JPS63250121A - Manufacture of x-ray mask - Google Patents

Manufacture of x-ray mask

Info

Publication number
JPS63250121A
JPS63250121A JP62085553A JP8555387A JPS63250121A JP S63250121 A JPS63250121 A JP S63250121A JP 62085553 A JP62085553 A JP 62085553A JP 8555387 A JP8555387 A JP 8555387A JP S63250121 A JPS63250121 A JP S63250121A
Authority
JP
Japan
Prior art keywords
membrane
film
amorphous
stress state
bnc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62085553A
Other languages
Japanese (ja)
Inventor
Masao Yamada
雅雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62085553A priority Critical patent/JPS63250121A/en
Publication of JPS63250121A publication Critical patent/JPS63250121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a membrane whose tensile stress is stable even after irradiation with X-rays by a method wherein, after a compound for the membrane is formed in a compressive stress state on a substrate, it is heat-treated to be transformed into a tensile stress state. CONSTITUTION:An amorphous BNC:H film 2 for membrane use is formed to be a thickness of 6 mum on a silicon substrate 1. A pressure inside a chamber during the formation is 60-200 Pa; high-frequency electric power at 13.56 MHz is impressed on an upper-part electrode in order to obtain an electric-power density of 0.1-0.3 W/cm<2>. By this setup, the BNC:H film 2 in a weak compressive stress state of -1.0X10<9>dyn/cm<2>--1.0X10<8>dyn/cm<2> is formed. Then, a specimen is taken out from a chamber, and is heat-treated at a temperature of 700-1000 deg.C for 30-60 min in a mixed atmosphere of nitrogen and hydrogen. By this process, the BNC:H film 2 is transformed into a film in the compressive stress state of 1X10<8>-2X10<9> dyn/cm<2>. After the central part on the rear surface of the silicon substrate is removed by etching, a mask pattern 3 composed of an X-ray absorber such as gold, tantalum or the like is patterned and formed on the membrane. The membrane of an X-ray mask obtained in this manner does not cause the segregation of boron and a fluctuation in a stress even when it is irradiated with X rays.

Description

【発明の詳細な説明】 〔概要〕 基板上にX線マスクのメンブレン用のBNC: Hなど
の化合物膜を気相成長させる際に予め圧縮応力状態に形
成した後に熱処理を行なって引張応力状態に変化させX
線照射によるストレス変動のない安定したメンブレンを
形成する。
[Detailed Description of the Invention] [Summary] When a compound film such as BNC:H for the membrane of an X-ray mask is grown on a substrate in a vapor phase, it is first formed in a compressive stress state and then heat-treated to make it into a tensile stress state. change x
Forms a stable membrane with no stress fluctuations caused by radiation irradiation.

〔産業上の利用分野〕[Industrial application field]

本発明はX線マスクの製造方法に関し、特に応力やX線
透過性等の特性のすぐれたメンブレンを形成する方法に
関する。
The present invention relates to a method for manufacturing an X-ray mask, and more particularly to a method for forming a membrane with excellent properties such as stress and X-ray transparency.

〔従来の技術〕[Conventional technology]

超LSIデバイスにおける微細なパターン形成には、回
折によりその微細パターンの寸法に限度が見えた光露光
にかわって、より薇細なパターンの描画が可能なX線露
光が有力なものとなってきている。
For the formation of fine patterns in VLSI devices, X-ray exposure, which can draw finer patterns, has become an effective method, replacing light exposure, which has limitations on the size of fine patterns due to diffraction. There is.

このようなX線露光においては、第2図に示すようなX
線マスクが用いられる。
In this type of X-ray exposure,
A line mask is used.

即ち、シリコン基板1上にメンブレン2を形成マスクパ
ターン3下のシリコン基板1はエツチング除去され、図
の下方から到来するX線はメンブレンを透過し、マスク
パターンのある部分ではX線が吸収され、マスクパター
ンのない部分ではX線が通過することによってマスクパ
ターンに応じたパターンが転写される。
That is, a membrane 2 is formed on a silicon substrate 1, and the silicon substrate 1 below the mask pattern 3 is etched away, and X-rays coming from below in the figure are transmitted through the membrane, and the X-rays are absorbed in a certain part of the mask pattern. In areas where there is no mask pattern, a pattern corresponding to the mask pattern is transferred by passing the X-rays.

このようなX線マスクにけるメンブレンが備えるべき条
件としては次のものがあげられる。
The following conditions must be met by the membrane in such an X-ray mask.

即ち、 ■X線透過率が高く、 ■剛性が高く、 ■光学的透明度が高く、 ■適度な引張り応力 をもつことである。That is, ■High X-ray transmittance, ■High rigidity, ■High optical transparency, ■Moderate tensile stress It is to have.

■のX線透過率が高くなければならぬことは自明の条件
である。■の引張り応力については、X線マスクは使用
においてレジストが塗布されたウェハの上方に第2図に
示した上下逆の状態で配置され、X線を照射してレジス
ト上にパターンを転写する。
It is an obvious condition that the X-ray transmittance of (2) must be high. Regarding the tensile stress (2), in use, an X-ray mask is placed above a wafer coated with resist in an upside-down state as shown in FIG. 2, and irradiates X-rays to transfer a pattern onto the resist.

このとき、メンブレンの引張り応力が低いと、パターン
が上下方向に動いてずれることがあるので、そのような
パターンの動きに対抗しうる程度にメンブレンが引っ張
られていなければならないのでメンブレンが自己破壊し
ない程度に引張り応力が高いことが求められる。
At this time, if the tensile stress of the membrane is low, the pattern may move in the vertical direction and shift, so the membrane must be stretched to the extent that it can resist such movement of the pattern, so the membrane does not self-destruct. It is required that the tensile stress is relatively high.

■の剛性については、メンブレンとパターンとの応力関
係でメンブレンが引っ張られた状態でパターンが横方向
に動くことがないよう、メンブレンにはヤング率で3 
XIO” dyn/cm2程度の剛性が求められる。
Regarding the rigidity of (2), the membrane has a Young's modulus of 3 to prevent the pattern from moving laterally when the membrane is stretched due to the stress relationship between the membrane and the pattern.
Rigidity of approximately XIO" dyn/cm2 is required.

■の光学的透明度については、X線マスクは使用に先立
つ−で位置合せしなければならず、それにはメンブレン
に光を通す必要があるから、位置合せ精度を高めるため
メンブレンには光学的透明度が高いことが要求されるの
である。
Regarding optical transparency (2), the X-ray mask must be aligned at - before use, and this requires passing light through the membrane, so the membrane has optical transparency to improve alignment accuracy. High demands are required.

これまで提案されているメンブレンの材料としては、B
N:H,SiN:H,SiCなどの3元以下の化合物が
あるが、これらはいずれも上記の条件を同時に満たす薄
膜を制御性良く、しかもある程度の生産性をもって形成
することは困難であった。
Membrane materials that have been proposed so far include B
There are compounds with less than three elements, such as N:H, SiN:H, and SiC, but it has been difficult to form thin films that simultaneously satisfy the above conditions with good control and with a certain level of productivity. .

そこで本発明者は、特願昭61−219217および特
願昭61−219781においてアモルファスBNC:
)Iのような4元以上の化合物からなるメンブレンを有
するX線マスクを提案している。
Therefore, the present inventor proposed amorphous BNC in Japanese Patent Application No. 61-219217 and No. 61-219781:
) has proposed an X-ray mask having a membrane made of a quaternary or more compound such as I.

このようなメンブレンでは、例えばアモルファスBNC
: HではX線透過率が80%以上、ヤング率がI X
IO” dyn/cm”以上、可視光透過性(光学的バ
ンドギャップ)3eV以上、引張応力lXl0”〜2 
X 10’ dyn / Cl1l”が実現された。
In such membranes, for example, amorphous BNC
: H: X-ray transmittance is 80% or more, Young's modulus is IX
IO"dyn/cm" or more, visible light transmittance (optical band gap) 3eV or more, tensile stress lXl0"~2
X 10'dyn/Cl1l'' was realized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようなメンブレンの形成において直
接前記のような引張応力の膜を形成すると、ボロンがリ
ッチなオフ・ストイキオメトリツクな膜となり、X線が
照射されるとボロンの偏析が起き、また、ストレスが変
動することが分かった。
However, if a film with the above-mentioned tensile stress is directly formed in the formation of such a membrane, the film becomes an off-stoichiometric film rich in boron, and when irradiated with X-rays, boron segregation occurs, and It was found that stress fluctuates.

ストレス変動の原因としては、メンブレンがプラズマ化
学気相成長法により形成された膜であるために15〜3
0厚子%の水素を膜中に含むが、X線が照射されること
によって水素が脱離するためと考えられる。
The reason for the stress fluctuation is that the membrane is a film formed by plasma chemical vapor deposition.
Although the film contains 0% hydrogen, this is thought to be because hydrogen is desorbed by irradiation with X-rays.

本発明は、X線が照射されても安定した引張応力を有す
るメンブレンを得るための方法を提供することを目的と
する。
An object of the present invention is to provide a method for obtaining a membrane having stable tensile stress even when irradiated with X-rays.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は、基板上にメン
ブレン用の化合物をまず圧縮応力状態に形成した後に、
熱処理を行なって引張応力状態に変えることを特徴とす
るものである。
In order to solve the above problems, the present invention first forms a membrane compound on a substrate in a compressive stress state, and then
It is characterized by heat treatment to change it to a tensile stress state.

〔作用〕[Effect]

ボロン・リッチでないストイキオメトリツクな状態に形
成した膜は弱い圧縮応力を持つが熱処理を行なって膜中
の水素を脱離させると引張応力状態に制御でき、X線照
射を受けてもストレスの変動はない。
A film formed in a stoichiometric state that is not boron-rich has weak compressive stress, but by heat treatment to remove hydrogen from the film, it can be controlled to a tensile stress state, and the stress changes even when exposed to X-rays. There isn't.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示す工程順断面図である
FIG. 1 is a process-order sectional view showing an embodiment of the present invention.

第1図(a)に示すシリコン基板1上に、同図b)に示
すようにメンブレン用のアモルファスBNC:If膜2
を6μmの厚さに形成する。
On a silicon substrate 1 shown in FIG. 1(a), an amorphous BNC:If film 2 for a membrane is formed as shown in FIG.
is formed to a thickness of 6 μm.

その方法としては、まずプラズマ気相成長装置を用い、
アルゴン希釈(4%)のジボラン(Bg)16 )と同
じ(アルゴン希釈(4%)のアンモニア(N143)を
合せて200〜400 secm、メタン(CH,)を
5〜50secmとし、NH3/Bzt16の比を0.
5〜2.0とした状態でチャンバ内に導入する。この時
のチャンバ内の圧力は60〜200Paで上部電極には
13.56MHzの高周波電力を電力密度が0.1〜0
.3W/cm”となるように印加する。基板温度は35
0〜500°Cである尚、本実施例では炭素供給元とし
てCH4を用いたが、その他にcp、、ccg、、やハ
ロゲン化炭化水素、即ちCHCE z、cHzc l 
z、 Cll3Cl 、CHFx、CHJ’z、CH3
Fを等用いてもよい。
The method is to first use a plasma vapor phase epitaxy device,
Diborane (Bg) (16) diluted with argon (4%) and ammonia (N143) diluted with argon (4%) together for 200-400 sec, methane (CH,) for 5-50 sec, and NH3/Bzt16 The ratio is 0.
5 to 2.0 and introduced into the chamber. At this time, the pressure inside the chamber was 60 to 200 Pa, and the upper electrode was supplied with a high frequency power of 13.56 MHz at a power density of 0.1 to 0.
.. 3W/cm".The substrate temperature is 35
0 to 500°C. In this example, CH4 was used as the carbon supply source, but in addition, cp, ccg, halogenated hydrocarbons, i.e., CHCE z, cHzc l
z, Cll3Cl, CHFx, CHJ'z, CH3
F may also be used.

このようにして−1,OXl09dyn 7cm” 〜
−1,0XIO’ dyn 7cm”の弱い圧縮応力状
態のBNC:H膜2が形成される。
In this way -1,OXl09dyn 7cm”~
A BNC:H film 2 with a weak compressive stress of -1,0XIO' dyn 7 cm'' is formed.

次いで試料をチャンバより出し、窒素(N2)と水素(
Hz)の混合雰囲気中で700〜l000℃の温度にて
30〜60分間熱処理を行なう。
The sample is then removed from the chamber and exposed to nitrogen (N2) and hydrogen (
Heat treatment is performed at a temperature of 700 to 1,000° C. for 30 to 60 minutes in a mixed atmosphere of 30 to 1000° C. (Hz).

これにより、BNC:H膜2は1×108〜2X109
dyn 7cm”の引張応力状態の膜になる。 このよ
うにしてメンブレンを形成した後、同図(C)に示すよ
うにシリコン基板下面中央部をエツチング除去する。
As a result, the BNC:H film 2 is 1×108 to 2×109
A film with a tensile stress state of dyn 7 cm" is obtained. After forming the membrane in this manner, the central portion of the lower surface of the silicon substrate is etched away as shown in FIG.

次いで同図(d)に示すようにメンブレン用に金やタン
クルな′どのX線吸収体からなるマスクパターン3をパ
ターニング形成する。尚、この際シリコン基板の下に例
えば炭化シリコン(SiC)からなるリングを設けても
よい。
Next, as shown in FIG. 4(d), a mask pattern 3 made of an X-ray absorber such as gold or tankle is patterned for the membrane. In this case, a ring made of silicon carbide (SiC), for example, may be provided under the silicon substrate.

このようにしてX線透過率が80%以上、ヤング率がI
 Xl09dyn/cm2以上、可視光透過性(光学的
バンドギャップ)3eV以上、1×108dyn 7c
m”以上の引張応力を有するX線マスクのメンブレンが
得られ、X線を照射してもボロンの偏析やストレスの変
動がないことが確認された。
In this way, the X-ray transmittance is 80% or more, and the Young's modulus is I.
Xl09dyn/cm2 or more, visible light transmittance (optical band gap) 3eV or more, 1×108dyn 7c
An X-ray mask membrane with a tensile stress of more than m" was obtained, and it was confirmed that there was no boron segregation or stress fluctuation even when irradiated with X-rays.

面、以上の実施例ではメンブレンの材料としてアモルフ
ァスBNC: Hの場合について説明したが、その他に
アモルファス5iNC:H,アモルファスBNSi:1
1.アモルファスBC5i : H、アモルファスBN
CSi:H用いることもできる。
In the above examples, the case where amorphous BNC:H was used as the membrane material was explained, but in addition, amorphous 5iNC:H, amorphous BNSi:1
1. Amorphous BC5i: H, amorphous BN
CSi:H can also be used.

[発明の効果] 以上説明したように本発明によれば、メンブレンとして
の条件を十分に備え、しかもX線の照射によるストレス
の変動がない。安定なメンブレンを有するX線マスクが
提供される。
[Effects of the Invention] As explained above, according to the present invention, the conditions for a membrane are sufficiently provided, and there is no change in stress due to X-ray irradiation. An x-ray mask having a stable membrane is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す工程順断面図、第2
図はX線マスクの構造を示す断面図であある。 図において、1はシリコン基板、2はメンブレン、3は
マスクパターンである。 5 マスクハフーン 本発明カー実売イ列を示すl!yT面図芥 1 図 ×緑マスクβa舌を示す 断面 図 茅 2  図
FIG. 1 is a process-order sectional view showing one embodiment of the present invention, and FIG.
The figure is a sectional view showing the structure of an X-ray mask. In the figure, 1 is a silicon substrate, 2 is a membrane, and 3 is a mask pattern. 5 Mask Hahoon Showing the actual sales sequence of the invention car! yT plane drawing 1 figure x cross section showing green mask βa tongue 2 figure

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に、X線マスクのメンブレン用の化合物膜
を圧縮応力状態に形成した後、熱処理を行なって該化合
物膜を引張り応力状態にすることを特徴とするX線マス
クの製造方法。
(1) A method for manufacturing an X-ray mask, which comprises forming a compound film for a membrane of an X-ray mask on a substrate in a compressive stress state, and then subjecting the compound film to a heat treatment to bring the compound film into a tensile stress state.
(2)前記化合物膜は、アモルファスBNC:H、アモ
ルファスSiNC:H、アモルファスBNSi:H、ア
モルファスBCSi:H、アモルファスBNCSi:H
のなかから選択された1つからなる膜であることを特徴
とする特許請求の範囲第1項記載のX線マスクの製造方
法。
(2) The compound film is amorphous BNC:H, amorphous SiNC:H, amorphous BNSi:H, amorphous BCSi:H, amorphous BNCSi:H
2. The method of manufacturing an X-ray mask according to claim 1, wherein the film is made of one selected from the following.
(3)前記化合物膜は、化学気相成長により形成された
4元以上の化合物であることを特徴とする特許請求の範
囲第1項記載のX線マスクの製造方法。
(3) The method for manufacturing an X-ray mask according to claim 1, wherein the compound film is a quaternary or more compound formed by chemical vapor deposition.
(4)前記化合物膜は炭素を含み、炭素供給元として炭
化水素またはハロゲン化炭化水素を用いた化学気相成長
により形成されることを特徴とする特許請求の範囲第1
項記載のX線マスクの製造方法。
(4) The compound film contains carbon and is formed by chemical vapor deposition using a hydrocarbon or a halogenated hydrocarbon as a carbon supply source.
A method for manufacturing an X-ray mask as described in .
JP62085553A 1987-04-07 1987-04-07 Manufacture of x-ray mask Pending JPS63250121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085553A JPS63250121A (en) 1987-04-07 1987-04-07 Manufacture of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085553A JPS63250121A (en) 1987-04-07 1987-04-07 Manufacture of x-ray mask

Publications (1)

Publication Number Publication Date
JPS63250121A true JPS63250121A (en) 1988-10-18

Family

ID=13862023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085553A Pending JPS63250121A (en) 1987-04-07 1987-04-07 Manufacture of x-ray mask

Country Status (1)

Country Link
JP (1) JPS63250121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458516A (en) * 1990-06-28 1992-02-25 Canon Inc X-ray mask structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458516A (en) * 1990-06-28 1992-02-25 Canon Inc X-ray mask structure

Similar Documents

Publication Publication Date Title
JPH01112728A (en) Manufacture of sic mask supporter for x-ray lithography mask
KR910006741B1 (en) X - ray lithography mask manufacturing method
JPH02213118A (en) Manafacture of sicmask supporting member for radiation lithography mask
US5508208A (en) Method of manufacturing diamond semiconductor
JPS63250121A (en) Manufacture of x-ray mask
EP0289249A2 (en) Device fabrication by X-ray lithography utilizing stable boron nitride mask
US4820546A (en) Method for production of X-ray-transparent membrane
KR910004008B1 (en) X-ray transparent membrane and its production method
JPH0629193A (en) X-ray mask
JPH01134912A (en) Manufacture of semiconductor thin film
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPH06263593A (en) Selective formation of diamond
JPS63164214A (en) Manufacture of x-ray mask
JP2000216075A (en) Manufacture of mask for x-ray exposure
JPH06260396A (en) Manufacture of mask for x-ray lithography
JPH0675190B2 (en) Monolithic channel mask with amorphous / single crystal structure
JPH0449519B2 (en)
KR20090043335A (en) Method for fabricating photo mask
JPS63252428A (en) Formation of x-ray mask
JPS63249337A (en) Manufacture of x-ray mask
JPH02143412A (en) Manufacture of soft x-ray optical element
JPH0251215A (en) X-ray aligning mask
JPS6230332A (en) Manufacture of semiconductor device
JPH02184598A (en) Selective film formation of diamond through vapor synthesis
JPH01227434A (en) X-ray mask