JPS6224647A - Substrate for mounting semiconductor element - Google Patents

Substrate for mounting semiconductor element

Info

Publication number
JPS6224647A
JPS6224647A JP10728886A JP10728886A JPS6224647A JP S6224647 A JPS6224647 A JP S6224647A JP 10728886 A JP10728886 A JP 10728886A JP 10728886 A JP10728886 A JP 10728886A JP S6224647 A JPS6224647 A JP S6224647A
Authority
JP
Japan
Prior art keywords
substrate
coating layer
semiconductor element
diamond
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10728886A
Other languages
Japanese (ja)
Inventor
Akira Matsumura
松村 昭
Nobuo Ogasa
小笠 伸夫
Akira Otsuka
昭 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10728886A priority Critical patent/JPS6224647A/en
Publication of JPS6224647A publication Critical patent/JPS6224647A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Abstract

PURPOSE:To obtain a substrate with superior electric insulation and heat- conductivity by forming a thin coating film of diamond on the surface of a metal substrate with superior heat-conductivity with PVD or CVD method. CONSTITUTION:A substrate for mounting a semiconductor element 3 is formed with a metal plate 1 with superior heat-conductivity and a diamond coating layer 2 applied on the surface of the plate with PVD or CVD method. Then, a semiconductor element 6 is mounted through a metallizing layer 4 and an Au plating layer 5. The diamond coating layer 2 obtained with PVD and CVD method has smaller roughness of the surface and is superior in closely contacting with the substrate. When a semiconductor is mounted on the substrate, no gap is produced between the element and the substrate, thereby making it possible to increase the radiation of heat from the element.

Description

【発明の詳細な説明】 本発明は、半導体素子に発生する熱を効率よく放散しう
る半導体素子搭載用基板に関するものであり、半導体パ
ッケージやマルチチップボードなどの回路基板の構成部
材として広く適用できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate for mounting semiconductor elements that can efficiently dissipate heat generated in semiconductor elements, and can be widely applied as a component of circuit boards such as semiconductor packages and multi-chip boards. .

近年、半導体素子の高速化、高密度化、大型化により、
半導体素子からの発熱量の増大が問題となっており、半
導体素子搭載用基板に対して高放熱特性の要求が高まっ
てきている。このため、そのような基板として、高い電
気絶縁性と高い放熱性とを併せ持つものが必要とされて
いる。
In recent years, with the increase in speed, density, and size of semiconductor devices,
An increase in the amount of heat generated from semiconductor elements has become a problem, and there is an increasing demand for high heat dissipation characteristics for substrates for mounting semiconductor elements. Therefore, such a substrate is required to have both high electrical insulation and high heat dissipation properties.

このような基板として、スクリーン印刷、ろう付け、溶
射、陽極酸化等によって電気絶縁性の無機質被覆層を熱
伝導性のよい金属基板の表面に形成したものが考えられ
ている。しかし、いずれの方法によって形成された無機
質被覆層にあっても、その被覆層は多孔質であり目的と
する熱伝導性が充分でない。また多孔質であるため、大
気中の水分、水中の導電性イオン等がその被覆層を拡散
し、電気絶縁性の経時的劣化が生じる。このため、その
被覆層にはある程度の厚さが必要とされる。この点から
、被覆層を薄くすることによって熱伝導性の改善を図る
ということには、自ら制限がある。
As such a substrate, one in which an electrically insulating inorganic coating layer is formed on the surface of a highly thermally conductive metal substrate by screen printing, brazing, thermal spraying, anodic oxidation, or the like is considered. However, no matter which method the inorganic coating layer is formed, the coating layer is porous and does not have sufficient thermal conductivity as desired. Furthermore, since it is porous, moisture in the atmosphere, conductive ions in water, etc. diffuse through the coating layer, causing deterioration of electrical insulation over time. For this reason, the coating layer needs to have a certain degree of thickness. From this point of view, there is a limit to the ability to improve thermal conductivity by making the coating layer thinner.

本発明は、このような問題を緻密なダイヤモンドの被覆
層を形成することによって解決し、電気絶縁性及び熱伝
導性が共に優れた半導体素子搭載用基板を提供すること
を目的とする。
An object of the present invention is to solve such problems by forming a dense diamond coating layer, and to provide a substrate for mounting a semiconductor element that has excellent electrical insulation and thermal conductivity.

この目的を達成するため、ダイヤモンドの被覆層はPV
D法又はCVD法によって形成される。
To achieve this objective, the diamond coating layer is PV
It is formed by D method or CVD method.

すなわち本発明は、熱伝導性のよい金属基板の表面に、
ダイヤモンドからなる薄い被覆層をPVD法またはCV
D法によって形成してなる半導体素子搭載用基板を特徴
とする。
That is, in the present invention, on the surface of a metal substrate with good thermal conductivity,
A thin coating layer made of diamond is applied by PVD or CV
The present invention is characterized by a substrate for mounting a semiconductor element formed by the D method.

PVD法及びCVD法は化合物を含む被覆物質をイオン
や分子という物質の最小単位で基板に衝突させて被覆層
を設ける方法である為、粒子径の小さい粒子が析出する
。この為、緻密な被覆層が得られる。したがって、電気
絶縁性を劣化させることなく、被覆層を薄くし熱伝導性
を改善することが可能となる。
Since the PVD method and the CVD method are methods of forming a coating layer by colliding a coating material containing a compound with the substrate in the smallest units of substances such as ions and molecules, particles with a small particle size are precipitated. Therefore, a dense coating layer can be obtained. Therefore, it is possible to make the coating layer thinner and improve thermal conductivity without deteriorating electrical insulation.

さらに、PVD法やCVD法では被覆物質をイオンや分
子という形で基板に衝突させるに際し、核生成速度に対
する核成長速度を変えることにより、緻密さをより一層
向上させることが可能であるので、例えば、大気中の水
分、水中の導電性イオン、あるいは後工程で被覆層上に
形成されるメタライジング層中の金属微粒子や金属イオ
ン、特に、銀のようにエレクトロマイグレーションの生
じやすい金属イオンや、ナトリウム、塩素等のイオン半
径の小さいイオンまでが問題となる様な場合でもこれら
が被覆層中を拡散しない被覆層をも設けることが可能で
ある。
Furthermore, in the PVD method and CVD method, when the coating material is collided with the substrate in the form of ions or molecules, it is possible to further improve the density by changing the nucleus growth rate relative to the nucleation rate. , moisture in the atmosphere, conductive ions in water, or metal fine particles and metal ions in the metallizing layer formed on the coating layer in a subsequent process, especially metal ions that are prone to electromigration such as silver, and sodium. Even in cases where ions with a small ionic radius such as chlorine or the like pose a problem, it is possible to provide a coating layer in which these ions do not diffuse into the coating layer.

またPVD法やCVD法によって得られた被覆層は、表
面粗さが小さく、基板との密着性も優れている。このた
め、その基板に半導体素子を搭載した場合、素子と基板
との間に空隙が生じず素子からの放熱性を高くすること
ができ、その電気絶縁性は繰り返しの加熱に対しても充
分安定している。
Further, the coating layer obtained by the PVD method or the CVD method has low surface roughness and excellent adhesion to the substrate. Therefore, when a semiconductor element is mounted on the substrate, no air gap is created between the element and the substrate, allowing for high heat dissipation from the element, and its electrical insulation is sufficiently stable even against repeated heating. are doing.

更に、GaAs半導体素子を用いた高周波デバイスに本
発明の基板は特に効果的に適用できる。すなわち、高周
波用デバイスにおいては半導体素子搭載用基板の誘電特
性が問題になるが、PVD法又はCVD法によって誘電
率の低いダイヤモンドを基板の広い面積にわたって均一
に且つ薄く被覆することが容易に行える。
Furthermore, the substrate of the present invention can be particularly effectively applied to high frequency devices using GaAs semiconductor elements. That is, in high-frequency devices, the dielectric properties of the semiconductor element mounting substrate are a problem, but diamond with a low dielectric constant can be easily and uniformly coated over a wide area of the substrate using the PVD method or the CVD method.

本発明において、金属基板として熱伝導率が0、2Ca
l / am −sec  ・を以上の金属板を用イル
コトが好ましい。これにより、前記のPVD法やCVD
法の特徴と相まって従来広く用いられているAl2O3
や2Mg0・5IO2等の焼結セラミックからなる半導
体素子搭載用基板では対応できなかった高速・高出力の
半導体装置にも対応することが可能となった。
In the present invention, the metal substrate has a thermal conductivity of 0.2Ca.
It is preferable to use a metal plate of 1/am-sec. As a result, the above-mentioned PVD method and CVD method
Al2O3, which has been widely used in combination with the characteristics of the
It has become possible to support high-speed, high-output semiconductor devices, which could not be supported by semiconductor element mounting substrates made of sintered ceramics such as 2Mg0 and 5IO2.

尚、金属板に代えて、用途に応じて熱伝導性と機械的性
質を任意に変えることができる複合金属板を用いること
により、本発明の用途をさらに広げることが出来る。具
体的な金属板・複合金属板としては、Sl、Cu、A1
の池、各種高熱伝導型Cu合金、銅クラツドステンレス
鋼クラツド銅、銅タラッドコバールクラッド銅またはM
O若しくはWを主体とする焼結体等が挙げられる。
Note that the applications of the present invention can be further expanded by using a composite metal plate whose thermal conductivity and mechanical properties can be arbitrarily changed depending on the application in place of the metal plate. Specific metal plates and composite metal plates include Sl, Cu, A1
various high thermal conductivity type Cu alloys, copper clad stainless steel clad copper, copper talad kovar clad copper or M
Examples include sintered bodies mainly composed of O or W.

また被覆層に用いるダイヤモンドは、電気絶縁性及び熱
伝導性を考慮して1〜10μmの厚さに施す。
Further, the diamond used for the coating layer is applied to a thickness of 1 to 10 μm in consideration of electrical insulation and thermal conductivity.

このようにして得られた半導体素子搭載用基板を用いて
組み立てた半導体装置を第1図に示す。
A semiconductor device assembled using the thus obtained semiconductor element mounting substrate is shown in FIG.

1は金属板であり、その表面に被覆されたダイヤモンド
の被覆層2とで半導体素子搭載用基板3を形成する。4
はメタルライジング層、5はAuメッキ層で、これを介
して半導体素子6が搭載される。
Reference numeral 1 denotes a metal plate, the surface of which is coated with a diamond coating layer 2 to form a substrate 3 for mounting a semiconductor element. 4
5 is a metal rising layer, and 5 is an Au plating layer, through which a semiconductor element 6 is mounted.

以下実施例について説明する。Examples will be described below.

31半導体素子を搭載するためのダイヤモンドの薄膜を
被覆した半導体素子搭載用基板をプラズマ−CVD法で
イ乍製した。金属基板には、厚さ1 mmのCuW合金
を用いた。
31 A semiconductor element mounting substrate coated with a diamond thin film for mounting a semiconductor element was prepared by a plasma-CVD method. A CuW alloy with a thickness of 1 mm was used as the metal substrate.

7’ラズ7−CVD法は、反応炉内にエチレンを含むガ
スを、全ガス圧1.0Torrに制御しながら流し、反
応炉内に設けた高周波電極に高周波(13,56M H
z) 300 Wを印加し、エチレンガスをプラズマ化
し、気相反応により、成膜速度500〜1000オング
ストローム/minでダイヤモンドを被覆した。
In the 7'Raz7-CVD method, a gas containing ethylene is flowed into a reactor while controlling the total gas pressure to 1.0 Torr, and a high frequency electrode (13.56 M H
z) 300 W was applied to turn ethylene gas into plasma, and diamond was coated by gas phase reaction at a deposition rate of 500 to 1000 angstroms/min.

得られた膜厚5μmのダイヤモンド膜をX線回折、走査
型電子顕微鏡で観察したところ、粒径1μm以下の微細
多結晶構造を持つダイヤモンドまたはダイヤモンド状結
晶であることがわかった。
When the resulting diamond film with a thickness of 5 μm was observed using X-ray diffraction and a scanning electron microscope, it was found to be diamond or diamond-like crystals having a fine polycrystalline structure with a grain size of 1 μm or less.

また、得られたダイヤモンド膜を被覆したCuW合金板
上にNiを真空蒸着で被覆し、NiとCuW間の絶縁耐
圧を測定したところ、500 V以上あり、ダイヤモン
ド膜は電気絶縁性が良好であることがわかった。
In addition, Ni was coated by vacuum evaporation on the CuW alloy plate coated with the obtained diamond film, and the dielectric strength voltage between Ni and CuW was measured, and it was found to be over 500 V, indicating that the diamond film has good electrical insulation properties. I understand.

以上の如くして得られた半導体素子搭載用基板は、熱伝
導性良好で、耐熱性も良好であり、また電気絶縁性に関
しても、被覆層の析出粒子を制御することにより、Ag
の如く、エレクトロマイグレーションの生じやすいペー
ストを絶縁被覆層上の電極とした場合でも、高い絶縁性
を得ることができた。
The semiconductor element mounting substrate obtained as described above has good thermal conductivity and good heat resistance, and also has good electrical insulation properties by controlling the precipitated particles of the coating layer.
Even when a paste that is prone to electromigration was used as an electrode on an insulating coating layer, high insulation properties could be obtained.

以上に説明した如く、本発明によれば、緻密度の高い被
覆層が得られるので、その厚さを薄くすることにより電
気絶縁性を劣下させることなく熱伝導性の改良が行われ
る。このようにして得られた半導体素子搭載用基板は、
集積回路の高速化、高密度化、大型化に充分対応できる
ものである。
As explained above, according to the present invention, a highly dense coating layer can be obtained, and by reducing the thickness, thermal conductivity can be improved without deteriorating electrical insulation. The semiconductor element mounting substrate obtained in this way is
It can fully cope with the increase in speed, density, and size of integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体素子搭載用基板を用いた半導体
装置の側面断面図である。 (主な参照番号) 1・・金属板、  2・・ダイヤモンド被覆層、3・・
半導体素子搭載用基板、 4・・メタルライジング層、
FIG. 1 is a side sectional view of a semiconductor device using the semiconductor element mounting substrate of the present invention. (Main reference numbers) 1...Metal plate, 2...Diamond coating layer, 3...
Substrate for mounting semiconductor elements, 4. Metal rising layer,

Claims (1)

【特許請求の範囲】[Claims] 熱伝導性のよい金属基板の表面に、ダイヤモンドの薄い
被覆層をPVD法又はCVD法によって形成したことを
特徴とする半導体素子搭載用基板。
A substrate for mounting a semiconductor element, characterized in that a thin coating layer of diamond is formed on the surface of a metal substrate with good thermal conductivity by a PVD method or a CVD method.
JP10728886A 1986-05-10 1986-05-10 Substrate for mounting semiconductor element Pending JPS6224647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728886A JPS6224647A (en) 1986-05-10 1986-05-10 Substrate for mounting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728886A JPS6224647A (en) 1986-05-10 1986-05-10 Substrate for mounting semiconductor element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20315981A Division JPS6027188B2 (en) 1981-12-15 1981-12-15 Substrate for mounting semiconductor elements

Publications (1)

Publication Number Publication Date
JPS6224647A true JPS6224647A (en) 1987-02-02

Family

ID=14455293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728886A Pending JPS6224647A (en) 1986-05-10 1986-05-10 Substrate for mounting semiconductor element

Country Status (1)

Country Link
JP (1) JPS6224647A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435603A2 (en) * 1989-12-29 1991-07-03 STMicroelectronics, Inc. RF transistor package and mounting pad
US6531226B1 (en) 1999-06-02 2003-03-11 Morgan Chemical Products, Inc. Brazeable metallizations for diamond components
US6830780B2 (en) 1999-06-02 2004-12-14 Morgan Chemical Products, Inc. Methods for preparing brazeable metallizations for diamond components
US7339791B2 (en) 2001-01-22 2008-03-04 Morgan Advanced Ceramics, Inc. CVD diamond enhanced microprocessor cooling system
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
EP2975640A3 (en) * 2014-07-16 2016-01-27 General Electric Company Electronic device assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815241A (en) * 1981-07-20 1983-01-28 Sumitomo Electric Ind Ltd Substrate for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815241A (en) * 1981-07-20 1983-01-28 Sumitomo Electric Ind Ltd Substrate for semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435603A2 (en) * 1989-12-29 1991-07-03 STMicroelectronics, Inc. RF transistor package and mounting pad
US6531226B1 (en) 1999-06-02 2003-03-11 Morgan Chemical Products, Inc. Brazeable metallizations for diamond components
US6830780B2 (en) 1999-06-02 2004-12-14 Morgan Chemical Products, Inc. Methods for preparing brazeable metallizations for diamond components
US7339791B2 (en) 2001-01-22 2008-03-04 Morgan Advanced Ceramics, Inc. CVD diamond enhanced microprocessor cooling system
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
EP2975640A3 (en) * 2014-07-16 2016-01-27 General Electric Company Electronic device assembly

Similar Documents

Publication Publication Date Title
US5382758A (en) Diamond substrates having metallized vias
JPS5815241A (en) Substrate for semiconductor device
WO2005091360A1 (en) Substrate for semiconductor device and semiconductor device
JPS6224647A (en) Substrate for mounting semiconductor element
JPS6027188B2 (en) Substrate for mounting semiconductor elements
JPS6224648A (en) Substrate for mounting semiconductor element
EP0113088B1 (en) Substrate for mounting semiconductor element
JPS61292345A (en) Substrate for mounting semiconductor element
CN110668392B (en) Enhanced heat dissipation Cu-Cu 2 O-core-shell nanowire array self-protection electrode and preparation method thereof
JPS60128625A (en) Base board for mounting of semiconductor element
JPH0624221B2 (en) High thermal conductive insulating substrate and manufacturing method thereof
JPH0223639A (en) Diamond multilayer circuit substrate
CN102479760A (en) Thermal diffusion element with aluminum nitride film and manufacturing method thereof
JP2007095716A (en) Complex, semiconductor manufacturing device susceptor provided therewith and power module
JP2021009942A (en) Double-sided mounting board, manufacturing method of double-sided mounting board, and semiconductor laser
JPS58157963A (en) Manufacture of layer of high melting point metal or metal compound
JPS59184586A (en) Circuit board for placing semiconductor element
JPH043120B2 (en)
JPH1065294A (en) Ceramic wiring board and manufacture thereof
JPS61102744A (en) Substrate for semiconductor substrate and manufacture thereof
JPS6130042A (en) Semiconductor element loading substrate
JPH10321776A (en) Radiator member for semiconductor element
JP2960644B2 (en) Surface-treated aluminum nitride substrate
JP2721581B2 (en) X-ray mask structure
JPH04245463A (en) Diamond heat sink