratio K. As a result, the vehicle speed corresponding steering angle ratio is set to a value that continuously changes from a negative value with a large absolute value to a positive value with a large absolute value as the vehicle speed U increases. Note that when the steering angle ratio is negative (or positive), the left and right rear wheels 31a, 31b
This means that the wheels are steered in opposite phase (or in phase) with respect to the left and right front wheels 27a and 27b. After calculating the steering angle ratio corresponding to the vehicle speed, the CPL 152b in step 65 calculates a function value f(g) that increases as the front and rear wheel rotation speed difference g increases, based on the stored wheel rotation speed data, for example, f (
g) = α・g, and add this value f (g) to the vehicle speed corresponding steering angle ratio K to set the target steering angle ratio *
(−+f (g)) is calculated. Note that the coefficient α is a positive constant, and according to the above calculation, the target steering angle ratio * increases as the front and rear wheel rotation speed difference g increases; Left and right rear wheels 31a
, 31b has a large slip ratio (I see, this means that the steering angles of the left and right rear wheels 31a, 31b determined by the vehicle speed corresponding steering angle ratio K are largely corrected in the same phase direction with respect to the left and right front wheels 27a, 27b. .

これにより、第4図の実線で示された舵角比パターン特
性は同図破線で示された舵角比パターン特性のように変
化し、その変化度合は上記スリップ率が大きい程大きく
なる。、また、上記関数f (g)は、左右後輪31a
、31bのスリップ率と車両のスピンとの関係により定
められるものであり、上記関係に限らず、例えば、上記
関数f  (g)が前後輪回転数差gが所定値より小さ
いときf (g)=α・gと定義され、同左gが所定値
以上のときf  (g) =β・gL  (但し、βは
正の定数)と定義されるようにしてもよい。これによれ
ば、前後輪回転数差gが小さいとき上記同相側への修正
量は同左gの同一変化量に対して小さく、同左gが大き
くなると上記同相側への修正量は同左gの同一変化量に
対して大きくなる。
As a result, the steering angle ratio pattern characteristic shown by the solid line in FIG. 4 changes like the steering angle ratio pattern characteristic shown by the broken line in FIG. 4, and the degree of change increases as the slip ratio increases. , and the above function f (g) is the left and right rear wheels 31a
, 31b and the spin of the vehicle, and is not limited to the above relationship. For example, the function f (g) is determined by the relationship f (g) when the front and rear wheel rotation speed difference g is smaller than a predetermined value. = α·g, and when g is equal to or greater than a predetermined value, it may be defined as f (g) = β·gL (where β is a positive constant). According to this, when the front and rear wheel rotational speed difference g is small, the amount of correction to the same phase side is small relative to the same amount of change in the same left g, and when the same left g increases, the amount of correction to the same phase side is the same as the same left g. It increases with the amount of change.

上記ステップ65の演算後、CPU52 bは、ステッ
プ66にて、上記算出した目標舵角比に*を表すディジ
タル信号をl1052dを介してD/A変換器55に出
力し、D/A変換器55はこのディジタル信号をアナロ
グ信号に変換して差動増幅器53に供給し、差動増幅器
53が位置センサ56との協働によりリニアアクチェエ
ータ33を制御して、揺動レバー32の設定舵角比が目
標舵角比に*になるように支点32aを変位させる。
After the calculation in step 65, the CPU 52b outputs a digital signal representing * to the calculated target steering angle ratio to the D/A converter 55 via the l1052d in step 66. converts this digital signal into an analog signal and supplies it to the differential amplifier 53, which controls the linear actuator 33 in cooperation with the position sensor 56 to determine the set steering angle of the swing lever 32. The fulcrum 32a is displaced so that the ratio becomes * to the target steering angle ratio.

次に、プログラムは再びステップ61に戻り、以降、C
PU52 bはステップ61〜66の循環処理を実行し
続け、車速U及び前後輪回転数差gに応じて目標舵角比
に*を算出して、揺動レバー32の設定舵角比を上記目
標舵角比に*に設定する。
Next, the program returns to step 61 again, and thereafter the C
The PU 52b continues to execute the circulation process of steps 61 to 66, calculates * as the target steering angle ratio according to the vehicle speed U and the front and rear wheel rotational speed difference g, and sets the set steering angle ratio of the swing lever 32 to the above target. Set the steering angle ratio to *.

なお、上記CPU52 bから出力される目標舵角比に
*を示すディジタル信号は、新たな同ディジタル信号が
CPU52 bから出力されるまでl1052dに記憶
されている。
Note that the digital signal indicating the target steering angle ratio output from the CPU 52b is stored in the l1052d until a new digital signal is output from the CPU 52b.

このような状態において、操舵ハンドル24が中立状態
にある場合を想定すると、左右前輪27a、27bの操
舵角は零であり、揺動レバー32も揺動しないので、左
右後輪318.31bの操舵角も零であり、当該車両は
直進走行する。一方、当該車両の操舵ハンドル24が左
(又は右)に回動されると、左右前輪27a、27bは
左方向(又は右方向)に操舵され、この操舵力は左ナッ
クルアーム26a、前側連結ロツド35、揺動レバー3
2、後側連結ロッド36、左ナックルアーム38a、左
タイロツド37a1リレーロツド34、右タイロッド3
7b及び右ナックルアーム38bを介して左右後輪3L
a、31bに伝達され、左右後輪31a、31bは、揺
動レバー32により設定されている舵角比に応じて操舵
される。そのため、車速Uが小さいとき、左右後輪31
a、31bは左右前輪27a、27bに対し逆相すなわ
ち右方向(又は左方向)に操舵され、車速Uが大きいと
き左右後輪31a、31bは左右前輪27a、27bに
対し同相すなわち左方向(又は右方向)に操舵される。
In such a state, assuming that the steering wheel 24 is in a neutral state, the steering angles of the left and right front wheels 27a and 27b are zero, and the swing lever 32 does not swing, so the steering of the left and right rear wheels 318, 31b is The angle is also zero, and the vehicle is traveling straight. On the other hand, when the steering wheel 24 of the vehicle is turned to the left (or right), the left and right front wheels 27a, 27b are steered to the left (or right), and this steering force is applied to the left knuckle arm 26a, the front connecting rod 35, swing lever 3
2. Rear connecting rod 36, left knuckle arm 38a, left tie rod 37a1, relay rod 34, right tie rod 3
7b and the right knuckle arm 38b to the left and right rear wheels 3L.
a, 31b, and the left and right rear wheels 31a, 31b are steered according to the steering angle ratio set by the swing lever 32. Therefore, when the vehicle speed U is small, the left and right rear wheels 31
a, 31b are steered in opposite phase to the left and right front wheels 27a, 27b, that is, in the right direction (or left direction), and when the vehicle speed U is high, the left and right rear wheels 31a, 31b are steered in the same phase, that is, in the left direction (or left direction) with respect to the left and right front wheels 27a, 27b. (to the right).

これにより、当該車両は、車速Uが小さいとき小さい回
転半径で左(又は右)旋回し、車速Uが大きいとき大き
い回転半径で左(又は右)旋回する。
As a result, the vehicle turns left (or right) with a small turning radius when the vehicle speed U is low, and turns left (or right) with a large turning radius when the vehicle speed U is high.

このような車両の左旋回状態並びに該状態における車両
のヨーレート、車輪27a、27b、31a、31bの
各回転数Nf 1.Nf 2.Nr 1゜Nf2及び車
両のスリップ角の時間的変化が第5図並び第6図に示さ
れている。第6図の時刻t。
The left-turning state of the vehicle, the yaw rate of the vehicle in this state, and the number of revolutions Nf of the wheels 27a, 27b, 31a, and 31b.1. Nf 2. The temporal changes in Nr 1°Nf2 and the slip angle of the vehicle are shown in FIGS. 5 and 6. Time t in FIG.

にて当該車両が左旋回を開始して時刻t1まで略等速に
て旋回走行したとすると、この間ではヨーレート、車輪
回転数Nf 1.Nf 2.Nrl、Nf2及びスリッ
プ角はなめらかに変化する。そして、時刻t1にて操舵
ハンドル24の回動位置を以前の状態に保持したまま当
該車両を加速すると、駆動軸である左右後輪31a、3
1bがスリップして、左右後輪31a、31bの回転数
Nrl。
Assuming that the vehicle starts turning to the left at time t1 and turns at approximately constant speed until time t1, the yaw rate and wheel rotation speed Nf1. Nf 2. Nrl, Nf2 and slip angle change smoothly. Then, at time t1, when the vehicle is accelerated while keeping the rotational position of the steering wheel 24 in the previous state, the left and right rear wheels 31a, 3, which are the drive shafts,
1b slips, and the rotation speed of the left and right rear wheels 31a and 31b is Nrl.

Nf2は急激に上昇するが、非駆動輪である左右前輪2
7a、27bの回転数Nfl、Nf2はそれ程上昇しな
い。なお、左後輪31aの回転数Nr1が右後輪31b
の回転数Nr2より大きくなるのは、車両の旋回におけ
る遠心力により旋回内側の車輪にかかる荷重が旋回外側
の車輪にかかる荷重より小さくなるために、旋回内側の
車輪のスリップ率が旋回外側の車輪のスリップ率よりも
高くなるためであり、また右前輪27bの回転数Nf2
が左前輪27aの回転数Nflより大きくなるのは、左
旋回に伴い右前輪27bの回転半径が左前輪27aの回
転半径より大きくなるためである。このように、旋回中
に車両が加速すると左右後輪31a、31bのスリップ
率が高くなり、当該車両はオーバーステア傾向になり、
ヨーレート及びスリップ角は急激に大きくなって当該車
両がスピンするおそれがある。そのため、上記実施例で
は、第3図のフローチャートのステップ63の演算によ
り左右後輪31a、31bのスリップ状態を表す前後輪
回転数差gを算出し、ステップ65の演算によりこの前
後輪回転数差gが大きくなる程太き(なる関数値f  
(g)を算出して、この関数値f  (g)により左右
後輪318.31bを左右前輪272.27bに対し同
相方向に操舵するように補正制御するので、左右後輪3
1a、31bのスリップによる上記スピンが防止され車
両の操安性が向上する。また、当該車両が右旋回した場
合には、上記左旋回の場合と左右前輪27a。
Nf2 increases rapidly, but the left and right front wheels 2, which are non-driving wheels,
The rotational speeds Nfl and Nf2 of 7a and 27b do not increase that much. Note that the rotation speed Nr1 of the left rear wheel 31a is the same as that of the right rear wheel 31b.
The reason why the rotational speed is higher than Nr2 is because the load applied to the wheel on the inside of the turn is smaller than the load on the wheel on the outside of the turn due to the centrifugal force when the vehicle turns, so the slip ratio of the wheel on the inside of the turn is higher than that of the wheel on the outside of the turn. This is because the slip rate of the front right wheel 27b is higher than that of
The reason why Nfl becomes larger than the rotational speed Nfl of the left front wheel 27a is because the rotation radius of the right front wheel 27b becomes larger than the rotation radius of the left front wheel 27a as the vehicle turns left. In this way, when the vehicle accelerates while turning, the slip ratio of the left and right rear wheels 31a, 31b increases, and the vehicle tends to oversteer.
The yaw rate and slip angle may suddenly increase and the vehicle may spin. Therefore, in the above embodiment, the front and rear wheel rotational speed difference g, which represents the slip state of the left and right rear wheels 31a and 31b, is calculated by the calculation in step 63 of the flowchart in FIG. The larger g is, the thicker it is (the function value f
(g) is calculated, and correction control is performed using this function value f (g) so that the left and right rear wheels 318.31b are steered in the same phase direction with respect to the left and right front wheels 272.27b.
The spin caused by the slips of 1a and 31b is prevented, and the maneuverability of the vehicle is improved. In addition, when the vehicle turns right, the left and right front wheels 27a as in the case of the left turn.

27b、左右後輪31a、31bの各操舵方向が逆向き
となるだけで、動作は上記場合と同じである。
27b, and the left and right rear wheels 31a, 31b are steered in opposite directions, but the operation is the same as in the above case.

なお、上記実施例における車速センサ51aを省略して
、車輪回転数センサ51b、51c、51d、51eに
よる各車輪27 a、  27 b、  31a、31
bの各回転数Nf 1.Nf 2.Nr 1゜Nf2の
総平均値を算出し又は非駆動軸である左右前輪27a、
27bの各回転数Nfl、Nf2の平均を算出する等の
方法により車速Uを算出することも可能である。
Note that the vehicle speed sensor 51a in the above embodiment is omitted, and each wheel 27a, 27b, 31a, 31 is provided with wheel rotation speed sensors 51b, 51c, 51d, and 51e.
Each rotation speed Nf of b 1. Nf 2. Calculate the total average value of Nr 1°Nf2 or calculate the left and right front wheels 27a, which are non-drive axles,
It is also possible to calculate the vehicle speed U by a method such as calculating the average of the respective rotational speeds Nfl and Nf2 of the engine 27b.

次に本発明の第2実施例について説明すると、第7図は
第2図の第1実施例の変形例である後輪操舵機構30と
電気制御装置50の一部分を示しており、第1実施例と
同一部分には同一符号を付しである。後輪操舵機構30
は左右後輪31a。
Next, a second embodiment of the present invention will be described. FIG. 7 shows a portion of a rear wheel steering mechanism 30 and an electric control device 50 which are a modification of the first embodiment shown in FIG. The same parts as in the example are given the same reference numerals. Rear wheel steering mechanism 30
are the left and right rear wheels 31a.

31bを連動させる左右リレーロッド34a、34bと
、同ロッド34a、34bを直接駆動するリニアアクチ
ェエータ39を備えている。左右リレーロッド34a、
34bは、左右タイロッド37a、37b及び左右ナッ
クルアーム38a、38bを介して左右後輪313.3
1bに各々連結されており、左右後輪31a、31bを
連動転舵する。電気制御装置50は、上記第1実施例と
同様のD/A変換器55と差動増幅器53を備えており
、この差動増幅器53の反転入力には右リレーロッド3
4bの変位位置を検出して左右後輪31a、31bの操
舵角δrを表すアナログ信号庖発生する位置センサ57
が接続されている。さらに、この電気制御装置50は第
2図に破線で示すように、操舵軸23の回転角を検出し
て左右前輪27a、27bの操舵角δfを表すアナログ
信号を発生する前輪操舵角センサ58と、このアナログ
信号をディジタル信号に変換してマイクロコンピュータ
52に供給するA/D変換器59を備えている。なお、
残りの部分は後述するプログラムが異なる点を除けば上
記第1実施例と同じである。
31b, and a linear actuator 39 that directly drives the rods 34a, 34b. left and right relay rods 34a,
34b connects to the left and right rear wheels 313.3 via the left and right tie rods 37a, 37b and the left and right knuckle arms 38a, 38b.
1b, and steer the left and right rear wheels 31a, 31b in conjunction with each other. The electric control device 50 includes a D/A converter 55 and a differential amplifier 53 similar to those in the first embodiment, and the inverting input of the differential amplifier 53 is connected to the right relay rod 3.
A position sensor 57 detects the displacement position of the left and right rear wheels 31a and 4b and generates an analog signal representing the steering angle δr of the left and right rear wheels 31a and 31b.
is connected. Furthermore, as shown by the broken line in FIG. 2, this electric control device 50 includes a front wheel steering angle sensor 58 that detects the rotation angle of the steering shaft 23 and generates an analog signal representing the steering angle δf of the left and right front wheels 27a, 27b. , an A/D converter 59 that converts this analog signal into a digital signal and supplies it to the microcomputer 52. In addition,
The remaining parts are the same as in the first embodiment except for a different program, which will be described later.

上記のように構成した第2実施例の動作を第3図のフロ
ーチャートを参考にして説明すると、CPU52 bが
、上記第1実施例と同様のステップ61〜66の循環処
理中、ステップ66にて目標舵角比に*と前輪操舵角セ
ンサ58から読取った前輪操舵角δfとを乗算した目標
後輪操舵角に*・δfを算出して、この目標後輪操舵角
に*・δrを表すディジタル信号を第7図のD/A変換
器55に出力する。D/A変換器55はこのディジタル
信号をアナログ信号に変換して差動増幅器53に供給し
、差動増幅器53は位置センサ57との協働により後輪
操舵角δrを上記目標後輪操舵角に*・δfに設定する
。これにより、上記第1実施例と同様な効果が達成され
る。
The operation of the second embodiment configured as described above will be explained with reference to the flowchart of FIG. The target rear wheel steering angle is calculated by multiplying the target steering angle ratio by * and the front wheel steering angle δf read from the front wheel steering angle sensor 58, and *.delta.f is calculated. The signal is output to the D/A converter 55 in FIG. The D/A converter 55 converts this digital signal into an analog signal and supplies it to the differential amplifier 53, and the differential amplifier 53 cooperates with the position sensor 57 to convert the rear wheel steering angle δr into the target rear wheel steering angle. *・δf. This achieves the same effect as the first embodiment.

なお、上記第1及び第2実施例では、車速Uに応じて決
定される左右後輪31a、31bの操舵角を前後輪回転
数差gにより修正制御するようにしたが、本発明は車速
Uに応じて左右後輪31a。
In the first and second embodiments described above, the steering angles of the left and right rear wheels 31a, 31b, which are determined according to the vehicle speed U, are corrected and controlled based on the difference g between the front and rear wheels. The left and right rear wheels 31a according to.

31bの操舵角が制御されない車両にも通用されるもの
である。すなわち、前後輪回転数差gに応じて決定され
る関数値f  (g)のみにより左右後輪31a、31
bを左右前輪27a、27bに対して同相方向に制御す
るようにしてもよい。
This can also be applied to vehicles in which the steering angle of 31b is not controlled. That is, the left and right rear wheels 31a, 31 are determined only by the function value f (g) determined according to the difference g in the rotational speed of the front and rear wheels.
b may be controlled in the same phase direction with respect to the left and right front wheels 27a and 27b.

また、上記第1及び第2実施例においては、後輪駆動型
の車両に本発明を適用した場合について説明したが、本
発明は前輪駆動型の車両にも通用されるものである。た
だし、前輪駆動型の車両においては、その加速時に、駆
動輪である左右前輪27a、27bのスリップ率が高く
なって、左右前輪27a、27bの回転数Nfl、Nf
2が非駆動輪である左右後輪3La、31bの回転数N
rl、Nr2より大きくなるとともに、旋回中の当該車
両はア、ンダーステア傾向になり、上記スリップ率がよ
り高くなるとドリフトアウトする。そのため、この場合
には、第3図のフローチャートのステップ63にて前後
輪回転数差gが左右前輪27a、27bの回転数Nfl
、Nf2の大きい方(又は平均値)から左右後輪312
.31bの回転数Nr1.Nr2の小さい方(又は平均
値)を減算することにより算出されるようにし、ステッ
プ65の演算にて目標舵角比に*かに*=に−f  (
g)の関係によって算出されるようにする。
Further, in the first and second embodiments described above, the case where the present invention is applied to a rear wheel drive type vehicle has been described, but the present invention can also be applied to a front wheel drive type vehicle. However, in a front-wheel drive vehicle, during acceleration, the slip rate of the left and right front wheels 27a, 27b, which are drive wheels, becomes high, and the rotational speeds Nfl, Nf of the left and right front wheels 27a, 27b increase.
2 is the rotation speed N of the left and right rear wheels 3La and 31b, which are non-driving wheels.
As the slip ratio becomes larger than rl and Nr2, the vehicle in question tends to understeer while turning, and as the slip ratio becomes higher, it drifts out. Therefore, in this case, in step 63 of the flowchart in FIG.
, left and right rear wheels 312 from the larger Nf2 (or average value)
.. 31b rotation speed Nr1. The calculation is made by subtracting the smaller one (or the average value) of Nr2, and in the calculation at step 65, *crab*=−f (
It is calculated according to the relationship g).

これにより、目標舵角比に*は第4図の一点鎖線のよう
に変化して、旋回中の当該車両が加速した場合左右後輪
31a、31bは左右前輪27a。
As a result, the target steering angle ratio * changes as shown by the dashed line in FIG. 4, and when the vehicle in question accelerates while turning, the left and right rear wheels 31a and 31b change to the left and right front wheels 27a.

27bに対して逆相方向に修正制御されるようになるの
で、前輪駆動型の車両における旋回加速時のドリフトア
ウトが防止される。さらに、この場合にも、左右後輪3
18.31bの操舵角が車速Uに応じて変化しないよう
にしてもよい。
Since the correction control is performed in the opposite phase direction with respect to 27b, drift-out during turning acceleration in a front-wheel drive vehicle is prevented. Furthermore, in this case as well, the left and right rear wheels 3
The steering angle 18.31b may not change depending on the vehicle speed U.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲に記載した発明の構成に対応す
る図、第2図は本発明の第1実施例を示す車両の概略図
、第3図は第2図のマイクロコンピュータで実行される
プログラムに対応するフローチャート、第4図は車速に
対する舵角比を示す特性グラフ、第5図は車両の旋回状
態を示す図、第6図は後輪駆動型の車両の旋回時におけ
るヨーレート、車輪回転数及びスリップ率の変化特性を
示す図、及び第7図は本発明の第2実施例を示す車両の
一部概略図である。 符号の説明 20・・・前輪操舵機構、24・・・操舵ハンドル、2
7a、27b・・・前輪、30・・・後輪操舵機構、3
1a、31b・・・後輪、32・・・揺動レバー、33
.39・・・リニアアクチュエータ、40・・・後輪駆
動装置、41・・・エンジン、50・・・電気制御装置
、51a・・・車速センサ、5 l b、  51 c
、  51 d、  51 e −・・車輪回転数セン
サ、52・・・マイクロコンピュータ、56.57・・
・位置センサ、58・・・前輪操舵角センサ。
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a schematic diagram of a vehicle showing a first embodiment of the invention, and FIG. Figure 4 is a characteristic graph showing the steering angle ratio to vehicle speed, Figure 5 is a diagram showing the turning state of the vehicle, and Figure 6 is a graph showing the yaw rate and wheels when turning a rear-wheel drive vehicle. A diagram showing the change characteristics of rotational speed and slip ratio, and FIG. 7 are partial schematic diagrams of a vehicle showing a second embodiment of the present invention. Explanation of symbols 20...Front wheel steering mechanism, 24...Steering handle, 2
7a, 27b...front wheel, 30...rear wheel steering mechanism, 3
1a, 31b... Rear wheel, 32... Rocking lever, 33
.. 39... Linear actuator, 40... Rear wheel drive device, 41... Engine, 50... Electric control device, 51a... Vehicle speed sensor, 5 l b, 51 c
, 51 d, 51 e - Wheel rotation speed sensor, 52... Microcomputer, 56.57...
- Position sensor, 58... Front wheel steering angle sensor.

Claims (1)

【特許請求の範囲】[Claims] 操舵ハンドルの回動に応じて前輪を操舵する前輪操舵機
構と、後輪を操舵する後輪操舵機構と、後輪(又は前輪
)を駆動する後輪駆動装置(又は前輪駆動装置)を備え
た後輪(又は前輪)駆動型の前後輪操舵車両において、
前輪の回転数を検出する前輪回転数検出手段と、後輪の
回転数を検出する後輪回転数検出手段と、前記検出した
前輪回転数と後輪回転数との差が増加するに従って増加
し、かつ前輪の操舵に応じて後輪を前輪に対し同相(又
は逆相)方向に操舵する制御量を決定する制御量決定手
段と、前記決定制御量に対応する制御信号を後輪操舵機
構に出力して後輪を同制御量に応じて操舵制御する出力
手段とを備えたことを特徴とする前後輪操舵車両の後輪
操舵制御装置。
Equipped with a front wheel steering mechanism that steers the front wheels according to rotation of the steering wheel, a rear wheel steering mechanism that steers the rear wheels, and a rear wheel drive device (or front wheel drive device) that drives the rear wheels (or front wheels). In a rear wheel (or front wheel) drive type vehicle with front and rear wheel steering,
A front wheel rotation speed detection means detects the rotation speed of the front wheels, a rear wheel rotation speed detection means detects the rotation speed of the rear wheels, and the rotation speed increases as the difference between the detected front wheel rotation speed and the rear wheel rotation speed increases. and a control amount determining means for determining a control amount for steering the rear wheels in the same phase (or opposite phase) direction with respect to the front wheels in response to the steering of the front wheels, and a control signal corresponding to the determined control amount to the rear wheel steering mechanism. 1. A rear wheel steering control device for a front and rear wheel steering vehicle, comprising: an output means for outputting an output and controlling the steering of the rear wheels according to the control amount.
JP21326585A 1985-09-25 1985-09-25 Rear-wheel steering controller for four-wheel steering vehicle Pending JPS6271761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21326585A JPS6271761A (en) 1985-09-25 1985-09-25 Rear-wheel steering controller for four-wheel steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21326585A JPS6271761A (en) 1985-09-25 1985-09-25 Rear-wheel steering controller for four-wheel steering vehicle

Publications (1)

Publication Number Publication Date
JPS6271761A true JPS6271761A (en) 1987-04-02

Family

ID=16636233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21326585A Pending JPS6271761A (en) 1985-09-25 1985-09-25 Rear-wheel steering controller for four-wheel steering vehicle

Country Status (1)

Country Link
JP (1) JPS6271761A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162375A (en) * 1986-12-26 1988-07-05 Fuji Heavy Ind Ltd Rear wheel steering device for vehicle
JPH01109176A (en) * 1987-10-22 1989-04-26 Fuji Heavy Ind Ltd Control method for four-wheel steering device of automobile
JPH01109177A (en) * 1987-10-22 1989-04-26 Fuji Heavy Ind Ltd Control method for four-wheel steering device of automobile
EP0415451A2 (en) * 1989-09-01 1991-03-06 Nissan Motor Co., Ltd. Rear wheel steering control system for vehicle
JPH03135874A (en) * 1989-10-20 1991-06-10 Nissan Motor Co Ltd Auxiliary steering angle control device for front-wheel drive vehicle
JPH03148380A (en) * 1989-11-06 1991-06-25 Nissan Motor Co Ltd Running control device for vehicle
US5089967A (en) * 1987-08-10 1992-02-18 Nippondenso Co., Ltd. Auxiliary steering system associated with anti-skid control system for use in motor vehicle
US5103925A (en) * 1989-09-04 1992-04-14 Nissan Motor Company, Limited Rear wheel steering control system for vehicle
US5212641A (en) * 1989-09-25 1993-05-18 Nissan Motor Company, Limited Rear wheel steering control system for vehicle
JP2013139208A (en) * 2012-01-04 2013-07-18 Jtekt Corp Apparatus for determining vehicle attitude

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235275A (en) * 1985-04-10 1986-10-20 Honda Motor Co Ltd Method of controlling rear wheel steering operation of front and rear wheel steering type vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235275A (en) * 1985-04-10 1986-10-20 Honda Motor Co Ltd Method of controlling rear wheel steering operation of front and rear wheel steering type vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162375A (en) * 1986-12-26 1988-07-05 Fuji Heavy Ind Ltd Rear wheel steering device for vehicle
US5089967A (en) * 1987-08-10 1992-02-18 Nippondenso Co., Ltd. Auxiliary steering system associated with anti-skid control system for use in motor vehicle
JPH01109176A (en) * 1987-10-22 1989-04-26 Fuji Heavy Ind Ltd Control method for four-wheel steering device of automobile
JPH01109177A (en) * 1987-10-22 1989-04-26 Fuji Heavy Ind Ltd Control method for four-wheel steering device of automobile
EP0415451A2 (en) * 1989-09-01 1991-03-06 Nissan Motor Co., Ltd. Rear wheel steering control system for vehicle
US5099940A (en) * 1989-09-01 1992-03-31 Nissan Motor Company, Ltd. Rear wheel steering control system for vehicle
US5103925A (en) * 1989-09-04 1992-04-14 Nissan Motor Company, Limited Rear wheel steering control system for vehicle
US5212641A (en) * 1989-09-25 1993-05-18 Nissan Motor Company, Limited Rear wheel steering control system for vehicle
JPH03135874A (en) * 1989-10-20 1991-06-10 Nissan Motor Co Ltd Auxiliary steering angle control device for front-wheel drive vehicle
JPH03148380A (en) * 1989-11-06 1991-06-25 Nissan Motor Co Ltd Running control device for vehicle
JP2013139208A (en) * 2012-01-04 2013-07-18 Jtekt Corp Apparatus for determining vehicle attitude

Similar Documents

Publication Publication Date Title
JP2600386B2 (en) Rear wheel steering control device
JP2000289637A (en) Steering gear for vehicle
EP0415450A2 (en) Rear wheel steering control system for vehicle
JPS6271761A (en) Rear-wheel steering controller for four-wheel steering vehicle
JPH0392483A (en) Rear wheel steering control device
JPH0773999B2 (en) Rear wheel control system for front and rear wheel steering vehicles
JP2680451B2 (en) 4-wheel steering system
JP5768865B2 (en) Electric power steering device
JPH0657536B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPH072130A (en) Method for controlling rear wheel steering device
JPS6374772A (en) Rear wheel steering controller for front/rear wheel
JPH06298112A (en) Rear wheel steering device for vehicle
JPH0761790B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPH07465B2 (en) Rear wheel steering control device for front and rear wheel steering vehicles
JPS63166664A (en) Rear-wheel steering controller for all-wheel drive vehicle
JPS6220758A (en) Rear wheel steering control device for vehicle
JP2001080538A (en) Steering device for vehicle
JPS61205560A (en) Rear wheel steering controller for vehicle
JPS62113650A (en) Rear wheel steering quantity controller for front/rear wheel steering vehicle
JPS62116357A (en) Rear wheel steering controller for front and rear wheel steering car
JP2699585B2 (en) Auxiliary steering angle control device for front wheel drive vehicles
JP3013586B2 (en) Rear wheel steering system for four-wheel steering vehicles
JPH05147551A (en) Rear wheel steering angle controller for four-wheel steering vehicle
JPH02234881A (en) Rear wheel steering device for vehicle
JP2598787B2 (en) Rear wheel steering system for vehicles