JP2721581B2 - X-ray mask structure - Google Patents

X-ray mask structure

Info

Publication number
JP2721581B2
JP2721581B2 JP16839990A JP16839990A JP2721581B2 JP 2721581 B2 JP2721581 B2 JP 2721581B2 JP 16839990 A JP16839990 A JP 16839990A JP 16839990 A JP16839990 A JP 16839990A JP 2721581 B2 JP2721581 B2 JP 2721581B2
Authority
JP
Japan
Prior art keywords
ray
film
plating
absorber
mask structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16839990A
Other languages
Japanese (ja)
Other versions
JPH0458516A (en
Inventor
勉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16839990A priority Critical patent/JP2721581B2/en
Publication of JPH0458516A publication Critical patent/JPH0458516A/en
Application granted granted Critical
Publication of JP2721581B2 publication Critical patent/JP2721581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線マスク構造体に関し、更に詳しくは、X
線吸収体表面が平滑なX線マスク構造体に関する。
The present invention relates to an X-ray mask structure, and more particularly, to an X-ray mask structure.
The present invention relates to an X-ray mask structure having a smooth line absorber surface.

(従来の技術) 従来、IC、LSI等の電子ディバイスのリソグラフィー
加工方法として種々の方法が使用されているが、その中
でも、X線リソグラフィーはX線固有の高透過率(低吸
収性)や単波長等の性質に基づき、これ迄の可視光や紫
外光によるリソグラフィー方法に比べて多くの優れた点
を有しており、サブミクロンリソグラフィー方法の有力
な手段として注目されている。
(Prior Art) Conventionally, various methods have been used as a lithography processing method for electronic devices such as ICs and LSIs. Among them, X-ray lithography has a high transmittance (low absorptivity) inherent in X-rays and a simple method. Based on properties such as wavelength, it has many advantages over conventional lithography methods using visible light or ultraviolet light, and is attracting attention as a powerful means of submicron lithography.

これらX線マスク構造体のX線吸収体の形成方法とし
ては、電解メッキ法が多く用いられている。
As a method for forming the X-ray absorber of these X-ray mask structures, an electrolytic plating method is often used.

ところで、通常X線マスク構造体は、窒化硅素や炭化
硅素等の非導電性材料からなるX線透過膜上に、所望パ
ターンのX線吸収体を保持されている構造である為、電
解メッキ法によりX線吸収体の形成を行うには、非導電
性X線透過膜上にメッキ可能な導電層であるX線吸収体
下地層を必要とする。
Incidentally, the X-ray mask structure usually has a structure in which an X-ray absorber having a desired pattern is held on an X-ray transmission film made of a non-conductive material such as silicon nitride or silicon carbide. In order to form an X-ray absorber by using an X-ray absorber, an X-ray absorber base layer, which is a conductive layer that can be plated on a non-conductive X-ray transmission film, is required.

通常、このX線吸収体下地層は第2図(b)に示す様
に、被メッキ基板であるX線透過膜3上にクロム、チタ
ン、タンタル等の層と金(Au)の層とを連続蒸着し形成
される。又、その蒸着方法としては、EB蒸着、RH蒸着又
はスパッタリング蒸着等が用いられる。この際、形成さ
れるX線吸収体下地層の結晶構造は多結晶構造である。
Normally, as shown in FIG. 2 (b), this X-ray absorber underlayer comprises a layer of chromium, titanium, tantalum and the like and a layer of gold (Au) on the X-ray transmitting film 3 which is a substrate to be plated. It is formed by continuous evaporation. In addition, as an evaporation method, EB evaporation, RH evaporation, sputtering evaporation, or the like is used. At this time, the crystal structure of the formed X-ray absorber underlayer is a polycrystalline structure.

X線吸収体は、このX線吸収体下地層の上に電解メッ
キ法によりメッキ膜として形成されるが、メッキ膜の成
長は下地層材料の結晶相や粒径、粒界の作用を受け、下
地層が多結晶構造であると形成されるメッキ膜の表面の
凹凸は激しくなり、しかもメッキ膜の特性が不安定とな
る。
The X-ray absorber is formed as a plating film on the X-ray absorber base layer by electrolytic plating. The growth of the plating film is affected by the crystal phase, particle size, and grain boundaries of the base layer material. If the underlayer has a polycrystalline structure, the surface of the plating film formed will have severe irregularities, and the characteristics of the plating film will be unstable.

(発明が解決しようとしている問題点) しかしながら、半導体や記録材料の分野、特にX線リ
ソグラフィー用マスク構造体の製造においては、表面が
平滑でしかも内部応力が小さく、そして安定性、再現性
のよいメッキ膜であるX線吸収体を必要としている。即
ち、この様なX線吸収体であれば、X線マスク構造体は
パターンの歪が小さく、パターンの解像度が高い優れた
特性ものとなる。
(Problems to be Solved by the Invention) However, in the field of semiconductors and recording materials, particularly in the production of mask structures for X-ray lithography, the surface is smooth and the internal stress is small, and the stability and reproducibility are good. An X-ray absorber as a plating film is required. That is, with such an X-ray absorber, the X-ray mask structure has excellent characteristics in which pattern distortion is small and pattern resolution is high.

従来は上記した様に、電解メッキ法でX線吸収体を作
成する場合、X線吸収体下地層の結晶構造が多結晶であ
る為、上記のメッキ膜であるX線吸収体に必要な表面平
滑性等の特性を十分に満足するものが得られないという
問題があった。
Conventionally, as described above, when an X-ray absorber is prepared by an electrolytic plating method, since the crystal structure of the X-ray absorber base layer is polycrystalline, the surface required for the X-ray absorber as a plating film is required. There has been a problem that a material that sufficiently satisfies properties such as smoothness cannot be obtained.

例えば、X線吸収体として0.7μm厚の金メッキ膜を
形成した場合、表面の凹凸は±5〜10%程度であり、内
部応力の再現性も悪かった。
For example, when a gold plating film having a thickness of 0.7 μm was formed as an X-ray absorber, the surface irregularities were about ± 5 to 10%, and the reproducibility of internal stress was poor.

従って、本発明の目的は、X線吸収体表面が平滑でし
かも内部応力が小さく、そして安定性、再現性のよいメ
ッキ膜として形成されている優れた特性のX線マスク構
造体を提供することにある。
Accordingly, an object of the present invention is to provide an X-ray mask structure having excellent characteristics, in which the surface of the X-ray absorber is smooth and the internal stress is small, and which is formed as a plating film having good stability and reproducibility. It is in.

(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。即ち、
本発明は、X線透過膜の上に該X線透過膜とは別の下地
層を介して形成された所望パターンのX線吸収体を有す
るX線マスク構造体において、該下地層の結晶構造がア
モルファスであると共に、該X線透過膜ならびに該下地
層が共に硅素(Si)を含有する材料であることを特徴と
するX線マスク構造体である。
(Means for Solving the Problems) The above object is achieved by the present invention described below. That is,
The present invention relates to an X-ray mask structure having an X-ray absorber having a desired pattern formed on an X-ray transmission film via an underlayer different from the X-ray transmission film, wherein the crystal structure of the underlayer is Is an amorphous material, and the X-ray transmitting film and the underlayer are both materials containing silicon (Si).

(作 用) 本発明によれば、X線透過膜上に形成されたX線吸収
体の下地層(以下単に「X線吸収体下地層」という)を
従来の多結晶構造とせずにアモルファス構造とすること
により、メッキ膜として形成されるX線吸収体の表面の
凹凸を減少させることが出来、更に、その特性を安定化
させることが出来、従って優れた特性のX線マスク構造
体を提供することが出来る。
(Operation) According to the present invention, the underlayer of the X-ray absorber formed on the X-ray transmission film (hereinafter simply referred to as “X-ray absorber underlayer”) is not made to have the conventional polycrystalline structure, but has an amorphous structure. By doing so, it is possible to reduce the unevenness of the surface of the X-ray absorber formed as a plating film, and further to stabilize the characteristics thereof, thereby providing an X-ray mask structure having excellent characteristics. You can do it.

(好ましい実施態様) 次に添付図面に示す好ましい実施態様を挙げて本発明
を更に詳しく説明する。
Preferred Embodiment Next, the present invention will be described in more detail with reference to preferred embodiments shown in the accompanying drawings.

第1図は本発明のX線マスク構造体の概略断面図であ
る。
FIG. 1 is a schematic sectional view of an X-ray mask structure of the present invention.

本発明のX線マスク構造体は第1図に示した様に、X
線透過膜3の上にX線吸収体下地層2を設け、その上に
所望パターンのX線吸収体1を形成し、且つX線透過膜
3をX線透過膜保持体4で保持した構造を有するもので
ある。
As shown in FIG. 1, the X-ray mask structure of the present invention
A structure in which an X-ray absorber base layer 2 is provided on a X-ray transmission film 3, an X-ray absorber 1 having a desired pattern is formed thereon, and the X-ray transmission film 3 is held by an X-ray transmission film holder 4. It has.

本発明のX線マスク構造体に使用するX線透過膜3
は、ベリリウム(Be)、チタン(Ti)、硅素(Si)、硼
素(B)等の単体又はそれらの化合物等の無機物或いは
これらの無機膜とポリイミド等の有機膜との複合膜の如
く、従来X線透過膜として使用されているものはいずれ
も本発明で使用することが出来る。これらのX線透過膜
はX線透過量を可能な限り大きくする為に、0.5〜5μ
mの厚みであるのが好ましい。
X-ray transmitting film 3 used for X-ray mask structure of the present invention
Conventionally, inorganic materials such as beryllium (Be), titanium (Ti), silicon (Si), and boron (B), or inorganic compounds such as compounds thereof, or composite films of these inorganic films and organic films such as polyimide are used. Any of those used as X-ray transmission films can be used in the present invention. These X-ray permeable films are 0.5 to 5 μm in order to maximize the amount of X-ray transmission.
Preferably, the thickness is m.

この様にこれらのX線透過膜3は非常に薄くその強度
が不足する為、一般に0.5〜2mm程度の厚さの円形シリコ
ンウエハー保持基板4上にX線透過膜をLP−CVD、プラ
ズマCVD、ECR−CVD等の各種CVD方法により成膜後、シリ
コンウエハー基板4の裏面にエッチング保護膜を設け、
水酸化カリウム溶液等でバックエッチングを行い、所望
領域のX線透過膜3を露出させて作成される。
Since these X-ray transmitting films 3 are very thin and have insufficient strength, the X-ray transmitting films 3 are generally formed on a circular silicon wafer holding substrate 4 having a thickness of about 0.5 to 2 mm by LP-CVD, plasma CVD, or the like. After film formation by various CVD methods such as ECR-CVD, an etching protection film is provided on the back surface of the silicon wafer substrate 4,
It is formed by performing back etching with a potassium hydroxide solution or the like to expose the X-ray transmission film 3 in a desired region.

上記X線透過膜3上に形成するX線吸収体1として
は、一般に密度の高い物質、例えば、金(Au)、パラジ
ウム(Pu)、白金(Pt)、タングステン(W)、タンタ
ル(Ta)、銅(Cu)、ニッケル(Ni)及びそれらを含む
化合物の薄膜(例えば、0.5〜1μm程度の厚み)の如
く、従来のX線マスク構造体に使用されているX線吸収
体はいずれも本発明において使用出来、特に限定されな
い。この中で金は、非常に延性の材料であり、又、低応
力の電解メッキ堆積層が得られる為、局所的歪が小さい
X線吸収パターンを得ることが出来、好ましいものであ
る。
The X-ray absorber 1 formed on the X-ray transmitting film 3 is generally made of a substance having a high density, for example, gold (Au), palladium (Pu), platinum (Pt), tungsten (W), tantalum (Ta). X-ray absorbers used in conventional X-ray mask structures, such as thin films of copper (Cu), nickel (Ni) and compounds containing them (for example, with a thickness of about 0.5 to 1 μm) It can be used in the invention and is not particularly limited. Among them, gold is a very ductile material, and a low-stress electrolytic plating deposited layer can be obtained, so that an X-ray absorption pattern with small local distortion can be obtained, which is preferable.

X線吸収体を電解メッキ法によりX線透過膜上に形成
する方法としては、第2図に示す様にX線透過膜3上に
X線吸収体下地層2を設け(b)、その上に単層又は多
層に設けたレジスト5をエレクトロンビーム描画により
パターニングした後(c)、例えば、金をメッキしてX
線吸収体1である金パターンを形成する(d)。
As a method for forming an X-ray absorber on an X-ray transmission film by electrolytic plating, an X-ray absorber base layer 2 is provided on an X-ray transmission film 3 as shown in FIG. After the resist 5 provided in a single layer or multiple layers is patterned by electron beam lithography (c), for example, gold is plated and X
A gold pattern as the line absorber 1 is formed (d).

本発明のX線マスク構造体は、このX線吸収体下地層
2にアモルファス材料を用いることを特徴とする。
The X-ray mask structure of the present invention is characterized in that an amorphous material is used for the X-ray absorber underlayer 2.

アモルファス材料としては、常温でアモルファスとし
て存在することが可能で、且つ、メッキ膜であるX線吸
収体1と被メッキ基板であるX線透過膜3との密着性が
良好な材料で導電性のものであれば、いかなる材料でも
よい。
As an amorphous material, a material having good adhesion between the X-ray absorber 1 as a plating film and the X-ray transmitting film 3 as a substrate to be plated can be present at room temperature as an amorphous material. Any material may be used.

この様な機能を有するものとしては、例えば、Au−S
i、Pd−Si、Au−Pb、Nb−Ni、Ta−Ni、Cu−Ag、Co−Au
等の合金が挙げられるが、メッキ材料であるX線吸収体
1と被メッキ基板であるX線透過膜3の合金ならば特に
好ましい。例えば、X線透過膜3として硅素、窒化硅
素、窒化硅素、酸化硅素等の硅素系材料を用い、この上
に金メッキを行いX線吸収体1を形成する場合は、両者
の合金であるAu−Si合金が好ましく、パラジウムメッキ
でX線吸収体1を形成する場合は、同様にPd−Si合金が
好ましい。
As those having such a function, for example, Au-S
i, Pd-Si, Au-Pb, Nb-Ni, Ta-Ni, Cu-Ag, Co-Au
And the like, but an alloy of the X-ray absorber 1 as a plating material and the X-ray transmitting film 3 as a substrate to be plated is particularly preferable. For example, when the X-ray transmitting film 3 is made of a silicon-based material such as silicon, silicon nitride, silicon nitride, or silicon oxide, and gold-plated thereon to form the X-ray absorber 1, Au- A Si alloy is preferable, and when the X-ray absorber 1 is formed by palladium plating, a Pd-Si alloy is also preferable.

以上の合金によりアモルファス構造の下地層を形成す
る場合には、X線吸収体となる金属(M)とX線透過膜
の主材料である硅素との組成比はM/Si=0.5〜20の範囲
であることが好ましく、例えば、M=Auである場合に
は、Au/Si=1〜9であり、M=Pdである場合には、Pd/
Si=1〜15の範囲であることが好ましく、これらの範囲
において表面平滑性に優れたアモルファスの下地層が良
好に形成される。
In the case of forming an amorphous underlayer with the above alloy, the composition ratio between the metal (M) as the X-ray absorber and the silicon as the main material of the X-ray transmission film is M / Si = 0.5 to 20. It is preferably in the range. For example, when M = Au, Au / Si = 1 to 9; and when M = Pd, Pd /
Si is preferably in the range of 1 to 15, and in these ranges, an amorphous underlayer excellent in surface smoothness is favorably formed.

(実施例) 以下本発明の詳細を図面に従い実施例により説明す
る。
(Examples) The details of the present invention will be described below with reference to the drawings.

実施例1 第2図(a)の如く、シリコンウエハー基板4上に、
LP−CVD法を用いて窒化硅素膜(SiN)3を2μm厚蒸着
した。
Example 1 As shown in FIG. 2 (a), on a silicon wafer substrate 4,
A silicon nitride film (SiN) 3 was deposited to a thickness of 2 μm by LP-CVD.

このシリコンウエハー基板4をマグネトロンスパッタ
ー装置の基板ホルダーに設置し、クラリオポンプにより
1×10-8Torr迄真空引きを行った。
The silicon wafer substrate 4 was set on a substrate holder of a magnetron sputtering apparatus, and evacuated to 1 × 10 −8 Torr by a Clario pump.

基板の冷却の為に液体窒素を導入し、冷却を確認後ア
ルゴンガスを100sccmの流量で流した。
Liquid nitrogen was introduced for cooling the substrate, and after confirming the cooling, argon gas was flowed at a flow rate of 100 sccm.

尚、この時のガス圧は、30mmTorrとし、導入パワー
は、1.5KV、1.4mAとした。
At this time, the gas pressure was 30 mmTorr, and the introduced power was 1.5 KV and 1.4 mA.

又、スパッタリングターゲットにはAu−Si合金を用い
た。この時の成膜速度は、2Å/sec.であった。
An Au-Si alloy was used as a sputtering target. The film formation rate at this time was 2Å / sec.

この結果、第2図(b)に示す様な膜厚500ÅのAu−S
i膜2を得た。
As a result, as shown in FIG.
i-film 2 was obtained.

この膜をX線回折装置及び透過型電子顕微鏡で測定及
び観察したところ、結晶構造はアモルファスであった。
When this film was measured and observed with an X-ray diffractometer and a transmission electron microscope, the crystal structure was amorphous.

又、この膜をEPMAで分析したところ組成比は、Au0.75
Si0.25であった。
When this film was analyzed by EPMA, the composition ratio was Au 0.75
Si was 0.25 .

次に、この様に形成したAu−Si膜2上に、電子線SAL
−601ER−7(シプレー製)を約1μm形成し、電子線
描画装置を用いて、5μm〜0.3μm幅迄の微細パター
ン5を形成した(第2図(c))。
Next, the electron beam SAL is formed on the Au-Si film 2 thus formed.
-601ER-7 (manufactured by Shipley) was formed at about 1 μm, and a fine pattern 5 having a width of 5 μm to 0.3 μm was formed using an electron beam lithography apparatus (FIG. 2C).

このX線透過膜保持基板4をメッキ装置に設置し、パ
ルスメッキ法により金メッキを行った。
This X-ray permeable film holding substrate 4 was set in a plating apparatus, and gold plating was performed by a pulse plating method.

ピーク電流密度5mA/cm2、平均電流密度1mA/cm2、周波
数200Hz、温度50℃の条件で行った。メッキ液は亜硫酸
系メッキ液(ニュートロネクス309、EEJA製)を用い
た。
The test was performed under the conditions of a peak current density of 5 mA / cm 2 , an average current density of 1 mA / cm 2 , a frequency of 200 Hz, and a temperature of 50 ° C. As the plating solution, a sulfurous acid-based plating solution (Neutronex 309, manufactured by EEJA) was used.

得られたX線吸収体である金メッキ膜1の厚さは、平
均0.63μmであった(第2図(d))。
The average thickness of the obtained gold-plated film 1 as an X-ray absorber was 0.63 μm (FIG. 2 (d)).

このメッキ膜1の表面の凹凸をSTMで評価したところ
メッキ表面の凹凸は、±0.015μmの範囲内であり、吸
収体パターン線幅による影響はみられなかった。
When the unevenness of the surface of the plating film 1 was evaluated by STM, the unevenness of the plating surface was within a range of ± 0.015 μm, and the effect of the absorber pattern line width was not observed.

続いて酸素プラズマでレジスト5を剥離し、アルゴン
スパッターでX線吸収体下地層2を剥離した(第2図
(e))。
Subsequently, the resist 5 was stripped by oxygen plasma, and the X-ray absorber underlayer 2 was stripped by argon sputtering (FIG. 2 (e)).

次にX線透過膜保持基板4をバックエッチングしX線
マスク構造体を得た(第2図(f))。
Next, the X-ray transmitting film holding substrate 4 was back-etched to obtain an X-ray mask structure (FIG. 2 (f)).

これらの実験条件におけるメッキ膜1の内部応力の再
現性は1±0.5×108dyn/cmであり、十分な値が得られ
た。
The reproducibility of the internal stress of the plating film 1 under these experimental conditions was 1 ± 0.5 × 10 8 dyn / cm, and a sufficient value was obtained.

実施例2 シリコンウエハー基板4上に、LP−CVD法を用いて炭
化硅素膜(SiC)3を2μm厚蒸着した。
Example 2 A silicon carbide film (SiC) 3 was deposited on a silicon wafer substrate 4 by LP-CVD to a thickness of 2 μm.

このシリコンウエハー基板4を実施例1と同様な装置
に設置し、Au0.7Si0.3の組成のアモルファス膜500Åを
炭化硅素膜3上に成膜し、X線吸収体下地層2とした。
The silicon wafer substrate 4 was set in the same apparatus as in Example 1, and an amorphous film 500Å having a composition of Au 0.7 Si 0.3 was formed on the silicon carbide film 3 to form an X-ray absorber base layer 2.

次に実施例1と同様にレジストパターン5を形成し
た。
Next, a resist pattern 5 was formed in the same manner as in Example 1.

この基板をメッキ装置に設置し、DCメッキ法により電
流密度1mA/cm2、メッキ温度50℃の条件で金メッキを行
った。
This substrate was set in a plating apparatus, and gold plating was performed by DC plating under the conditions of a current density of 1 mA / cm 2 and a plating temperature of 50 ° C.

メッキ速度は70nm/min.で、0.7μmの厚さに金メッキ
を行い、X線吸収体1を形成した。このメッキ膜1の表
面の凹凸をSTMで評価したところメッキ膜表面の凹凸
は、±0.02μmの範囲内であった。
The plating rate was 70 nm / min., And gold plating was performed to a thickness of 0.7 μm to form the X-ray absorber 1. When the surface roughness of the plating film 1 was evaluated by STM, the surface roughness of the plating film was in the range of ± 0.02 μm.

以下実施例1と同様な手順によりX線マスクを得た。 Thereafter, an X-ray mask was obtained in the same procedure as in Example 1.

実施例3 実施例1と同様に窒化硅素膜上にPd−Siからなるアモ
ルファスの500Å厚の膜を成膜し、X線吸収体下地層2
とした。このものの組成比は、Pd0.7Si0.3であった。
Example 3 In the same manner as in Example 1, an amorphous film of Pd—Si having a thickness of 500 mm was formed on the silicon nitride film, and the X-ray absorber underlayer 2 was formed.
And Its composition ratio was Pd 0.7 Si 0.3 .

次に実施例1と同様にレジストパターン5を形成し
た。
Next, a resist pattern 5 was formed in the same manner as in Example 1.

この基板をメッキ装置に設置し、ピーク電流密度6mA/
cm2、平均電流密度1mA/cm2、周波数150Hz、温度50℃の
条件でPdメッキを行った。
This substrate is placed in a plating machine, and the peak current density is 6 mA /
Pd plating was performed under the conditions of cm 2 , average current density of 1 mA / cm 2 , frequency of 150 Hz, and temperature of 50 ° C.

このメッキ膜の表面の凹凸をSTMで評価したところメ
ッキ膜表面の凹凸は、±0.017μmの範囲内であった。
When the surface roughness of this plating film was evaluated by STM, the surface roughness of the plating film was within ± 0.017 μm.

比較例 実施例1と同様に窒化硅素膜上にAu−Si膜を常温で成
膜し、多結晶構造の下地層を形成した。
Comparative Example In the same manner as in Example 1, an Au—Si film was formed on a silicon nitride film at room temperature to form a polycrystalline underlayer.

以下実施例1と全く同様な工程でメッキ膜を形成し、
このメッキ膜の表面の凹凸をSTMで評価したところメッ
キ表面の凹凸は、±0.04μmの範囲内であった。
Hereinafter, a plating film is formed in exactly the same steps as in Example 1,
When the unevenness of the surface of the plated film was evaluated by STM, the unevenness of the plated surface was within ± 0.04 μm.

又、この実験条件におけるメッキ膜の内部応力の再現
性は3±2×108dyn/cm2であった。
The reproducibility of the internal stress of the plating film under these experimental conditions was 3 ± 2 × 10 8 dyn / cm 2 .

(発明の効果) 以上説明した様に、従来メッキ用のX線吸収体下地層
は導電性の金属を使用しており、構造は多結晶であっ
た。下地層が多結晶であると下地層表面に、凹凸及び粒
界、そして異なる結晶面を生じる為、ミクロな面で均一
なX線吸収体は形成出来ない。
(Effects of the Invention) As described above, the base layer of the X-ray absorber for plating conventionally uses a conductive metal, and has a polycrystalline structure. If the underlayer is polycrystalline, irregularities and grain boundaries and different crystal planes are formed on the surface of the underlayer, so that a uniform X-ray absorber on a microscopic surface cannot be formed.

これに対し、アモルファス材料を用いてメッキ用のX
線吸収体下地層を形成すれば、X線吸収体の膜質を均一
にすることが出来、更に欠陥も極めて少ないものと出来
る。
On the other hand, using an amorphous material for plating X
If the X-ray absorber underlayer is formed, the film quality of the X-ray absorber can be made uniform, and defects can be extremely reduced.

本発明では、このアモルファス材料でメッキ用のX線
吸収体下地層を形成したところ、従来に比べその上に電
解メッキ法により形成したX線吸収体表面の凹凸が大幅
に改善され平坦化することが出来、しかもX線吸収体の
内部応力のバラツキも減少出来、得られるX線吸収体パ
ターンの歪が減少され、パターン解像度の低下を防止す
ることが出来る。
In the present invention, when the X-ray absorber base layer for plating is formed from this amorphous material, the unevenness on the surface of the X-ray absorber formed by the electrolytic plating method on the X-ray absorber is significantly improved and flattened as compared with the related art. In addition, the variation in the internal stress of the X-ray absorber can be reduced, the distortion of the obtained X-ray absorber pattern can be reduced, and a decrease in pattern resolution can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明を実施したX線マスク構造体の概略断
面図であり、第2図は本発明を実施したX線マスク構造
体の作成フローの一例である。 1:X線吸収体 2:X線吸収体下地膜 3:X線透過膜 4:X線透過膜保持体 5:レジスト
FIG. 1 is a schematic sectional view of an X-ray mask structure embodying the present invention, and FIG. 2 is an example of a flow of producing an X-ray mask structure embodying the present invention. 1: X-ray absorber 2: X-ray absorber base film 3: X-ray transmission film 4: X-ray transmission film holder 5: Resist

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線透過膜の上に該X線透過膜とは別の下
地層を介して形成された所望パターンのX線吸収体を有
するX線マスク構造体において、該下地層の結晶構造が
アモルファスであると共に、該X線透過膜ならびに該下
地層が共に硅素(Si)を含有する材料であることを特徴
とするX線マスク構造体。
In an X-ray mask structure having an X-ray absorber having a desired pattern formed on an X-ray transmission film via an underlayer different from the X-ray transmission film, a crystal of the X-ray mask is provided. An X-ray mask structure having an amorphous structure, wherein both the X-ray transmitting film and the underlayer are made of a material containing silicon (Si).
【請求項2】前記下地層の材料が、金(Au)と硅素(S
i)を、又はパラジウム(Pd)と硅素(Si)を含有する
請求項1に記載のX線マスク構造体。
2. The method according to claim 1, wherein the material of the underlayer is gold (Au) and silicon (S).
The X-ray mask structure according to claim 1, wherein the X-ray mask structure contains i) or palladium (Pd) and silicon (Si).
【請求項3】前記X線透過膜の材料が、硅素、窒化硅
素、炭化硅素、又は酸化硅素である請求項1に記載のX
線マスク構造体。
3. The method according to claim 1, wherein the material of the X-ray transmission film is silicon, silicon nitride, silicon carbide, or silicon oxide.
Line mask structure.
JP16839990A 1990-06-28 1990-06-28 X-ray mask structure Expired - Fee Related JP2721581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16839990A JP2721581B2 (en) 1990-06-28 1990-06-28 X-ray mask structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16839990A JP2721581B2 (en) 1990-06-28 1990-06-28 X-ray mask structure

Publications (2)

Publication Number Publication Date
JPH0458516A JPH0458516A (en) 1992-02-25
JP2721581B2 true JP2721581B2 (en) 1998-03-04

Family

ID=15867399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16839990A Expired - Fee Related JP2721581B2 (en) 1990-06-28 1990-06-28 X-ray mask structure

Country Status (1)

Country Link
JP (1) JP2721581B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250121A (en) * 1987-04-07 1988-10-18 Fujitsu Ltd Manufacture of x-ray mask
JP2757939B2 (en) * 1988-03-08 1998-05-25 富士通株式会社 X-ray mask

Also Published As

Publication number Publication date
JPH0458516A (en) 1992-02-25

Similar Documents

Publication Publication Date Title
KR100376768B1 (en) Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
US20100140588A1 (en) Catalyst support substrate, method for growing carbon nanotubes using the same, and transistor using carbon nanotubes
EP0414267A2 (en) Process for deposition of a tungsten layer on a semiconductor wafer
JPS5818961B2 (en) Method of forming refractory metallurgy on ceramic substrate
US8344352B2 (en) Using unstable nitrides to form semiconductor structures
US20170287727A1 (en) Metal hard mask and method of manufacturing same
JP3033331B2 (en) Manufacturing method of thin film wiring
US5616423A (en) Ceramic substrate having a multilayered metallic thin film
JPH01317197A (en) Diamond thin film substrate and production thereof
JP3077393B2 (en) X-ray exposure mask
JP2721581B2 (en) X-ray mask structure
US6723186B2 (en) Method of manufacturing metallic film consisting of giant single crystal grains
JP2513900B2 (en) Method for manufacturing semiconductor device
JPH0636934A (en) Planar magnetic element
US5751780A (en) X-ray mask structure, preparation thereof and X-ray exposure method
US5607733A (en) Process for preparing an X-ray mask structure
JP3118429B2 (en) Transfer mask and manufacturing method thereof
JP2801377B2 (en) Method of manufacturing X-ray mask structure
JPH05102012A (en) Mask for x-ray exposure use and its manufacture
JPH06275554A (en) Heat resistant ohmic electrode on semiconductor diamond layer and its formation
US20230090030A1 (en) Nano-twinned structure on metallic thin film surface and method for forming the same
JPH0458171B2 (en)
JP2952097B2 (en) X-ray mask structure
FUJIMORI Recent progress and application of synthesized diamond (present status and future of vapor phase deposition of diamond)
WO2009061642A1 (en) Improvements in carbon nanotube growth

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees