JPS6234584B2 - - Google Patents

Info

Publication number
JPS6234584B2
JPS6234584B2 JP55089576A JP8957680A JPS6234584B2 JP S6234584 B2 JPS6234584 B2 JP S6234584B2 JP 55089576 A JP55089576 A JP 55089576A JP 8957680 A JP8957680 A JP 8957680A JP S6234584 B2 JPS6234584 B2 JP S6234584B2
Authority
JP
Japan
Prior art keywords
vehicle
steering
wheels
steered
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089576A
Other languages
Japanese (ja)
Other versions
JPS5715066A (en
Inventor
Hideo Ito
Keiichiro Yabuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8957680A priority Critical patent/JPS5715066A/en
Publication of JPS5715066A publication Critical patent/JPS5715066A/en
Publication of JPS6234584B2 publication Critical patent/JPS6234584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、二組の操舵可能な車輪を具える車両
において、一方の車輪組を操縦者が常時操舵し、
この操舵操作に追従して他方の車輪組を操作する
操舵制御方法に関するものである。 従来の車両の操舵方法としては、前輪のみまた
は後輪のみを操舵するのが普通であり、例外とし
て、特に長尺のホイールベースの長い車両や特殊
用途の車両において複数個の車軸を操舵可能と
し、これらの操舵可能の車軸を相互に機械的に連
結させたり、油圧で結合させることによつて一組
の車輪の操舵角に比例した角度に他の組の車輪を
操舵して狭い場所での取扱い易さをねらつて低速
での小廻りを効かせるように操舵していた。 しかし、このような従来の車両の操舵方法は、
いずれも操舵される車輪組の舵角のみが車両の運
動を決定する入力となつていたため、次のような
不具合があつた。 例えば、車両が定常状態で旋回中であるとすれ
ば、4輪車を2輪車として扱えるので、第3図に
示す2輪モデルにおいて、車両の質量をmとし、
lはホイールベース、aは前輪と重心との間の距
離、bは後輪と重心との間の距離、Cfは前輪タ
イヤのコーナリングパワー、Crは後輪タイヤの
コーナリングパワー、δfは前輪舵角、αfは前
輪タイヤのスリツプ角、αrは後輪タイヤのスリ
ツプ角、Vは車速、γはヨーレート(車が進行方
向を変えようとする角変化速度)、yは重心点横
変位、Yfは前輪のコーナリングフオース、Yrは
後輪のコーナリングフオースとすると、前車輪の
舵角のみを入力として操舵する車両の運動方程式
は、 で表わされ、ここで Yf=−Cf・αf=−Cf(y/V+aγ/V−δf) Yr=−Cr・αr=−Cr(y/V−bγ/V) で表わされ、上式をラプラス変換してマトリクス
表示すると、 上式より車両のヨーレートの周波数応答を示す伝
達関数Gr(S)は、 上式を基準化して表わすと、 Gγ(S)=γ(S)/δf(S) =Krω〓/S+2ξ〓ω〓S+ω〓(1+ν〓
S) ただし、Kγ,ξγ,ωγ,ν〓は定数である。 上式から判るように、車両の運動を決定する入
力が舵角のみである車両は、1次進み、2次遅れ
系の応答を示し、すなわち、車両の旋回時には、
車両のヨーレート(車が向きを変えようとする角
変化速度)と操舵操作との間に位相遅れが必ず生
じ、この結果、操舵操作に対して車両の方向の変
化が遅れて生じるため、車両の方向変化を予測し
つつ操舵すると云つた運転に熟練を要する車両特
性となつて、運転者に不自然な操作感を与えると
いう問題点があつた。 本発明は、このような従来の問題点に着目して
なされたもので、左右輪を相互に連動して操舵し
得る2組の車輪組を備え、一方の車輪組を運転者
が操舵し、他方の車輪組を前記一方の車輪組に追
従して操舵する車両の操舵制御方法において、前
記一方の車輪組の操舵角速度に比例倍して得られ
る操舵角で前記他方の車輪組を操舵し、操向性を
向上させることにより上記問題点を解決すること
を目的としている。 以下、本発明を図面につき説明する。 第1図は本発明の一実施例を示し、第2図は第
1図を模式的に示すブロツク線図であつて、図中
1はステアリングホイル、2はステアリングコラ
ム、3はギヤボツクス、4はピツトマンアーム、
5はコネクテイングロツド、6はサイドロツド、
7はナツクルアーム、8はタイヤ、9はサスペン
シヨン、10はエンジン、11はトランスミツシ
ヨン、12はアクスルシヤフト、13はトランス
ミツシヨン11に取付けられた車速検出器、14
はステアリングキヤボツクス3に取付けられた前
輪操舵角速度検出器、15はサスペンシヨン9の
車体側取付点に取付けられた荷重検出器を示す。 車速検出器13、前輪操舵角速度検出器14お
よび荷重検出器15は指令回路16に電気的に接
続され、この指令回路16をサーボアンプ17に
電気的に接続してサーボバルブ18を電気的に駆
動するよう接続されている。サーボバルブ18は
エンジン10により駆動される油圧ポンプ19に
接続されて油量を制御する。 後輪のステアリングリンケージ20にはアクチ
ユエータ21が結合され、このアクチユエータ2
1にサーボアンプ17が油圧回路により結合さ
れ、アクチユエータ21の変位によつて後輪の操
舵角速度を変えるよう構成されている。22はア
クチユエータ21の変位を検出し、操舵角速度を
フイードバツク制御するためのポテンシヨメータ
で、サーボアンプ17に接続されている。 次に、車両を操舵した場合に車両の水平面内で
生ずる運動につき説明する。これがため、第3図
に示す簡単な2輪車の2自由度モデルによつて説
明するに、車両を操舵する際、回転方向のヨー運
動と直線方向の横すべり運動とが存在する。第3
図において、lはホイールベース、aは前輪と重
心との間の距離、bは後輪と重心との間の距離、
Cfは前輪タイヤのコーナリングパワー、Crは後
輪タイヤのコーナリンダパワー、δfは前輪舵
角、kは倍率で、前後輪舵角比(後輪舵角/前輪
操舵角速度)に相当し、αfは前輪タイヤのスリ
ツプ角、αrは後輪タイヤのスリツプ角、Vは車
速、γはヨーレイト、yは重心点横変位、〓yは重
心点横変位速度、¨yは重心点横変位加速度、βは
後輪横すべり角、Yfは前輪のコーナリングフオ
ース、Yrは後輪のコーナリングフオースを示
す。 第3図のモデルにおいて、車両の質量をmと
し、前輪の操舵角速度倍率kで比例倍して得られ
る操舵角で前輪とは逆方向に後輪を操舵すると仮
定すると、運動方程式は m(¨y+V・γ)=Yf
+Yr Iz〓γ=aYf−bYr で表わされる。ここで、 Yf=−Cfαf=−Cf(y/V+aγ/V−δf) Yr=−Crαr=−Cr(y/V−bγ/V+k〓δf) で表わされ、Sをラプラス演算子として上式をラ
プラス変換してマトリクス表示すると、 上式を解くことにより、ヨー運動の時間変化率で
あるヨーレイトの伝達関数Gγ(S)は、 Gγ(S)=K〓S+2ξ〓ω〓S+ω〓/ω〓
ωγ/S+2ξ〓ω〓S+ω〓 上式において、 であるので、後輪を前輪操舵角速度に比例して操
舵するものとすると、ヨーレイトの伝達関数Gγ
(S)は2次進み、2次遅れ系で表わされること
がわかる。 2次進み、2次遅れの伝達関数Gγ(S)にお
ける位相遅れ∠Gγ(S)は ∠Gγ(S)=∠S+2ξ〓ω〓S+ω〓/ω〓
−∠S+2ξ〓ω〓S+ω〓/ω〓
で表わされ、上式の1項および2項の示す位相角
はそれぞれの固有周波数ω〓,ω〓で第4図に示
すようにπ/2,−π/2となる。 したがつて、ω〓=ω〓とすれば、両者の位相
進みおよび位相遅れがほぼ一致し、両位相角を相
殺することができる。これにより、運転者の操舵
に対して車両のヨーレートの遅れは上記の式から
明らかなように、ξ〓とξ〓との相違による若干
の位相遅れおよび位相進みのみとすることができ
る。 これがため、本発明によれば、ヨーレイトの遅
れをなくすための条件として、 ω〓=ω〓 とし、上式を書き換えて得られる CfCr/mIz{1/V−m(a/Cr−b/C
f)}=1Cf/mkbV の関係から後輪舵角対前輪操舵角速度の比率kを
求める式 を導びき、前輪操舵角速度を上記k倍した舵角で
後輪を制御することによつて、操縦者が操舵する
舵角に対するヨーレイトの遅れを極めて小さくす
ることができる。 第5図は車両の諸元を一定として、すなわち、
〔1〕式におけるホイールベースl、前輪と重心
との間の距離a、後輪と重心との間の距離b、車
両質量m、慣性モーメントIzを一定とし、 〔1〕式を
The present invention provides a vehicle equipped with two sets of steerable wheels, in which a driver constantly steers one set of wheels,
The present invention relates to a steering control method for operating the other wheel set following this steering operation. Conventional vehicle steering methods typically involve steering only the front wheels or only the rear wheels; there are exceptions, particularly in long wheelbase vehicles or special purpose vehicles, where multiple axles can be steered. By mechanically or hydraulically coupling these steerable axles to each other, one set of wheels can be steered to an angle proportional to the other set of wheels to maneuver in tight spaces. Aiming for ease of handling, the vehicle was steered to make small turns at low speeds. However, this conventional vehicle steering method is
In both cases, the only input that determined the motion of the vehicle was the steering angle of the steered wheel set, resulting in the following problems. For example, if a vehicle is turning in a steady state, a four-wheeled vehicle can be treated as a two-wheeled vehicle, so in the two-wheeled model shown in Fig. 3, the mass of the vehicle is m,
l is the wheelbase, a is the distance between the front wheels and the center of gravity, b is the distance between the rear wheels and the center of gravity, Cf is the cornering power of the front tires, Cr is the cornering power of the rear tires, δf is the front wheel steering angle , αf is the slip angle of the front tires, αr is the slip angle of the rear tires, V is the vehicle speed, γ is the yaw rate (angular change speed at which the car attempts to change its direction), y is the lateral displacement of the center of gravity, and Yf is the front wheels. Assuming that Yr is the cornering force of the rear wheels, the equation of motion of a vehicle steered using only the steering angle of the front wheels as input is: where Yf=-Cf・αf=-Cf(y/V+aγ/V-δf) Yr=-Cr・αr=-Cr(y/V-bγ/V), and the above formula When we convert Laplace and display it as a matrix, we get From the above equation, the transfer function Gr(S) that indicates the frequency response of the vehicle's yaw rate is: Standardizing the above equation, Gγ(S)=γ(S)/δf(S) =Krω〓 2 /S 2 +2ξ〓ω〓S+ω〓 2 (1+ν〓
S) However, Kγ, ξγ, ωγ, and ν are constants. As can be seen from the above equation, a vehicle in which the only input that determines vehicle motion is the steering angle exhibits a first-order lead, second-order delay system response, that is, when the vehicle turns,
There is always a phase lag between the vehicle's yaw rate (angular change rate at which the vehicle attempts to change direction) and the steering operation, and as a result, the change in direction of the vehicle occurs with a delay relative to the steering operation, so the vehicle's There is a problem in that the vehicle characteristics require skill in driving, such as steering while anticipating changes in direction, which gives the driver an unnatural operating feeling. The present invention has been made by focusing on such conventional problems, and includes two sets of wheels that can steer the left and right wheels in conjunction with each other, one of which is steered by the driver, In a vehicle steering control method in which the other wheel set is steered to follow the one wheel set, the other wheel set is steered at a steering angle obtained by proportionally multiplying the steering angular velocity of the one wheel set; The aim is to solve the above problems by improving steering performance. The invention will now be explained with reference to the drawings. FIG. 1 shows one embodiment of the present invention, and FIG. 2 is a block diagram schematically showing FIG. 1, in which 1 is a steering wheel, 2 is a steering column, 3 is a gearbox, and 4 is a pittman arm,
5 is the connecting rod, 6 is the side rod,
7 is a knuckle arm, 8 is a tire, 9 is a suspension, 10 is an engine, 11 is a transmission, 12 is an axle shaft, 13 is a vehicle speed detector attached to the transmission 11, 14
Reference numeral 15 indicates a front wheel steering angular velocity detector attached to the steering cabinet 3, and 15 indicates a load detector attached to the attachment point of the suspension 9 on the vehicle body side. The vehicle speed detector 13, front wheel steering angular velocity detector 14, and load detector 15 are electrically connected to a command circuit 16, and this command circuit 16 is electrically connected to a servo amplifier 17 to electrically drive the servo valve 18. connected to. The servo valve 18 is connected to a hydraulic pump 19 driven by the engine 10 to control the amount of oil. An actuator 21 is coupled to the steering linkage 20 of the rear wheel, and this actuator 2
A servo amplifier 17 is connected to 1 by a hydraulic circuit, and is configured to change the steering angular velocity of the rear wheels by displacement of an actuator 21. A potentiometer 22 is connected to the servo amplifier 17 for detecting the displacement of the actuator 21 and controlling the steering angular velocity in a feedback manner. Next, the motion that occurs in the horizontal plane of the vehicle when the vehicle is steered will be explained. Therefore, when the vehicle is steered, there is a yaw motion in the rotational direction and a sideslip motion in the linear direction, as explained using a simple two-degree-of-freedom model of a two-wheeled vehicle shown in FIG. Third
In the figure, l is the wheelbase, a is the distance between the front wheels and the center of gravity, b is the distance between the rear wheels and the center of gravity,
Cf is the cornering power of the front tires, Cr is the corner cylinder power of the rear tires, δf is the front wheel steering angle, k is the magnification and corresponds to the front and rear wheel steering angle ratio (rear wheel steering angle/front wheel steering angular speed), and αf is The slip angle of the front tires, αr is the slip angle of the rear tires, V is the vehicle speed, γ is the yaw rate, y is the lateral displacement of the center of gravity, y is the lateral displacement speed of the center of gravity, ¨y is the lateral displacement acceleration of the center of gravity, and β is The rear wheel sideslip angle, Yf indicates the cornering force of the front wheels, and Yr indicates the cornering force of the rear wheels. In the model shown in Figure 3, assuming that the mass of the vehicle is m and that the rear wheels are steered in the opposite direction to the front wheels at a steering angle obtained by multiplying proportionally by the steering angular velocity multiplier k of the front wheels, the equation of motion is m(¨ y+V・γ)=Yf
+Yr Iz〓γ=aYf−bYr. Here, it is expressed as Yf=-Cfαf=-Cf(y/V+aγ/V-δf) Yr=-Crαr=-Cr(y/V-bγ/V+k〓δf), and the above formula with S as Laplace operator When we convert Laplace and display it as a matrix, we get By solving the above equation, the transfer function Gγ(S) of yaw rate, which is the time rate of change of yaw motion, is obtained as follows: Gγ(S)=K〓S 2 +2ξ〓ω〓S+ω〓 2 /ω〓
2 ωγ 2 /S 2 +2ξ〓ω〓S+ω〓 2In the above formula, Therefore, if the rear wheels are steered in proportion to the front wheel steering angular velocity, the yaw rate transfer function Gγ
It can be seen that (S) is expressed by a quadratic lead and quadratic lag system. The phase lag ∠Gγ(S) in the quadratic leading and quadratic lag transfer function Gγ(S) is ∠Gγ(S)=∠S 2 +2ξ〓ω〓S+ω〓 2 /ω〓
2 −∠S 2 +2ξ〓ω〓S+ω〓 2 /ω〓
2 , and the phase angles indicated by the first and second terms of the above equation are π/2 and −π/2 at the respective natural frequencies ω〓 and ω〓, as shown in FIG. Therefore, if ω = ω, the phase lead and lag of both will almost match, and both phase angles can be canceled out. As a result, the delay in the yaw rate of the vehicle relative to the driver's steering can be reduced to only a slight phase lag and phase lead due to the difference between ξ〓 and ξ〓, as is clear from the above equation. Therefore, according to the present invention, as a condition for eliminating the yaw rate delay, ω 2 〓=ω 〓 2 , and CfCr/mIz{1 2 /V 2 −m(a/Cr -b/C
f)}=1Cf/mkbV Formula for calculating the ratio k of rear wheel steering angle to front wheel steering angular speed By controlling the rear wheels at a steering angle that is the front wheel steering angular velocity multiplied by the above k times, the delay in yaw rate relative to the steering angle steered by the driver can be made extremely small. Figure 5 assumes that the vehicle specifications are constant, that is,
Assuming that the wheelbase l, the distance a between the front wheels and the center of gravity, the distance b between the rear wheels and the center of gravity, the vehicle mass m, and the moment of inertia Iz in formula [1] are constant, formula [1] is

【式】但し A,Bは定数と表わし、実際の車両の諸元に基づ
いて求めた車速Vと後輪舵角対前輪操舵角速度の
倍率kとの関係を示す特性曲線を示す。 第1図および第2図に示す実施例では、車速検
出器13により車速Vを、前輪操舵角速度検出器
14により前輪操舵角速度を、荷重検出器15に
より前後輪の車重をそれぞれ検出する。 前後輪の各車重mf,mrを知ることにより a=l×mr/m,b=l×mf/m の関係から、前後輪と重心との間の距離a,bが
求められ、また、車重はmf+mrにより求めら
れ、さらに慣性モーメントは、例えば、各車輪に
かかる重量mf1,mf2,mr1,mr2を求め、重心か
ら車軸までの距離をr1,r2,r3,r4を求めること
により、 Iz=mf1×r +mf2×r +mr1r3 2+mr2m4 4 の関係から求められる。 かようにして得られた測定値から指令回路16
において、〔1〕式により前輪操舵角速度に対す
る後輪舵角の倍率kが求められ、この倍率kと前
輪操舵角速度検出器14により検出された測定値
とにより後輪舵角が決定され、この値が指令信号
としてサーボアンプ17に発信される。 サーボアンプ17はサーボバルブ18に制御電
流を出力し、これによりサーボバルブは油圧ポン
プ19からアクチユエータ21へ供給する油量
と、オイルタンク23へ戻す油量とを制御し、ア
クチユエータ21の変位を制御する。なお、指令
回路16はアナログ、デイジタル回路のいづれに
よつても構成することができる。また、車両の荷
重変化は積載荷重の小さな車両、例えば、乗用車
では、他の因子の変化に比べて小さいので、前述
した〔1′〕式のように車両の荷重変化を無視する
ことができ、したがつて検出しなくても良く、ト
ラツク等の荷重変化の無視できない車両では、荷
重変化を考慮し、〔1〕式を
[Equation] where A and B are constants, and a characteristic curve showing the relationship between the vehicle speed V and the magnification k of the rear wheel steering angle to the front wheel steering angular speed, which is determined based on the actual vehicle specifications, is shown. In the embodiment shown in FIGS. 1 and 2, the vehicle speed V is detected by the vehicle speed detector 13, the front wheel steering angular velocity is detected by the front wheel steering angular velocity detector 14, and the vehicle weight of the front and rear wheels is detected by the load detector 15. By knowing the vehicle weights mf and mr of the front and rear wheels, the distances a and b between the front and rear wheels and the center of gravity can be found from the relationship a=l×mr/m, b=l×mf/m, and also, The vehicle weight is determined by mf + mr, and the moment of inertia is determined by, for example, determining the weights mf 1 , mf 2 , mr 1 , mr 2 on each wheel, and calculating the distance from the center of gravity to the axle by r 1 , r 2 , r 3 , By finding r 4 , it can be found from the relationship Iz=mf 1 ×r 2 1 +mf 2 ×r 2 2 +mr 1 r 3 2 +mr 2 m 4 4 . From the measured values thus obtained, the command circuit 16
In the formula [1], the magnification k of the rear wheel steering angle with respect to the front wheel steering angular velocity is determined, and the rear wheel steering angle is determined from this magnification k and the measured value detected by the front wheel steering angular velocity detector 14, and this value is transmitted to the servo amplifier 17 as a command signal. The servo amplifier 17 outputs a control current to the servo valve 18, whereby the servo valve controls the amount of oil supplied from the hydraulic pump 19 to the actuator 21 and the amount of oil returned to the oil tank 23, thereby controlling the displacement of the actuator 21. do. Note that the command circuit 16 can be constructed of either an analog circuit or a digital circuit. In addition, since the change in vehicle load is small compared to changes in other factors in a vehicle with a small payload, such as a passenger car, the change in vehicle load can be ignored as shown in equation [1'] above. Therefore, it is not necessary to detect it, and for vehicles such as trucks where load changes cannot be ignored, formula [1] can be used in consideration of load changes.

【式】但しA,B′は定数 とした倍率kを用いれば良い。 さらに、高車速時においてのみ位相遅れが問題
となるような車両では、前記比率kの値は、予め
定めた高車速に適合する一定値であつても良い。 以上説明してきたように、本発明によれば、左
右輪を相互に連動して操舵し得る2組の車輪組を
備え、一方の車輪組を運転者が操舵し、他方の車
輪組を前記一方の車輪組に追従して操舵する車両
の操舵制御方法において、前記一方の車輪組の操
舵角速度に比例倍して得られる操舵角で前記他方
の車輪組を操舵することとしたため、旋回時にお
ける操舵者の操舵角と車両に生ずるヨーレイトと
の間の位相差を著しく小さくでき、運転者に自然
な操作感を与えることができるという効果が得ら
れる。
[Formula] However, for A and B', a magnification k that is a constant may be used. Furthermore, in a vehicle where phase delay becomes a problem only at high vehicle speeds, the value of the ratio k may be a constant value that is compatible with a predetermined high vehicle speed. As described above, according to the present invention, there are provided two sets of wheels capable of steering the left and right wheels in conjunction with each other, one set of wheels is steered by the driver, and the other set of wheels is steered by the driver. In the steering control method for a vehicle that steers by following the wheel set, the other wheel set is steered at a steering angle obtained by multiplying the steering angular velocity of the one wheel set in proportion to the steering angle when turning. The effect is that the phase difference between the driver's steering angle and the yaw rate generated in the vehicle can be significantly reduced, and a natural operating feeling can be given to the driver.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するに用いられる装置の
配置を示す斜視図、第2図は第1図に示す装置の
説明用ブロツク線図、第3図は車両旋回時の動作
説明図、第4図は車両旋回時のヨーレートと操舵
操作との位相遅れを示す特性曲線図、第5図は後
輪舵角/前輪操舵角速度の倍率kと車速との関係
を示す特性曲線図である。 1……ステアリングホイル、2……ステアリン
グコラム、3……ステアリングギヤボツクス、4
……ピツトマンアーム、5……コネクテイングロ
ツド、6……サイドロツド、7……ナツクルアー
ム、8……タイヤ、9……サスペンシヨン、10
……エンジン、11……トランスミツシヨン、1
2……アクスルシヤフト、13……車速検出器、
14……前輪操舵角速度検出器、15……荷重検
出器、16……指命回路、17……サーボアン
プ、18……サーボバルブ、19……油圧ポン
プ、20……後輪ステアリングリンケージ、21
……アクチユエータ、22……ポテンシヨメー
タ、23……オイルタンク。
1 is a perspective view showing the arrangement of a device used to carry out the present invention, FIG. 2 is an explanatory block diagram of the device shown in FIG. 1, FIG. 3 is an explanatory diagram of the operation when the vehicle turns, FIG. 4 is a characteristic curve diagram showing the phase delay between the yaw rate and the steering operation when the vehicle turns, and FIG. 5 is a characteristic curve diagram showing the relationship between the rear wheel steering angle/front wheel steering angular velocity multiplier k and the vehicle speed. 1... Steering wheel, 2... Steering column, 3... Steering gear box, 4
... Pitman arm, 5 ... Connecting rod, 6 ... Side rod, 7 ... Knuckle arm, 8 ... Tire, 9 ... Suspension, 10
...Engine, 11 ...Transmission, 1
2...Axle shaft, 13...Vehicle speed detector,
14... Front wheel steering angular velocity detector, 15... Load detector, 16... Command circuit, 17... Servo amplifier, 18... Servo valve, 19... Hydraulic pump, 20... Rear wheel steering linkage, 21
...actuator, 22...potentiometer, 23...oil tank.

Claims (1)

【特許請求の範囲】 1 左右輪を相互に連動して操舵し得る2組の車
輪組を備え、一方の車輪組を運転者が操舵し、他
方の車輪組を前記一方の車輪組に追従して操舵す
る車両の操舵制御方法において、前記一方の車輪
組の操舵角速度に比例倍して得られる操舵角で前
記他方の車輪組を操舵することを特徴とする2組
の車輪が操舵可能な車両の操舵制御方法。 2 前記比例倍の倍率kを (ただし、Vは車速、A,Bは定数) により決定して操舵することを特徴とする特許請
求の範囲第1項に記載の方法。 3 前記比例倍の倍率kを (ただし、Vは車速、mは車重、A,B′は定
数) により決定して操舵することを特徴とする特許請
求の範囲第1項に記載の方法。
[Scope of Claims] 1. Two wheel sets capable of steering the left and right wheels in conjunction with each other, one wheel set is steered by the driver, and the other wheel set follows the one wheel set. A vehicle in which two sets of wheels can be steered, characterized in that the other wheel set is steered at a steering angle obtained by multiplying the steering angular velocity of the one set of wheels in proportion to the steering angular velocity of the other set of wheels. steering control method. 2 The magnification k of the proportional multiplier is (However, V is the vehicle speed, and A and B are constants.) The method according to claim 1, wherein the steering is determined by: 3 The magnification k of the proportional multiplier is (However, V is the vehicle speed, m is the vehicle weight, and A and B' are constants.) The method according to claim 1, wherein the steering is determined by:
JP8957680A 1980-06-30 1980-06-30 Controlling method for steering of car, two pair of wheel thereof can be steered Granted JPS5715066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8957680A JPS5715066A (en) 1980-06-30 1980-06-30 Controlling method for steering of car, two pair of wheel thereof can be steered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8957680A JPS5715066A (en) 1980-06-30 1980-06-30 Controlling method for steering of car, two pair of wheel thereof can be steered

Publications (2)

Publication Number Publication Date
JPS5715066A JPS5715066A (en) 1982-01-26
JPS6234584B2 true JPS6234584B2 (en) 1987-07-28

Family

ID=13974622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8957680A Granted JPS5715066A (en) 1980-06-30 1980-06-30 Controlling method for steering of car, two pair of wheel thereof can be steered

Country Status (1)

Country Link
JP (1) JPS5715066A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967170A (en) * 1982-10-09 1984-04-16 Nippon Seiko Kk Steering device of car
JPS59179762U (en) * 1983-05-20 1984-12-01 三菱自動車工業株式会社 rear steering control device
JPS60124572A (en) * 1983-12-09 1985-07-03 Nippon Denso Co Ltd Steering system for car
JPH0729612B2 (en) * 1985-01-24 1995-04-05 本田技研工業株式会社 Front and rear wheel steering system for vehicles
JPH07102822B2 (en) * 1985-03-04 1995-11-08 株式会社日立製作所 Four-wheel drive vehicle travel control method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880722A (en) * 1972-01-08 1973-10-29
JPS5345971A (en) * 1976-10-06 1978-04-25 Mitsubishi Electric Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880722A (en) * 1972-01-08 1973-10-29
JPS5345971A (en) * 1976-10-06 1978-04-25 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPS5715066A (en) 1982-01-26

Similar Documents

Publication Publication Date Title
US4441572A (en) Method and a system for steering a wheeled vehicle
JPS6133746B2 (en)
CN109515512B (en) Control method of steer-by-wire differential steering system for wheeled independent drive vehicle
US5402341A (en) Method and apparatus for four wheel steering control utilizing tire characteristics
US5253728A (en) Steering control method for a motor vehicle with a differential
US6598699B2 (en) Electric power steering system for vehicle
US4951199A (en) Steering stabilizing method and apparatus for suppressing the weave mode
JP5859038B2 (en) Torque distribution control method for four-wheel steering vehicle
JP4281828B2 (en) Electric power steering device
JP2641743B2 (en) Rear wheel control method for four-wheel steering vehicles
JP4032985B2 (en) Vehicle motion control device
JP4304345B2 (en) Front wheel steering control device
JPH0825470B2 (en) Rear wheel rudder angle control method
JPS6234584B2 (en)
JP2717676B2 (en) Rear wheel steering control device for vehicle
JP4517555B2 (en) Electric power steering device for automobile
JP3564612B2 (en) Control method of rear wheel steering device
JPH07117510A (en) Yawing movement amount controller of vehicle
JPH0319107B2 (en)
JPH072130A (en) Method for controlling rear wheel steering device
JP3282698B2 (en) Auxiliary steering angle control device for vehicles
JPH0547429B2 (en)
JPH034428B2 (en)
JP3109236B2 (en) Vehicle yaw motion controller
JPH0195970A (en) Steering control device for four-wheel drive vehicle