JPS6374772A - Rear wheel steering controller for front/rear wheel - Google Patents

Rear wheel steering controller for front/rear wheel

Info

Publication number
JPS6374772A
JPS6374772A JP21901586A JP21901586A JPS6374772A JP S6374772 A JPS6374772 A JP S6374772A JP 21901586 A JP21901586 A JP 21901586A JP 21901586 A JP21901586 A JP 21901586A JP S6374772 A JPS6374772 A JP S6374772A
Authority
JP
Japan
Prior art keywords
steering angle
vehicle
steering
wheels
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21901586A
Other languages
Japanese (ja)
Inventor
Hideki Kusunoki
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21901586A priority Critical patent/JPS6374772A/en
Publication of JPS6374772A publication Critical patent/JPS6374772A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Abstract

PURPOSE:To prevent spin or drift-out and improve the steering stability by permitting the steering control for rear wheels when each detection value of front wheel steering angle and accelerator opening degree is larger than each prescribed value and prohibiting the steering control except in the above-described case. CONSTITUTION:When a car is accelerated during turning, a judging means 8 judges the turning acceleration state on the basis of the fact that each detection value of the detecting means 6 and 7 for the front wheel steering angle and accelerator opening degree is larger than each prescribed value and permits the steering control for rear wheels RW by a control means 5. The control means 5 steering controls the rear wheels RW to the steering angle ratio corresponding to the difference of a the number of revolution detected by the front/rear wheel revolution speed detecting means 2 and 3 which a determining means 4 determines, in the cooperation with a rear wheel steering mechanism 1.Therefore, the spin or drift-out due to the slip of driving wheel in acceleration during turn is prevented, and steering stability can be improved. Further, when the car is not accelerated during turning, the judging means 8 prohibits the steering control for the rear wheels RW, and steering stability can be improved furthermore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は前後輪操舵車の後輪操舵制御装置に係り、特に
旋回中の当該車両が加速した場合における同車両のスピ
ン又はドリフトアウトを防止するように、後輪を操舵制
御する前後輪操舵車の後輪操舵制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rear wheel steering control device for a front and rear wheel steered vehicle, and particularly for preventing spin or driftout of the vehicle when the vehicle accelerates while turning. The present invention relates to a rear wheel steering control device for a front and rear wheel steered vehicle that controls the steering of the rear wheels.

〔従来技術〕[Prior art]

従来、この種の制御装置は、特開昭57−60974号
公報に示されるように、旋回中の車両の加速度を、車両
の前後加速度を検出するセンサ、車両の横加速度を検出
するセンサ又はアクセルペダルの踏込みを検出するセン
サにより検出し、当該車両が後輪駆動型(又は前輪駆動
型)の車両であれば、旋回中の同車両の加速時に、前記
検出加速度に基づき後輪を前輪に対して同相(又は逆相
)方向に操舵して、旋回中の同車両の加速に伴い駆動輪
である後輪(又は前輪)がスリップすることに起因して
生じる同車両のスピン(又はドリフトアウト)を防止す
るようにしている。
Conventionally, this type of control device uses a sensor that detects the acceleration of a turning vehicle, a sensor that detects the longitudinal acceleration of the vehicle, a sensor that detects the lateral acceleration of the vehicle, or an accelerator, as shown in Japanese Patent Application Laid-Open No. 57-60974. It is detected by a sensor that detects pedal depression, and if the vehicle is a rear wheel drive type (or front wheel drive type), when the vehicle accelerates while turning, the rear wheels are moved relative to the front wheels based on the detected acceleration. Spin (or drift-out) of the vehicle caused by the rear (or front) driving wheels slipping as the vehicle accelerates while turning. We are trying to prevent this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の装置においては、上記加速度を上
記車両の前後加速度を検出するセンサにより検出した場
合、同センサは通常車体の一部に設けられるものであり
、この車体は路面の凹凸及び上記加速によりピッチング
現象を起すので、同センサが車体とともに車両の前後方
向に振動して同センサによる検出加速度は不正確になる
。また、上記加速度を上記車両の横加速度を検出するセ
ンサにより検出した場合、同センサも通常車体の一部に
設けられるものであり、この車体は路面の凹凸及び上記
旋回によりローリング現象を起すので、同センサが車体
とともに車両の横方向に振動して同センサによる検出加
速度も不正確になる。さらに、上記加速度を、アクセル
ペダルの踏込みを検出するセンサにより検出した場合、
アクセルペダルの踏込みから車両が加速するまでには時
間遅れがあり、かつアクセルペダルを踏込んでも車両の
走行状態により車両の加速状態は異なるので、車両の加
速度とアクセルペダルの踏込みは一対一に対応せず、こ
の場合も検出加速度は不正確となる。
However, in the above-mentioned conventional device, when the above-mentioned acceleration is detected by a sensor that detects the longitudinal acceleration of the above-mentioned vehicle, the sensor is usually provided in a part of the vehicle body, and this vehicle body is This causes a pitching phenomenon, and the sensor vibrates in the longitudinal direction of the vehicle together with the vehicle body, making the acceleration detected by the sensor inaccurate. Furthermore, when the above-mentioned acceleration is detected by a sensor that detects the lateral acceleration of the above-mentioned vehicle, the sensor is also usually installed in a part of the vehicle body, and this vehicle body causes a rolling phenomenon due to the unevenness of the road surface and the above-mentioned turning. The sensor vibrates in the lateral direction of the vehicle along with the vehicle body, making the acceleration detected by the sensor inaccurate. Furthermore, when the above acceleration is detected by a sensor that detects depression of the accelerator pedal,
There is a time delay between when the accelerator pedal is pressed and when the vehicle accelerates, and even when the accelerator pedal is pressed, the acceleration state of the vehicle differs depending on the driving condition of the vehicle, so there is a one-to-one correspondence between the acceleration of the vehicle and the pressing of the accelerator pedal. Otherwise, the detected acceleration will be inaccurate in this case as well.

かかる不正確な車両加速度の検出に伴い、上記センサに
基づく後輪の操舵制御では、旋回中の車両の加速時にお
ける駆動輪のスリップに基づく車両のスピン又はドリフ
トアウトが、適格に防止制御されないという問題があっ
た。
Due to such inaccurate detection of vehicle acceleration, rear wheel steering control based on the above-mentioned sensor does not adequately prevent vehicle spin or drift-out due to slippage of the drive wheels when the vehicle accelerates during a turn. There was a problem.

そこで、本出願人は、先の出@(特願昭60−2132
65号)で、車両の加速時に発生する駆動輪のスリップ
状態を、駆動輪と非駆動輪との回転数差すなわち前輪と
後輪の回転数差により検出し、該検出結果に基づき前輪
に対する後輪の操舵角の比を設定制御することにより後
輪を操舵制御して、旋回中の車両の加速時における駆動
輪のスリップに基づ(車両のスピン又はドリフトアウト
を防止するようにした前後輪操舵車の後輪操舵制御を提
案した。
Therefore, the present applicant submitted the following application:
No. 65), the slip state of the driving wheels that occurs when the vehicle accelerates is detected based on the difference in rotational speed between the driving wheels and non-driving wheels, that is, the difference in the rotational speed between the front wheels and the rear wheels. The front and rear wheels are designed to control the steering of the rear wheels by setting and controlling the steering angle ratio of the wheels, and to prevent the vehicle from spinning or drifting out based on the slip of the drive wheels when the vehicle accelerates during a turn. We proposed rear wheel steering control for steered vehicles.

この提案装置によれば、当該車両が通常の道路を走行し
ている場合には、上記車両のスピン又はドリフトアウト
は適格に防止制御される。しかし、当該車両が悪路を走
行していて駆動輪と路面との摩擦係数が小さな状態にな
ると、当該車両の旋回中における加速とは無関係に、駆
動輪と非駆動輪との回転数差すなわち前輪と後輪との回
転数差が極めて大きくなる場合がある。かかる場合、こ
の回転数差に応じて前輪に対する後輪の操舵角の比を設
定すると、車両の旋回加速とは無関係に後輪が大きく操
舵されてしまい、車両の操安性が却って悪化するという
問題がある。
According to this proposed device, when the vehicle is traveling on a normal road, spin or drift-out of the vehicle is appropriately controlled. However, if the vehicle is traveling on a rough road and the coefficient of friction between the drive wheels and the road surface is small, the difference in rotational speed between the drive wheels and the non-drive wheels will increase, regardless of the acceleration of the vehicle during turning. There are cases where the difference in rotational speed between the front wheels and the rear wheels becomes extremely large. In such a case, if the ratio of the steering angle of the rear wheels to the front wheels is set according to this rotational speed difference, the rear wheels will be largely steered regardless of the turning acceleration of the vehicle, which will actually worsen the steering stability of the vehicle. There's a problem.

本発明は上記従来装置及び提案装置による問題に鑑み案
出されたものであり、その目的とするところは、悪路走
行時にも上記提案装置による後輪の操舵制御が適格に行
なわれるようにして、旋回中の車両の加速時における駆
動輪のスリップに基づく車両のスピン又はドリフトアウ
トをより確実に防止するようにした前後輪操舵車の後輪
操舵制御装置を提供しようとするものである。
The present invention was devised in view of the problems caused by the conventional device and the proposed device, and its purpose is to enable the proposed device to properly control rear wheel steering even when driving on rough roads. An object of the present invention is to provide a rear wheel steering control device for a front and rear wheel steered vehicle that more reliably prevents a vehicle from spinning or drifting out due to slippage of the drive wheels when the vehicle accelerates while turning.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決して本発明の目的を達成するために、
本発明の構成上の特徴は、第1図に示すように、後輪R
Wを操舵する後輪操舵機構1と、前輪FWの回転数を検
出する前輪回転数検出手段2と、後輪RWの回転数を検
出する後輪回転数検出手段3と、前記検出した前輪回転
数と後輪回転数との回転数差に応じて前輪FWに対する
後輪RWの操舵角の比を決定する決定手段4と、前記決
定した操舵角の比に応じた制御信号を前記後輪操舵機構
1に出力して後輪操舵角が前記決定した操舵角の比にな
るように後輪RWを操舵制御する制御手段5とを備え、
旋回加速時の車両のスピン又はドリフトアウトを防止す
る前後輪操舵車の後輪操舵制御装置であって、前輪操舵
角を検出する前輪操舵角検出手段6と、アクセル開度を
検出するアクセル開度検出手段7と、前記検出した前輪
操舵角及びアクセル開度が共に所定値より大きいとき前
記制御手段5による前記後輪の操舵制御を許容しかつそ
れ以外のとき該操舵制御を禁止する判定手段8とを設け
たことにある。
In order to solve the above problems and achieve the purpose of the present invention,
The structural feature of the present invention is as shown in FIG.
a rear wheel steering mechanism 1 for steering W; a front wheel rotation speed detection means 2 for detecting the rotation speed of the front wheels FW; a rear wheel rotation speed detection means 3 for detecting the rotation speed of the rear wheels RW; determining means 4 for determining the ratio of the steering angle of the rear wheels RW to the front wheels FW according to the difference between the rotation speed of the rear wheels and the rotation speed of the rear wheels; and a control means 5 which outputs an output to the mechanism 1 and controls the steering of the rear wheels RW so that the rear wheel steering angle becomes a ratio of the determined steering angle,
A rear wheel steering control device for a front and rear wheel steered vehicle that prevents the vehicle from spinning or drifting out during turning acceleration, comprising a front wheel steering angle detection means 6 that detects a front wheel steering angle, and an accelerator opening that detects an accelerator opening. a detecting means 7; and a determining means 8 for allowing the steering control of the rear wheels by the control means 5 when both the detected front wheel steering angle and the accelerator opening are larger than a predetermined value, and prohibiting the steering control otherwise. This is because we have established this.

〔発明の作用・効果〕[Action/effect of the invention]

上記のように構成した本発明においては、当該車両が旋
回中に加速された場合、判定手段8が、前輪操舵角検出
手段6及びアクセル開度検出手段7により各々検出され
た前輪操舵角及びアクセル開度が共に所定値より大きい
ことに基づき、当該車両が旋回加速状態にあると判定し
て制御手段5による後輪RWの操舵制御を許容するので
、制御手段5は、後輪操舵機構lとの協働により、決定
手段4が決定した操舵角の比すなわち前輪回転数検出手
段2及び後輪回転数検出手段3によって検出された前輪
回転数と後輪回転数との回転数差に応じた操舵角の比に
、後輪RWを操舵制御する。
In the present invention configured as described above, when the vehicle is accelerated while turning, the determining means 8 determines the front wheel steering angle and the accelerator position detected by the front wheel steering angle detecting means 6 and the accelerator opening detecting means 7, respectively. Based on the fact that both opening degrees are larger than the predetermined values, it is determined that the vehicle is in a turning acceleration state and the control means 5 is allowed to control the steering of the rear wheels RW. The ratio of the steering angle determined by the determining means 4, that is, the rotation speed difference between the front wheel rotation speed and the rear wheel rotation speed detected by the front wheel rotation speed detection means 2 and the rear wheel rotation speed detection means 3 is determined by the cooperation of The rear wheels RW are steered according to the steering angle ratio.

これにより、旋回中の車両の加速時における駆動輪のス
リップに基づく車両のスピン又はドリフトアウトが、上
記提案装置と同様に防止されて、車両の操安性が良好と
なる。
This prevents the vehicle from spinning or drifting out due to the slip of the drive wheels when the vehicle accelerates during a turn, similar to the proposed device described above, and improves the steering stability of the vehicle.

また、当該車両が旋回中に加速されない場合には、判定
手段8が上記とは逆に、当該車両は旋回加速状態にない
と判定して制御手段8による後輪RWの操舵制御を禁止
するので、当該車両が悪路を走行して同車両の旋回加速
とは無関係に駆動輪である前輪FW又は後輪RWがスリ
ップしても、制御手段8は上記後輪RWの操舵制御を行
わない。
Further, if the vehicle is not accelerated while turning, the determining means 8, contrary to the above, determines that the vehicle is not in a turning acceleration state and prohibits the control means 8 from controlling the steering of the rear wheels RW. Even if the vehicle is traveling on a rough road and the front wheels FW or rear wheels RW, which are drive wheels, slip regardless of the turning acceleration of the vehicle, the control means 8 does not perform steering control of the rear wheels RW.

これにより、かかる場合、後輪RWは上記回転数差に応
じて操舵制御されな(なり、車両の旋回加速とは無関係
に、上記提案装置のように、後輪RWが操舵されるとい
う不具合が解消され、上記提案装置に比べ、車両の操安
性はさらに良好となる。
As a result, in such a case, the rear wheels RW are not steered according to the rotational speed difference (this results in the problem that the rear wheels RW are steered regardless of the turning acceleration of the vehicle, as in the above-mentioned proposed device). This problem is solved, and the vehicle maneuverability becomes even better than that of the above-mentioned proposed device.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明すると、第
2図は本発明に係る前後輪操舵車を概略的に示している
。この前後輪操舵車は左右前輪FWl、FW2を操舵す
る前輪操舵機構10、左右後輪RWI、RW2を操舵す
る後輪操舵機構20、左右後輪RWI、RW2を駆動す
る駆動装置30、及び後輪操舵機構20を電気的に制御
する電気制御装置40からなる。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 2 schematically shows a front and rear wheel steered vehicle according to the present invention. This front and rear wheel steering vehicle includes a front wheel steering mechanism 10 that steers the left and right front wheels FWl and FW2, a rear wheel steering mechanism 20 that steers the left and right rear wheels RWI and RW2, a drive device 30 that drives the left and right rear wheels RWI and RW2, and a rear wheel. It consists of an electric control device 40 that electrically controls the steering mechanism 20.

前輪操舵機構10は操舵ハンドル11の回動に応じて回
転する操舵軸12を有する。同軸12の下端にはピニオ
ンギヤ13が設けられ、同ギヤ13はリレーロッド14
のランク部14aと噛合している。リレーロッド14の
両端には左右タイロッド15a、15b及び左右ナック
ルアーム16a、15bを介して左右前輪FW1.FW
2が接続されており、同前輪FWI、FW2は操舵ハン
ドル11の回動に応じて操舵されるようになっている。
The front wheel steering mechanism 10 has a steering shaft 12 that rotates in response to rotation of a steering handle 11. A pinion gear 13 is provided at the lower end of the coaxial 12, and the gear 13 is connected to a relay rod 14.
It meshes with the rank portion 14a of. Both ends of the relay rod 14 are connected to the left and right front wheels FW1. FW
2 are connected, and the front wheels FWI and FW2 are steered in accordance with the rotation of the steering handle 11.

後輪操舵機構20は、力点21aにて前側連結ロッド2
2aを介して左ナックルアーム16aに接続された揺動
レバー21を有する。揺動レバー21は力点21aの変
位に応じて支点21bを中心に揺動して、作用点21c
を支点21bから力点21a及び作用点21cまでの各
距離の比に応じて変位させるもので、同支点21bはリ
ニアアクチュエータ23によりアクチュエータロッド2
3aを介して駆動されて、作用点21Cを基準に第2図
左右方向に変位し、左右前輪FW1.FW2に対する左
右後輪RWI、RW2の舵角比を設定する。揺動レバー
21Cの作用点21cは後側連結ロッド22bを介して
左後輪RWIに接続した左ナックルアーム24aに連結
されている。左ナックルアーム24aは左タイロッド2
5aを介してリレーロッド26の左端に接続され、同ロ
ッド26の右端は左タイロッド25bを介して右後輪R
W2を接続した右ナックルアーム24bに連結されてい
る。
The rear wheel steering mechanism 20 rotates the front connecting rod 2 at the power point 21a.
It has a swing lever 21 connected to the left knuckle arm 16a via 2a. The swing lever 21 swings around the fulcrum 21b in response to the displacement of the force point 21a, and moves to the point of action 21c.
is displaced according to the ratio of each distance from the fulcrum 21b to the force point 21a and the application point 21c, and the fulcrum 21b is moved by the linear actuator 23 to the actuator rod 2.
3a, the left and right front wheels FW1. Set the steering angle ratio of the left and right rear wheels RWI and RW2 with respect to FW2. An operating point 21c of the swing lever 21C is connected to a left knuckle arm 24a connected to the left rear wheel RWI via a rear connecting rod 22b. The left knuckle arm 24a is the left tie rod 2
5a to the left end of the relay rod 26, and the right end of the relay rod 26 is connected to the right rear wheel R via the left tie rod 25b.
It is connected to the right knuckle arm 24b to which W2 is connected.

駆動装置30はアクセルペダル31の踏込み量に応じて
出力の制御されるエンジン32を有する。
The drive device 30 includes an engine 32 whose output is controlled according to the amount of depression of an accelerator pedal 31 .

エンジン32からの駆動力はクラッチ装置33、変速機
34、プロペラシャフト35を介して差動装置36に伝
達されるようになっており、同装置36は左右アクスル
シャフト37a、37bを介して左右後輪RWI、RW
2を接続し、同後輪RWl、RW2がエンジン32の出
力に応じて駆動されるようになっている。
The driving force from the engine 32 is transmitted to a differential device 36 via a clutch device 33, a transmission 34, and a propeller shaft 35. Ring RWI, RW
2 are connected, and the rear wheels RWl and RW2 are driven according to the output of the engine 32.

電気制御装置40は車輪回転数センサ41a。The electric control device 40 is a wheel rotation speed sensor 41a.

4 l b、  41 c、  41 d、車速センサ
41e1前輪操舵角センサ41f及びアクセル開度セン
サ41gを有する。車輪回転数センサ41a、41b。
4lb, 41c, 41d, a vehicle speed sensor 41e1, a front wheel steering angle sensor 41f, and an accelerator opening sensor 41g. Wheel rotation speed sensors 41a, 41b.

41c、41dは車輪FWI、FW2.RWI。41c and 41d are wheels FWI, FW2. RWI.

RW2の各回転をピックアンプすることにより、車輪F
W1.FW2.RWI、RW2の各回転数Nf 1.N
f 2.Nrl、Nf2に各々比例した周波数のピック
アップ信号を出力する。車輪回転数センサ41a、41
b、41c、41dには波形整形器42a、42b、4
2c、42dが各々接続されており、同整形器42a、
42b、42c、42dは各センサ41 a、  4 
l b、  41 c。
By pick-amping each rotation of RW2, wheel F
W1. FW2. Each rotation speed Nf of RWI and RW2 1. N
f2. Pick-up signals with frequencies proportional to Nrl and Nf2 are output. Wheel rotation speed sensor 41a, 41
waveform shapers 42a, 42b, 4
2c and 42d are connected to each other, and the same shaper 42a,
42b, 42c, 42d are the respective sensors 41a, 4
l b, 41 c.

41dからのピックアップ信号を各々矩形波信号に変換
する。車速センサ41eは変速機34の出力軸の回転を
ピックアップすることにより車速Vに比例した周波数の
ピンクアンプ信号を出力する。
Each pickup signal from 41d is converted into a square wave signal. The vehicle speed sensor 41e outputs a pink amplifier signal with a frequency proportional to the vehicle speed V by picking up the rotation of the output shaft of the transmission 34.

車速センサ41eには波形整形器42eが接続されてお
り、同整形器42eは同センサ41eからのピックアッ
プ信号を矩形波信号に変換する。前輪操舵角センサ41
fは操舵軸12の回転角又はリレーロソドエ4の変位量
を検出することにより、左右前輪FWI、FW2の操舵
角θfを表すアナログ信号を出力する。前輪操舵角セン
サ41fにはアナログディジタル変換器(以下A/D変
換器という)42rが接続されており、同変換器42f
は同センサ41fからのアナログ信号を前記操舵角θr
を表すディジタル形式の前輪操舵角データに変換する。
A waveform shaper 42e is connected to the vehicle speed sensor 41e, and the shaper 42e converts the pickup signal from the sensor 41e into a rectangular wave signal. Front wheel steering angle sensor 41
By detecting the rotation angle of the steering shaft 12 or the displacement amount of the relay rotor 4, f outputs an analog signal representing the steering angle θf of the left and right front wheels FWI, FW2. An analog-digital converter (hereinafter referred to as an A/D converter) 42r is connected to the front wheel steering angle sensor 41f, and the converter 42f
is the analog signal from the sensor 41f as the steering angle θr.
Convert to front wheel steering angle data in digital format.

なお、この操舵角θfは正(又は負)にて左右前輪FW
1.FW2が右方向(又は左方向)に操舵されたことを
表し、かつ零にて同前輪FWI、FW2が操舵されない
ことを表す。
Note that when this steering angle θf is positive (or negative), the left and right front wheels FW
1. This indicates that FW2 is steered to the right (or left), and zero indicates that the front wheels FWI and FW2 are not steered.

アクセル開度センサ41gはアクセルペダル31の踏込
み量又はスロットルバルブ(図示しない)の開度を検出
することにより、アクセル開度aを表すアナログ信号を
出力する。アクセル開度41gにはA/D変換器42g
が接続されており、同変換器42gは同センサ41gか
らのアナログ信号をアクセル開度aを表すディジタル形
式のアクセル開度データに変換する。なお、このアクセ
ル開度aは零から大きくなるに従って、アクセルペダル
31が深く踏込まれたことを表す。
The accelerator opening sensor 41g outputs an analog signal representing the accelerator opening a by detecting the amount of depression of the accelerator pedal 31 or the opening of a throttle valve (not shown). A/D converter 42g for accelerator opening 41g
is connected, and the converter 42g converts the analog signal from the sensor 41g into digital accelerator opening data representing the accelerator opening a. Note that as the accelerator opening degree a increases from zero, it indicates that the accelerator pedal 31 has been depressed deeply.

これらの波形整形器42a〜42e及びA/D変換器4
2f、42gにはマイクロコンピュータ42が接続され
ており、同コンピュータ43はバス43aにより各々共
通に接続された読出し専用メモリ (以下ROMという
)43b、中央処理袋W(以下CPUという)43c、
書込み可能メモリ (以下RAMという)43d、及び
入出力インターフェイス(以下I10という)43eに
より構成されている。ROM43bは第3図に示された
フローチャートに対応したプログラムを記憶するととも
に、第4図に示されるように、車速■の増加に従って負
から正に除々に変化する車速対応舵角比Kvを表す舵角
比データをテーブルの形で記憶する。なお、この車速対
応舵角比KV及び後述する目標舵角比には、jL(又は
正)にて左右後輪RWI、RW2が左右前輪FWI、F
W2に対して逆相(又は同相)に操舵されることを意味
し、かつ零にて左右後輪RW1.RW2が左右前輪FW
l、FW2の操舵とは無関係に操舵されないことを志味
する。CPO43Cはイグニッションスイッチ(図示し
ない)の開成により前記プログラムの実行を開始し、同
スイッチの開成まで同プログラムを実行し続け、RAM
43dは前記プログラムの実行に必要な変数を一時的に
記憶する。■1043dは各波形整形器42a〜42e
及びA−り変換器42f、42gからの信号及びデータ
を前記プログラムの実行に従って取込むとともに、前記
プログラムの実行に従って形成されたデータを記憶しか
つ外部へ出力する。
These waveform shapers 42a to 42e and A/D converter 4
A microcomputer 42 is connected to 2f and 42g, and the computer 43 includes a read-only memory (hereinafter referred to as ROM) 43b, a central processing unit W (hereinafter referred to as CPU) 43c, and a central processing unit W (hereinafter referred to as CPU) 43c, which are commonly connected to each other via a bus 43a.
It is composed of a writable memory (hereinafter referred to as RAM) 43d and an input/output interface (hereinafter referred to as I10) 43e. The ROM 43b stores a program corresponding to the flowchart shown in FIG. 3, and as shown in FIG. Store the angle ratio data in the form of a table. Note that this steering angle ratio KV corresponding to vehicle speed and the target steering angle ratio described later include that the left and right rear wheels RWI, RW2 are the left and right front wheels FWI, F at jL (or positive).
This means that the left and right rear wheels RW1. RW2 is left and right front wheel FW
1. The aim is not to be steered independently of the steering of FW2. The CPO43C starts executing the program when an ignition switch (not shown) is opened, continues executing the program until the switch is opened, and stores the program in the RAM.
43d temporarily stores variables necessary for executing the program. ■1043d is each waveform shaper 42a to 42e
It takes in signals and data from the and A-reconverters 42f and 42g according to the execution of the program, and stores and outputs the data formed according to the execution of the program to the outside.

マイクロコンピュータ43のl1043eには、ディジ
タルアナログ変換器(以下D/A変換器という)44が
接続されており、同変換器44は供給されたディジタル
データをアナログ信号に変換し、該信号をリニアアクチ
ュエータ23を駆動制御する差動増幅器45の非反転入
力に供給する。
A digital-to-analog converter (hereinafter referred to as a D/A converter) 44 is connected to the l1043e of the microcomputer 43, and the converter 44 converts the supplied digital data into an analog signal and converts the signal into a linear actuator. 23 is supplied to a non-inverting input of a differential amplifier 45 that controls driving of the differential amplifier 23.

差動増幅器45の反転入力には位置センサ46が接続さ
れており、同センサ46はアクチュエータロッド23a
の変位量を検出することにより、駆動レバー21の支点
21bの位置すなわち同レバー21にて設定されている
舵角比を表すアナログ信号を差動増幅器46の反転入力
に供給するようになっている。
A position sensor 46 is connected to the inverting input of the differential amplifier 45, and the sensor 46 is connected to the actuator rod 23a.
By detecting the amount of displacement, an analog signal representing the position of the fulcrum 21b of the drive lever 21, that is, the steering angle ratio set by the lever 21, is supplied to the inverting input of the differential amplifier 46. .

以上のように構成した実施例の動作を第3図のフローチ
ャートを参照しながら説明する。車両を始動するために
、運転者がイグニッションスイッチ(図示しない)を閉
成すると、CPU43 Cはステップ100にてプログ
ラムの実行を開始し、ステップ101にて車速センサ4
1eからのピックアップ信号を波形整形器42e及びl
1043eを介して取込み、該取込んだ信号に基づき車
速■を算出してこの車速■を表す車速データをRAM4
3dに記憶する。ステップ101の処理後、CPU43
Cは、ステップ102,103にて、前輪操舵角センサ
41f及びアクセル開度センサ41gにより各々検出さ
れかつA/D変換器42f、42gにより各々ディジタ
ル形式に変換された前輪操舵角θf及びアクセル開度a
を各々表す前輪操舵角データ及びアクセル開度データを
、l1043eを介して取込んで、これらのデータをR
AM43dに記憶 する。ステップ103の処理後、C
PO43Cは、ステップ104にて、前記記憶した車速
データに基づき、同データにより表された車速Vに対応
した車速対応舵角比KVを表す車速対応舵角比データを
、ROM43bから読出してRAM43(Iに車速対応
舵角比データとして記憶する。
The operation of the embodiment configured as above will be explained with reference to the flowchart of FIG. When the driver closes the ignition switch (not shown) to start the vehicle, the CPU 43C starts executing the program in step 100, and in step 101, the CPU 43C starts executing the program.
The pickup signal from 1e is passed through waveform shapers 42e and 1
1043e, calculates vehicle speed ■ based on the acquired signal, and stores vehicle speed data representing this vehicle speed ■ in RAM 4.
Store in 3d. After the processing in step 101, the CPU 43
C is the front wheel steering angle θf and the accelerator opening detected in steps 102 and 103 by the front wheel steering angle sensor 41f and the accelerator opening sensor 41g, respectively, and converted into digital format by the A/D converters 42f and 42g, respectively. a
Front wheel steering angle data and accelerator opening data representing each are taken in via l1043e, and these data are
Store in AM43d. After processing step 103, C
In step 104, the PO 43C reads vehicle speed corresponding steering angle ratio data representing the vehicle speed corresponding steering angle ratio KV corresponding to the vehicle speed V represented by the same data from the ROM 43b and stores it in the RAM 43 (I) based on the stored vehicle speed data. is stored as vehicle speed-corresponding steering angle ratio data.

次に、CPU43Cは、ステップ105にて、前記記憶
した前輪操舵角データ及びアクセル開度データに基づき
、同データにより表された前輪操舵角θf及びアクセル
開度aが各々所定操舵角θfo及び所定開度aoより大
きいか否かを判定する。
Next, in step 105, the CPU 43C determines, based on the stored front wheel steering angle data and accelerator opening degree data, that the front wheel steering angle θf and the accelerator opening degree a expressed by the data are set to a predetermined steering angle θfo and a predetermined opening degree, respectively. It is determined whether the degree is greater than the degree ao.

なお、この場合、所定操舵角θfo及び所定開度a。In this case, the predetermined steering angle θfo and the predetermined opening degree a.

は、車両の旋回加速時に駆動輪である左右後輪RWl、
RW2がスリップして、当該車両がスピンする可能性が
生じる程度の値に設定されている。
are the left and right rear wheels RWl, which are the driving wheels when the vehicle turns and accelerates;
The value is set to such a value that there is a possibility that RW2 slips and the vehicle spins.

今、前輪操舵角θfが零であるとすると、cpU43c
は上記ステップ105にて「NO」すなわち同操舵角θ
fが所定操舵角θfoより大きくないと判定して、プロ
グラムをステップ106に進める。CPU43 cはス
テップ106にて前記記憶した車速対応舵角比データに
基づき、同データにより表された車速対応舵角比Kvを
目標舵角比にとして設定し、ステップ107にて該目標
舵角比Kを表す目標舵角比データを11043eに出力
する。l1043eはこの目標舵角比データを記憶する
とともにD/A変換器44に出力し、D/A変換器44
は同データに対応したアナログ信号を差動増幅器45の
非反転入力に供給する。同増幅器45は位置センサ46
との協働によりリニアアクチュエータ23を駆動制御し
、同アクチュエータ23の支点21bを目標舵角比K 
(=車速対応舵角比Kv)に対応した位置、すなわち同
舵角比Kが負であれば、力点21aと作用点21cとの
間であって同舵角比Kが零に近ずくに従って作用点21
cに近い位置、また同舵角比が正であれば、作用点21
cを基準に力点21aと反対側であって同舵角比Kが零
に近ずくに従って作用点21Cに近い位置に変位させる
。上記ステップ107の処理後、CPU43Cはプログ
ラムをステップ101に戻し、前輪操舵角θfが零であ
る限り、上記ステップ101〜107からなる循環処理
を繰返し実行して、上記のように揺動レバー21の支点
21bの位置すなわち同レバー21により設定される舵
角比を目標舵角比K (=車速対応舵角比KV)に設定
する。かかる場合、左右前輪FWI、FW2は操舵され
ていないので、揺動レバー21は揺動することなく、作
用点21cは常に基準位置にあるので左右後輪RWI、
RW2は操舵されない。その結果、当該車両は直進走行
する。
Now, assuming that the front wheel steering angle θf is zero, cpU43c
is "NO" in step 105 above, that is, the same steering angle θ
It is determined that f is not larger than the predetermined steering angle θfo, and the program proceeds to step 106. In step 106, the CPU 43c sets the vehicle speed corresponding steering angle ratio Kv expressed by the vehicle speed corresponding steering angle ratio data as the target steering angle ratio based on the stored vehicle speed corresponding steering angle ratio data, and in step 107, the CPU 43c sets the vehicle speed corresponding steering angle ratio Kv as the target steering angle ratio. Target steering angle ratio data representing K is output to 11043e. l1043e stores this target steering angle ratio data and outputs it to the D/A converter 44.
supplies an analog signal corresponding to the same data to the non-inverting input of the differential amplifier 45. The amplifier 45 is a position sensor 46
The linear actuator 23 is driven and controlled in cooperation with the fulcrum 21b of the actuator 23 to set the target steering angle ratio K.
(= steering angle ratio Kv corresponding to vehicle speed), that is, if the steering angle ratio K is negative, the position is between the force point 21a and the point of application 21c, and as the steering angle ratio K approaches zero, point 21
If the position is close to c and the steering angle ratio is positive, the point of action 21
c as a reference, and as the steering angle ratio K approaches zero, it is displaced to a position closer to the point of action 21C. After the process in step 107, the CPU 43C returns the program to step 101, and as long as the front wheel steering angle θf is zero, the CPU 43C repeatedly executes the circulation process consisting of steps 101 to 107 to adjust the swing lever 21 as described above. The position of the fulcrum 21b, that is, the steering angle ratio set by the lever 21, is set to the target steering angle ratio K (=vehicle speed corresponding steering angle ratio KV). In this case, the left and right front wheels FWI and FW2 are not steered, so the swing lever 21 does not swing, and the point of action 21c is always at the reference position, so the left and right rear wheels RWI, FW2 are not steered.
RW2 is not steered. As a result, the vehicle travels straight ahead.

また、左右前輪FW1.FW2が操舵ハンドル11の回
動に応じて微少角度(1θf1≦θfo)だけ右方向(
又は左方向)に操舵されたとする。
In addition, left and right front wheels FW1. The FW2 moves rightward (
or to the left).

この場合も、CPU43 cは、上記と同様、ステップ
105にて1θf1≦θfoに基づきrNOJと判定し
、ステップ101〜107からなる循環処理を実行して
揺動レバー21による設定舵角比を目標舵角比K (=
車速対応舵角比Kv)に設定する。一方、揺動レバー2
1は前記左右前輪FW1、FW2の操舵に伴い反時計方
向(又は時計方向)に微少角度だけ揺動する。このとき
、車速Vが小さく目標舵角比K(車速対応舵角比Kv)
が負であれば、支点21bは上述したように力点21a
と作用点21cとの間に位置するので、揺動レバー21
の前記反時計方向(又は時計方向)の揺動により、左右
後輪RWI、RW2は左方向(又は右方向)すなわち左
右前輪FWI、FW2に対して逆相に操舵される。また
、車速Vが大きく目標舵角比K(車速対応舵角比KV)
が正であれば、支点21bは上述したように作用点21
cを基準に力点21aと反対側に位置するので、揺動レ
バー21の前記反時計方向(又は時計方向)の揺動によ
り、左右後輪RWI、RW2は右方向(又は左方向)す
なわち左右前輪FWI、FW2に対して同相に操舵され
る。このようにして、左右後輪RWI、RW2は車速V
に対応した目標舵角比Kに操舵されるが、この場合、前
輪操舵角θfは極めて小さいので左右後輪RW1.RW
2の操舵角も極めて小さく、当該車両は進行方向を若干
換えて走行する程度である。
In this case as well, the CPU 43 c determines rNOJ in step 105 based on 1θf1≦θfo, and executes the circulation process consisting of steps 101 to 107 to change the set steering angle ratio by the swing lever 21 to the target steering angle ratio. Angular ratio K (=
The vehicle speed corresponding steering angle ratio Kv) is set. On the other hand, swing lever 2
1 swings by a small angle counterclockwise (or clockwise) as the left and right front wheels FW1 and FW2 are steered. At this time, the vehicle speed V is small and the target steering angle ratio K (vehicle speed corresponding steering angle ratio Kv)
If is negative, the fulcrum 21b is the point of effort 21a as described above.
and the point of action 21c, the swing lever 21
Due to the counterclockwise (or clockwise) rocking, the left and right rear wheels RWI, RW2 are steered in the left direction (or right direction), that is, in the opposite phase with respect to the left and right front wheels FWI, FW2. In addition, if the vehicle speed V is large, the target steering angle ratio K (vehicle speed corresponding steering angle ratio KV)
If is positive, the fulcrum 21b is the point of action 21 as described above.
Since it is located on the opposite side to the point of force 21a with reference to c, the left and right rear wheels RWI, RW2 are moved in the right direction (or left direction), that is, the left and right front wheels, by the counterclockwise (or clockwise) rocking of the rocking lever 21. FWI and FW2 are steered in the same phase. In this way, the left and right rear wheels RWI, RW2 are set at the vehicle speed V.
However, in this case, since the front wheel steering angle θf is extremely small, the left and right rear wheels RW1. R.W.
The steering angle of No. 2 is also extremely small, and the vehicle only travels with a slight change in direction.

さらに、左右前輪FWI、FW2が操舵されて前輪操舵
角θfが大きくなって(1θfl〉θfo)、当該車両
が旋回し始ても、アクセルペダル31の踏込み量が小さ
くアクセル開度aが所定開度ao以下であれば、CPO
43Gは、上記と同様、ステップ105にてasaoに
基づきrNOJと判定し、ステップ101〜107から
なる循環処理を実行する。この場合も、左右後輪RWI
、RW2は、上記同様、低速にて左右前輪FWI、FW
2に対して逆相に操舵制御され、かつ高速にて左右前輪
FWI、FW2に対して同相に操舵制御されるので、低
速時においては旋回中の当該車両の小回り性能が向上し
、かつ高速時においては旋回中の当該車両の走行安定性
が良好となる。
Furthermore, even if the left and right front wheels FWI and FW2 are steered and the front wheel steering angle θf becomes large (1θfl>θfo) and the vehicle starts turning, the amount of depression of the accelerator pedal 31 is small and the accelerator opening a is set to the predetermined opening. If it is less than ao, CPO
43G determines rNOJ based on asao in step 105, as described above, and executes a circular process consisting of steps 101 to 107. In this case as well, left and right rear wheels RWI
, RW2, same as above, left and right front wheels FWI, FW at low speed.
Since the steering control is performed in the opposite phase to FW2, and the steering control is performed in the same phase to the left and right front wheels FWI and FW2 at high speeds, the tight turning performance of the vehicle during turning is improved at low speeds, and the steering control is performed in the same phase at high speeds. In this case, the running stability of the vehicle during turning is improved.

一方、このような旋回中にアクセルペダル31が踏込ま
れて当該車両が加速されると、CPU43Cはステップ
105にて1θfl>θfoかつa>aoに基づきrY
EsJと判定してプログラムをステップ111に進める
。CPU43Cはステップ111にて各車輪回転数セン
サ41a、41b。
On the other hand, when the accelerator pedal 31 is depressed during such a turn and the vehicle is accelerated, the CPU 43C determines rY based on 1θfl>θfo and a>ao in step 105.
It is determined to be EsJ and the program proceeds to step 111. In step 111, the CPU 43C detects each wheel rotation speed sensor 41a, 41b.

41C,41dからのピックアップ信号を波形整形器4
2a、42b、42c、42d及び!1043eを介し
て取込んで、該取込んだ各信号に基づき各車輪回転数N
f 1+ Nf2.Nrl、Nr2を算出し、ステップ
112にて後輪回転数Nr1、Nr2の内大きい方の値
から前輪回転数Nf1、Nf2の内小さい方の値を減算
することにより前後輪回転数差gを算出する。この前後
輪回転数差gの算出は、上記のように、左右後輪RWI
The pickup signals from 41C and 41d are transferred to the waveform shaper 4.
2a, 42b, 42c, 42d and! 1043e, and each wheel rotation speed N is determined based on each of the acquired signals.
f1+Nf2. Nrl and Nr2 are calculated, and in step 112, the smaller value of the front wheel rotational speeds Nf1 and Nf2 is subtracted from the larger value of the rear wheel rotational speeds Nr1 and Nr2, thereby calculating the front and rear wheel rotational speed difference g. do. The calculation of this front and rear wheel rotational speed difference g is performed using the left and right rear wheels RWI as described above.
.

RW2を駆動する駆動装置30を備えた後輪駆動型の車
両の加速時に、駆動輪である左右後輪RW1、RW2に
発生するスリップ状態を検出することを意味する。なお
、上記演算では、前後輪回転数差gを、後輪回転数Nr
l、Nr2の内大きい方の値から前輪回転数Nfl、N
f2の内小さい方の値を減算することにより算出するよ
うにしたが、後輪回転数Nrl、Nr2の平均値から前
輪回転数Nfl、Nf2の平均値を減算することにより
算出するようにしてもよい。
This means detecting a slip state that occurs in the left and right rear wheels RW1 and RW2, which are drive wheels, during acceleration of a rear wheel drive vehicle equipped with a drive device 30 that drives RW2. In addition, in the above calculation, the front and rear wheel rotational speed difference g is expressed as the rear wheel rotational speed Nr.
The front wheel rotation speed Nfl, N is determined from the larger value of l and Nr2.
Although the calculation was made by subtracting the smaller value of f2, it is also possible to calculate by subtracting the average value of the front wheel rotation speeds Nfl and Nf2 from the average value of the rear wheel rotation speeds Nrl and Nr2. good.

ステップ112の処理後、CPU43 Cはステップ1
13にて上記算出した前後輪回転数差gに基づき、前後
輪回転数差gが増加するに従って増加する関数値f(g
)、例えばf  (g) =α・g、を算出して、この
関数値f  (g)を車速対応舵角比KVに加算するこ
とにより目標舵角比K (=に+f(g))を算出する
。なお、係数αは正の定数であり、上記演算により、目
標舵角比には、前後輪回転数差gが増加するに従って増
加し、このことは前後輪回転数差gが増加する程すなわ
ち左右後輪RWI、RW2のスリップ率が大きくなる程
、車速対応舵角比KVにより決定される左右後輪RWI
、RW2の操舵角が左右前輪FWI、FW2に対し同相
方向に太き(修正されることを意味する。これにより、
第4図の実線で示された舵角比特性は同図破線で示され
た舵角比特性のように変化し、その変化度合は上記スリ
ップ率が大きい程大きくなる。また、上記関数値f  
(g)は、左右後輪RWI、RW2のスリップ率と車両
のスピンとの関係により定められるものであり、上記関
係に限らず、例えば、上記関数f  (g)が前後輪回
転数差gが所定値より小さいときf  (g) =α・
gと定義され、同着gが所定値以上のときf(g)=β
・g”  (但し、βは正の定数)と定義されるように
してもよい。これによれば、前後輪回転数差gが小さい
とき上記同相側への修正量は同左gの同一変化量に対し
て小さく、同左gが太き(なると上記同相側への修正量
は同左gの同一変化量に対して大きくなる。
After the processing in step 112, the CPU 43C executes step 1.
13, based on the front and rear wheel rotation speed difference g calculated above, the function value f (g
), for example, by calculating f (g) = α・g, and adding this function value f (g) to the vehicle speed corresponding steering angle ratio KV, the target steering angle ratio K (=+f (g)) can be set. calculate. Note that the coefficient α is a positive constant, and according to the above calculation, the target steering angle ratio increases as the front and rear wheel rotation speed difference g increases. The larger the slip ratio of rear wheels RWI and RW2, the more the left and right rear wheels RWI determined by the vehicle speed corresponding steering angle ratio KV.
, the steering angle of RW2 is thicker (corrected) in the in-phase direction with respect to the left and right front wheels FWI, FW2.This means that
The steering angle ratio characteristic shown by the solid line in FIG. 4 changes like the steering angle ratio characteristic shown by the broken line in the figure, and the degree of change becomes larger as the above-mentioned slip ratio becomes larger. In addition, the above function value f
(g) is determined by the relationship between the slip rate of the left and right rear wheels RWI, RW2 and the spin of the vehicle, and is not limited to the above relationship. For example, if the above function f (g) is When it is smaller than a predetermined value, f (g) = α・
g, and when g is equal to or greater than a predetermined value, f(g)=β
・g” (however, β is a positive constant).According to this, when the front and rear wheel rotational speed difference g is small, the amount of correction to the in-phase side is the same amount of change in the same left g. , and the same-left g becomes thick (then the amount of correction to the in-phase side becomes large with respect to the same amount of change of the same-left g.

ステップ113の処理後、CPU43 Cはステップ1
07にて、上述したように、目標舵角比Kを表す目標舵
角比データを出力することにより、揺動レバー21によ
る設定舵角比を目標舵角比Kに設定制御し、この状態が
続く限り、ステップ101〜105,111〜113.
107からなる循環処理を実行し続ける。この場合、目
標舵角比には車速対応舵角比KVを修正量f  (g)
により修正した値に設定されるので、旋回中の当該車両
の左右後輪RWI、RW2は車速対応舵角比KVのみに
よる制御に比べ修正iff(g)だけ同相方向に操舵制
御される。
After the processing in step 113, the CPU 43C executes step 1
07, as described above, by outputting the target steering angle ratio data representing the target steering angle ratio K, the set steering angle ratio by the swing lever 21 is controlled to be set to the target steering angle ratio K, and this state is As long as steps 101-105, 111-113.
107 continues to be executed. In this case, the target steering angle ratio is the vehicle speed corresponding steering angle ratio KV by the correction amount f (g)
Since the left and right rear wheels RWI and RW2 of the vehicle in question are set to values corrected by , the left and right rear wheels RWI and RW2 of the vehicle in question are steered in the same phase direction by the corrected iff(g) compared to control based only on the vehicle speed corresponding steering angle ratio KV.

このような操舵制御による効果を、車両の旋回走行状態
との関係において図面を用いて説明する。
The effects of such steering control will be explained with reference to the drawings in relation to the turning state of the vehicle.

第5図は車両の左旋回状態を表し、第6図はかかる場合
の車両のヨーレート、各車輪回転数Nfl。
FIG. 5 shows a left-turning state of the vehicle, and FIG. 6 shows the yaw rate of the vehicle and the number of rotations of each wheel Nfl in such a case.

Nf2.Nrl、Nf2及び車両のスリップ角の変化を
示している。第6図の時刻toにて当該車両が左旋回を
開始して時刻t1まで略等速にて旋回走行したとすると
、この間ではヨーレート、車輪回転数Nf 1.Nf 
2.Nrl、Nf2及びスリップ角はなめらかに変化す
る。そして、時刻t1にて傑舵ハンドル110回動位置
を以前の状態に保持したままアクセルペダル31を踏込
むことによって当該車両を加速すると、駆動輪である左
右後輪RWI、RW2がスリップして、左右後輪RWI
、RW2の回転数Nr 1.Nr 2は急激に上昇する
が、非駆動輪である左右前輪FW1.FW2の回転数N
fl、Nf2はそれ程上昇しない。
Nf2. It shows changes in Nrl, Nf2, and the slip angle of the vehicle. Assuming that the vehicle starts turning to the left at time to in FIG. 6 and turns at approximately constant speed until time t1, the yaw rate and wheel rotation speed Nf 1. Nf
2. Nrl, Nf2 and slip angle change smoothly. Then, at time t1, when the vehicle is accelerated by depressing the accelerator pedal 31 while keeping the rotating position of the steering wheel 110 in the previous state, the left and right rear wheels RWI and RW2, which are the driving wheels, slip. Left and right rear wheels RWI
, RW2 rotation speed Nr 1. Nr 2 increases rapidly, but the left and right front wheels FW1. which are non-driving wheels. FW2 rotation speed N
fl and Nf2 do not increase that much.

なお、左後輪RWIの回転数N r 1が右後輪RW2
の回転数Nr2より太き(なるのは、車両の旋回におけ
る遠心力により旋回内側の車輪にかかる荷重が旋回外側
の車輪にかかる荷重より小さくなるために、旋回内側の
車輪のスリップ率が旋回外側の車輪のスリップ率よりも
高くなるためであり、また右前輪FW2の回転数Nf2
が左前輪FWIの回転数Nflより大きくなるのは、左
旋回に伴い右前輪FW2の回転半径が左前輪FWIの回
転半径より太き(なるためである。このように、旋回中
に車両が加速すると左右後輪RW1.RW2のスリップ
率が高くなり、当該車両はオーバーステア傾向になり、
ヨーレート及びスリップ角は急激に大きくなって当該車
両がスピンするおそれがある。そのため、上記実施例で
は、第3図のフローチャートのステップ112の演算に
より左右後輪RWI、RW2のスリップ状態を表す前後
輪回転数差gを算出し、ステップ113の演算によりこ
の前後輪回転数差gが大きくなる程大きくなる関数値f
  (g)を算出して、この関数値f  (g)により
左右後輪RWI、RW2を左右前輪FWI。
Note that the rotation speed Nr1 of the left rear wheel RWI is the right rear wheel RW2.
(This is because the load applied to the wheel on the inside of the turn is smaller than the load on the wheel on the outside of the turn due to the centrifugal force when the vehicle turns, so the slip rate of the wheel on the inside of the turn is larger than the rotation speed Nr2 of the wheel on the outside of the turn.) This is because the slip rate of the wheels of
The reason why Nfl is larger than the rotational speed Nfl of the left front wheel FWI is because the turning radius of the right front wheel FW2 becomes wider than the turning radius of the left front wheel FWI as the vehicle turns to the left. Then, the slip rate of the left and right rear wheels RW1 and RW2 increases, and the vehicle tends to oversteer.
The yaw rate and slip angle may suddenly increase and the vehicle may spin. Therefore, in the above embodiment, the front and rear wheel rotational speed difference g representing the slip state of the left and right rear wheels RWI, RW2 is calculated by the calculation in step 112 of the flowchart in FIG. The function value f becomes larger as g becomes larger.
(g) is calculated, and the left and right rear wheels RWI and RW2 are changed to the left and right front wheels FWI using this function value f (g).

FW2に対し同相方向に操舵するように補正制御するの
で、左右後輪RWI、RW2のスリップによる上記スピ
ンが防止され車両の操安性が向上する。また、当該車両
が右旋回した場合には、上記左旋回の場合と左右前輪F
WI、FW2.左右後輪RWI、RW2の各操舵方向が
逆向きとなるだけで、動作は上記場合と同じである。
Since correction control is performed to steer FW2 in the same phase direction, the spin caused by the slip of the left and right rear wheels RWI and RW2 is prevented, and the steering stability of the vehicle is improved. In addition, when the vehicle turns to the right, the left and right front wheels
WI, FW2. The operation is the same as in the above case, except that the steering directions of the left and right rear wheels RWI and RW2 are reversed.

また、本実施例においては、ステップ102゜103.
105の処理により、当該車両の旋回加速状態を、前輪
操舵角θf及びアクセル開度aによって検出し、該検出
時にのみ上記前後輪回転数差gに応じた操舵制御を行う
ようにしたので、当該車両が悪路を走行して同車両の旋
回加速とは無関係に駆動輪である左右後輪RWI、RW
2がスリップしても、該操舵制御が行われることがなく
なり、旋回加速とは無関係な前記操舵制御による車両の
操安性の悪化をよりよく防止できる。
Further, in this embodiment, steps 102, 103.
Through the process of step 105, the turning acceleration state of the vehicle is detected based on the front wheel steering angle θf and the accelerator opening a, and only at the time of this detection, steering control is performed according to the difference g between the front and rear wheels. When the vehicle is driving on a rough road, the left and right rear wheels, which are the driving wheels, RWI, RW, regardless of the turning acceleration of the vehicle.
Even if the steering wheel 2 slips, the steering control will not be performed, and it is possible to better prevent deterioration of the steering stability of the vehicle due to the steering control unrelated to turning acceleration.

なお、上記実施例においては、車速センサ41eにより
車速■を検出するようにしたが、この車速センサ41e
を省略して、車輪回転数センサ41 a、  4 l 
b、  41 c、  41 dによる各車輪FW1、
FW2.RWI、RW2の各回転数Nfl。
In the above embodiment, the vehicle speed ■ is detected by the vehicle speed sensor 41e, but this vehicle speed sensor 41e
omitted, wheel rotation speed sensors 41 a, 4 l
Each wheel FW1 by b, 41 c, 41 d,
FW2. Each rotation speed Nfl of RWI and RW2.

Nf2.Nrl、Nf2の総平均値を算出し又は非駆動
輪である左右前輪FWI、FW2の各回転数Nfl、N
f2の平均を算出する等の方法により車速■を算出する
ことも可能である。
Nf2. Calculate the total average value of Nrl, Nf2, or calculate the respective rotational speeds Nfl, N of the left and right front wheels FWI, FW2, which are non-driving wheels.
It is also possible to calculate the vehicle speed ■ by a method such as calculating the average of f2.

次に本発明の第2実施例について説明すると、第7図は
第2図の第1実施例の変形例である後輪操舵機構20と
電気制御装置40の一部分を示しており、第1実施例と
同一部分には同一符号を付しである。後輪操舵機構20
は左右後輪RWI。
Next, a second embodiment of the present invention will be described. FIG. 7 shows a part of the rear wheel steering mechanism 20 and the electric control device 40 which are a modification of the first embodiment shown in FIG. The same parts as in the example are given the same reference numerals. Rear wheel steering mechanism 20
is left and right rear wheels RWI.

RW2を連動させるリレーロッド26を直接駆動するリ
ニアアクチュエータ27を備えている。電気制御装置4
0は、上記第1実施例と同様のD/A変換器44と差動
増幅器45を備えており、この差動増幅器45の反転入
力にはリレーロッド26の変位位置を検出して左右後輪
RWI、RW2の操舵角θrを表すアナログ信号を発生
する位置センサ47が接続されている。なお、残りの部
分は後述するプログラムが異なる点を除けば上記第1実
施例と同じである。
A linear actuator 27 is provided that directly drives a relay rod 26 that interlocks RW2. Electric control device 4
0 is equipped with a D/A converter 44 and a differential amplifier 45 similar to those in the first embodiment, and the inverting input of the differential amplifier 45 detects the displacement position of the relay rod 26 and outputs signals to the left and right rear wheels. A position sensor 47 that generates an analog signal representing the steering angle θr of RWI and RW2 is connected. Note that the remaining parts are the same as those of the first embodiment, except that the program described later is different.

上記のように構成した第2実施例の動作を第3図のフロ
ーチャートを参考にして説明すると、CPU43cが、
上記第1実施例と同様のステップ101〜107又は1
01〜105,111〜113.107の循環処理中、
ステップ107にて目標舵角比にとRAM43dに記憶
されている前輪操舵角データにより表された前輪操舵角
θfとを乗算した目標後輪操舵角K・θfを算出して、
この目標後輪操舵角K・θfを表すディジタル信号を第
7図のD/A変換器44に出力する。D/A変換器44
はこのディジタル信号をアナログ信号に変換して差動増
幅器45に供給し、差動増幅器45は位置センサ47と
の協働により後輪操舵角θrを上記目標後輪操舵角K・
θfに設定する。
The operation of the second embodiment configured as described above will be explained with reference to the flowchart in FIG. 3.
Steps 101 to 107 or 1 similar to the first embodiment above
During the circulation process of 01-105, 111-113.107,
In step 107, a target rear wheel steering angle K·θf is calculated by multiplying the target steering angle ratio by the front wheel steering angle θf represented by the front wheel steering angle data stored in the RAM 43d.
A digital signal representing this target rear wheel steering angle K·θf is output to the D/A converter 44 shown in FIG. D/A converter 44
converts this digital signal into an analog signal and supplies it to the differential amplifier 45, and the differential amplifier 45 cooperates with the position sensor 47 to convert the rear wheel steering angle θr into the target rear wheel steering angle K・
Set to θf.

これにより、上記第1実施例と同様な効果が達成される
This achieves the same effect as the first embodiment.

なお、上記第1及び第2実施例では、車速■に応じて決
定される左右後輪RWI、RW2の操舵角を前後輪回転
数差gにより修正制御するようにしたが、本発明は車速
■に応じて左右後輪RWI。
In the first and second embodiments described above, the steering angles of the left and right rear wheels RWI, RW2, which are determined according to the vehicle speed (2), are corrected and controlled based on the difference g between the front and rear wheels. RWI left and right rear wheels depending on.

RW2の操舵角が制御されない車両にも通用されるもの
である。すなわち、前後輪回転数差gに応じて決定され
る関数値f  (g)のみにより左右後輪RW1.RW
2を左右前輪FWI、FW2に対して同相方向に制御す
るようにしてもよい。
This is also applicable to vehicles in which the steering angle of RW2 is not controlled. That is, the left and right rear wheels RW1. R.W.
2 may be controlled in the same phase direction with respect to the left and right front wheels FWI and FW2.

また、上記第1及び第2実施例においては、後輪駆動型
の車両に本発明を通用した場合について説明したが、本
発明は前輪駆動型の車両にも通用されるものである。た
だし、前輪駆動型の車両においては、その加速時に、駆
動軸である左右前輪FWI、FW2のスリップ率が高く
なって、左右前@FWI、FW2の回転数Nfl、Nf
2が非駆動輪である左右後輪RWI、RW2の回転数N
rl、Nr2より大きくなるとともに、旋回中の当該車
両はアンダーステア傾向になり、上記スリップ率がより
高くなるとドリフトアウトする。そのため、この場合に
は、第3図のフローチャートのステップ112にて前後
輪回転数mgを左右前輪FWI、FW2の回転数Nfl
、Nf2の大きい方(又は平均値)から左右後輪RWI
、RW2の回転数Nrl、Nr2の小さい方(又は平均
値)を減算することにより算出するようにし、ステップ
113にて目標舵角比Kをに=に−f  (g)の関係
によって算出するようにする。これにより、目標舵角比
には第4図の一点鎖線のように変化して、旋回中の当該
車両が加速した場合、左右後輪RWI、RW2は左右前
輪FW1.FW2に対して逆相方向に修正制御されるよ
うになるので、前輪駆動型の車両における旋回加速時の
ドリフトアウトが防止される。さらに、この場合にも、
左右後輪RWI、RW2の操舵角が車速■に応じて変化
しないようにしてもよい。
Further, in the first and second embodiments described above, the case where the present invention is applicable to a rear wheel drive type vehicle has been described, but the present invention is also applicable to a front wheel drive type vehicle. However, in front-wheel drive vehicles, during acceleration, the slip rate of the left and right front wheels FWI, FW2, which are the drive shafts, becomes high, and the rotational speeds Nfl, Nf of the left and right front wheels FWI, FW2 increase.
2 is the rotation speed N of the left and right rear wheels RWI, RW2, which are non-driving wheels
As rl becomes larger than Nr2, the vehicle in question tends to understeer while turning, and as the slip ratio becomes higher, it drifts out. Therefore, in this case, in step 112 of the flowchart in FIG.
, left and right rear wheels RWI from the larger Nf2 (or average value)
, by subtracting the smaller (or average value) of RW2 rotational speeds Nrl and Nr2, and in step 113, the target steering angle ratio K is calculated by the relationship: = = -f (g). Make it. As a result, the target steering angle ratio changes as shown by the dashed line in FIG. 4, and when the vehicle in question accelerates while turning, the left and right rear wheels RWI, RW2 change to the left and right front wheels FW1. Since the correction control is performed in a direction opposite to FW2, drift-out during turning acceleration in a front-wheel drive vehicle is prevented. Furthermore, in this case,
The steering angles of the left and right rear wheels RWI and RW2 may not change depending on the vehicle speed (■).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特許請求の範囲に記載した発明の構成に対応す
る図、第2図は本発明の第1実施例を示す車両の概略図
、第3図は第2図のマイクロコンピュータで実行される
プログラムに対応するフローチャート、第4図は車速に
対する舵角比を示す特性グラフ、第5図は車両の旋回状
態を示す図、第6図は後輪駆動型の車両の旋回時におけ
るヨーレート、車輪回転数及びスリップ率の変化特性を
示す図、及び第7図は本発明の第2実施例を示す車両の
一部概略図である。 符号の説明 FWI、FW2・・・前輪、RWI、RW2・・・後輪
、10・・・前輪操舵機構、11・・・操舵ハンドル、
20・・・後輪操舵機構、21・・・揺動レバー、23
.27・・・リニアアクチュエータ、30・・・駆動装
置、31・・・アクセルペダル、32・・・エンジン、
40・・・電気制御装置、41 a、  4 l b、
  41 c、  41 d、  ・・・車輪回転数セ
ンサ、41e・・・車速センサ、41f・・・前輪操舵
角センサ、41g・・・アクセル開度センサ、43・・
・マイクロコンピュータ、46.47・・・位置センサ
。 出願人  トヨタ自動車株式会社 代理人  弁理士 長 谷 照 − (外1名) 第1図 第6図 1o1.     1 第7図
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a schematic diagram of a vehicle showing a first embodiment of the invention, and FIG. Figure 4 is a characteristic graph showing the steering angle ratio to vehicle speed, Figure 5 is a diagram showing the turning state of the vehicle, and Figure 6 is a graph showing the yaw rate and wheels when turning a rear-wheel drive vehicle. A diagram showing the change characteristics of rotational speed and slip ratio, and FIG. 7 are partial schematic diagrams of a vehicle showing a second embodiment of the present invention. Description of symbols FWI, FW2...Front wheel, RWI, RW2...Rear wheel, 10...Front wheel steering mechanism, 11...Steering handle,
20... Rear wheel steering mechanism, 21... Rocking lever, 23
.. 27... Linear actuator, 30... Drive device, 31... Accelerator pedal, 32... Engine,
40... Electric control device, 41 a, 4 l b,
41 c, 41 d...Wheel rotation speed sensor, 41e...Vehicle speed sensor, 41f...Front wheel steering angle sensor, 41g...Accelerator opening sensor, 43...
・Microcomputer, 46.47...Position sensor. Applicant Toyota Motor Corporation Representative Patent Attorney Teru Hase - (1 other person) Figure 1 Figure 6 1o1. 1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 後輪を操舵する後輪操舵機構と、前輪の回転数を検出す
る前輪回転数検出手段と、後輪の回転数を検出する後輪
回転数検出手段と、前記検出した前輪回転数と後輪回転
数との回転数差に応じて前輪に対する後輪の操舵角の比
を決定する決定手段と、前記決定した操舵角の比に応じ
た制御信号を前記後輪操舵機構に出力して後輪操舵角が
前記決定した操舵角の比になるように後輪を操舵制御す
る制御手段とを備え、旋回加速時の車両のスピン又はド
リフトアウトを防止する前後輪操舵車の後輪操舵制御装
置であって、前輪操舵角を検出する前輪操舵角検出手段
と、アクセル開度を検出するアクセル開度検出手段と、
前記検出した前輪操舵角及びアクセル開度が共に所定値
より大きいとき前記制御手段による前記後輪の操舵制御
を許容しかつそれ以外のとき該操舵制御を禁止する判定
手段とを設けたことを特徴とする前後輪操舵車の後輪操
舵制御装置。
a rear wheel steering mechanism that steers the rear wheels, a front wheel rotation speed detection means that detects the rotation speed of the front wheels, a rear wheel rotation speed detection means that detects the rotation speed of the rear wheels, and the detected front wheel rotation speed and the rear wheel. determining means for determining a ratio of the steering angle of the rear wheels to the front wheels according to the difference in rotational speed; and a determining means for outputting a control signal corresponding to the determined steering angle ratio to the rear wheel steering mechanism to and a control means for controlling the steering of the rear wheels so that the steering angle becomes a ratio of the determined steering angle, and the rear wheel steering control device for a front and rear wheel steered vehicle prevents the vehicle from spinning or drifting out when accelerating a turn. There is a front wheel steering angle detection means for detecting a front wheel steering angle, an accelerator opening degree detection means for detecting an accelerator opening degree,
The vehicle is characterized by further comprising a determining means for permitting the steering control of the rear wheels by the control means when both the detected front wheel steering angle and the accelerator opening are larger than a predetermined value, and for inhibiting the steering control at other times. Rear wheel steering control device for front and rear wheel steered vehicles.
JP21901586A 1986-09-16 1986-09-16 Rear wheel steering controller for front/rear wheel Pending JPS6374772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21901586A JPS6374772A (en) 1986-09-16 1986-09-16 Rear wheel steering controller for front/rear wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21901586A JPS6374772A (en) 1986-09-16 1986-09-16 Rear wheel steering controller for front/rear wheel

Publications (1)

Publication Number Publication Date
JPS6374772A true JPS6374772A (en) 1988-04-05

Family

ID=16728916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21901586A Pending JPS6374772A (en) 1986-09-16 1986-09-16 Rear wheel steering controller for front/rear wheel

Country Status (1)

Country Link
JP (1) JPS6374772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266068A (en) * 1988-04-18 1989-10-24 Mazda Motor Corp Steering device for vehicle
JP2013139208A (en) * 2012-01-04 2013-07-18 Jtekt Corp Apparatus for determining vehicle attitude
CN112141208A (en) * 2019-06-26 2020-12-29 广州汽车集团股份有限公司 Vehicle steering control structure, vehicle suspension structure and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266068A (en) * 1988-04-18 1989-10-24 Mazda Motor Corp Steering device for vehicle
JP2013139208A (en) * 2012-01-04 2013-07-18 Jtekt Corp Apparatus for determining vehicle attitude
CN112141208A (en) * 2019-06-26 2020-12-29 广州汽车集团股份有限公司 Vehicle steering control structure, vehicle suspension structure and vehicle
CN112141208B (en) * 2019-06-26 2022-03-15 广州汽车集团股份有限公司 Vehicle steering control structure, vehicle suspension structure and vehicle

Similar Documents

Publication Publication Date Title
JP6162762B2 (en) Vehicle control apparatus and vehicle control method
JPH0763077A (en) Traction control unit of vehicle
CN110466602A (en) The timesharing four-wheel steering system and its control method of hub motor driven electric vehicle
EP0415450A2 (en) Rear wheel steering control system for vehicle
CN110626418B (en) Method for vehicle steering control
JP2600386B2 (en) Rear wheel steering control device
JPH0392483A (en) Rear wheel steering control device
JPS6271761A (en) Rear-wheel steering controller for four-wheel steering vehicle
JPS6374772A (en) Rear wheel steering controller for front/rear wheel
JPH0773999B2 (en) Rear wheel control system for front and rear wheel steering vehicles
JP3344465B2 (en) Vehicle steering control device
JP6329308B2 (en) Vehicle control apparatus and vehicle control method
JP3463530B2 (en) Vehicle motion control device
JP3019466B2 (en) Road friction coefficient detector
JP3704979B2 (en) Vehicle motion control device
JP4161829B2 (en) Vehicle attitude control device
JP3635940B2 (en) Steering control device
JPS63166664A (en) Rear-wheel steering controller for all-wheel drive vehicle
JPH072130A (en) Method for controlling rear wheel steering device
JP3033247B2 (en) Vehicle steering characteristic control device
JP3478078B2 (en) Vehicle state quantity detection device
JP3163742B2 (en) Vehicle control device
JPH0761790B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JP3686519B2 (en) Vehicle behavior control device
JP3109236B2 (en) Vehicle yaw motion controller