JPS63252428A - Formation of x-ray mask - Google Patents

Formation of x-ray mask

Info

Publication number
JPS63252428A
JPS63252428A JP61265788A JP26578886A JPS63252428A JP S63252428 A JPS63252428 A JP S63252428A JP 61265788 A JP61265788 A JP 61265788A JP 26578886 A JP26578886 A JP 26578886A JP S63252428 A JPS63252428 A JP S63252428A
Authority
JP
Japan
Prior art keywords
ray
rays
film
heavy metal
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61265788A
Other languages
Japanese (ja)
Other versions
JPH0519975B2 (en
Inventor
Masahiko Urai
浦井 正彦
Katsuji Iguchi
勝次 井口
Chiyako Shiga
志賀 千也子
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61265788A priority Critical patent/JPS63252428A/en
Publication of JPS63252428A publication Critical patent/JPS63252428A/en
Publication of JPH0519975B2 publication Critical patent/JPH0519975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To solve the problem of a granular structure without having a columnar structure like a metallic film which is formed with a spatter vaporization technique by preparing heavy metal compounds with a plasma excitation CVD technique. CONSTITUTION:A substrate 2 is attached to a heater 3 and various gases are introduced from a lower electrode side to a reaction chamber, while the amount of outflowing gases which are supplied by gas cylinders 6-8 is being controlled by mask flow controllers 51-53. Further, the high frequency output having frequencies 13.56 MHz is supplied from a RF power source part 1 to a lower electrode and its electric field is impressed. Then, an X-rays absorber is held on the substrate 2, while its absorber is mainly composed of heavy metals which prevent transmission of the X-rays and is also patterned. This feature makes it possible to prepare an X-rays mask equipped with an X-rays transmission film having transmissivity to the X-rays as well as a housing to support its transmission film. Gases which are principally composed of hydrogen, boron, carbon, nitrogen, oxygen, silicon, and phosphorus and a gas containing tungsten or tantalum are used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体製造技術におけるリソグラフィー技術、
特にX線リングラフイー用マスクであるX線マスクの形
成方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to lithography technology in semiconductor manufacturing technology;
In particular, the present invention relates to a method of forming an X-ray mask, which is a mask for X-ray phosphorography.

〈従来の技術〉 過去十数年間ICの集積度はおよそ3年で4倍ペースで
向上してきている。この集積度の向上を支えてきたのは
、微細技術の発達であり、とりわけ15年で1/1oと
いう線幅縮小を可能にしたフォトリソグラフィー技術の
発達であった。現在1.2μmルールのIMb  DR
AMの生産が始まっており、0.8μmルールによる4
Mb  DRAMの研究発表が相次いでいる。
<Conventional technology> Over the past ten years, the degree of integration of ICs has been increasing at a rate of four times every three years. This increase in the degree of integration has been supported by the development of fine technology, and in particular the development of photolithography technology, which has made it possible to reduce the line width by 1/10 in 15 years. IMb DR with current 1.2μm rule
Production of AM has started, and 4 according to the 0.8 μm rule
Research presentations on Mb DRAM are being published one after another.

現在のLSI生産用リソグラフィー技術の主流は縮小投
影露光装置、いわゆる(フォト)ステッパである。現在
のステッパは水銀ランプを光源として436nmの水銀
原子の発光輝線(2線)を用いている。将来は、365
nmのi線が用いられると予想されるが、紫外光による
露光装置の、解像度限界は間近にせまっている。また、
ステッパの限界は0.5μmルール前後、デバイスでは
16MbDRAMクラスの集積度と考えられる。過去の
集積度の向上傾向から考えて約10年後にはこの限界に
達し、次世代のリソグラフィー技術にとって変わられる
と予想されている。
The mainstream of current lithography technology for LSI production is a reduction projection exposure apparatus, a so-called (photo)stepper. Current steppers use a 436 nm emission line (two lines) of mercury atoms using a mercury lamp as a light source. In the future, 365
Although it is expected that nm i-line will be used, the resolution limit of exposure equipment using ultraviolet light is approaching soon. Also,
The limit of the stepper is around the 0.5 μm rule, and the device is considered to have a degree of integration of 16 Mb DRAM class. Considering past trends in increasing integration density, it is expected that this limit will be reached in about 10 years and replaced by next-generation lithography technology.

最小線幅1/4μm、デバイスとしては64MbDRA
MクラスのLSI量産用リソグラフィー技術として最も
有力視されているのがX線リングラフイー技術である。
Minimum line width 1/4μm, 64Mb DRA as a device
The X-ray phosphorography technology is considered to be the most promising lithography technology for mass production of M-class LSIs.

特に輝度が高く半影ぼけの少ないシンクロトロン放射光
(SOR)をX線源して用いるSORリソグラフィー技
術が注目されている。X線リソグラフィーではX線用レ
ンズがないためにプロキシミティ一方式の露光装置が利
用されている。プロキシミティ方式ではマスクパターン
のウェハ上への投影が1:1の比で行なわれるために非
常に精度の高いバターニング技術及び位置合せ技術が必
要である。マスクはX線の透過を防げるX線吸収体(金
、タンタル、タングステン等の重金属)パターンとそれ
を保持するX線透過膜(メンブレン)からなる。メンブ
レンはX線を吸収しにくい軽元素からなる2μm前後の
厚さの膜であり、材料としてSt、5iNH,BNH,
ポリイミド等が利用されており現在既に直径10crI
t程度のマスクが形成されている。
In particular, SOR lithography technology that uses synchrotron radiation (SOR) as an X-ray source, which has high brightness and little penumbra blur, is attracting attention. In X-ray lithography, a proximity type exposure apparatus is used because there is no X-ray lens. In the proximity method, since the mask pattern is projected onto the wafer at a ratio of 1:1, extremely accurate patterning and alignment techniques are required. The mask consists of an X-ray absorber (heavy metal such as gold, tantalum, or tungsten) pattern that prevents the transmission of X-rays, and an X-ray transparent membrane that holds the pattern. The membrane is a film with a thickness of around 2 μm made of light elements that do not easily absorb X-rays, and the materials include St, 5iNH, BNH,
Polyimide etc. are being used, and the diameter is already 10crI.
A mask of about t is formed.

〈発明が解決しようとする問題点〉 X線露光は1:1投影露光であるためマスク上のX線吸
収体の線幅は厳密に制御する必要がある。
<Problems to be Solved by the Invention> Since X-ray exposure is 1:1 projection exposure, it is necessary to strictly control the line width of the X-ray absorber on the mask.

X線露光は1/4μm以下の最小線幅を有する超LSI
に対して適用されると予想されることから吸収体のパタ
ーン幅は0.025μm以上の高精度で制御する必要が
ある。又、波長10A程度のX線に対し10以上のコン
トラスト比を達成するためには5000A以上の膜厚の
重金属パターンが必要となる。さらにパターン周辺での
マスクの変形を防ぐため10  dyn/cn以下の低
応力の吸収体が必要となる。X線吸収体材料としてパタ
ーン形成がドライプロセスでできるタングステン(W)
、メンタル(Ta )等の利用が注目されている。上記
金属膜の成膜法としてはスパッタリング蒸着法やCVD
法が用いられている。しかしスパッタリング蒸着法で形
成された上記金属膜は一般に柱状構造をなしており、結
晶粒サイズが0.2μm程度と大きく線幅0.25μm
以下での安定した線幅制御は困難である。さらにスパッ
タリング法で金属膜の内部応力を制御しようとする場合
、スパッタ時のアルゴンガス圧の最適化が考えられるが
、第4図に示すようにガス圧の変化に対し急激に応力が
変化し、再現性よく応力制御が非常に困難である。又応
力を比較的弱くできる比較的高圧力条件では金属膜表面
が荒れる場合がある。またCVD法では、400℃以上
の高温プロセスが必要であシ、粒径もスパッタリング法
の場合よりさらに大きくなり線幅の制御が困難になる。
X-ray exposure is performed on ultra-LSI devices with a minimum line width of 1/4 μm or less.
Since it is expected that the absorber pattern width will be applied to the absorber, the pattern width of the absorber needs to be controlled with high precision of 0.025 μm or more. Furthermore, in order to achieve a contrast ratio of 10 or more for X-rays with a wavelength of about 10A, a heavy metal pattern with a film thickness of 5000A or more is required. Furthermore, in order to prevent deformation of the mask around the pattern, an absorber with a low stress of 10 dyn/cn or less is required. Tungsten (W) can be patterned using a dry process as an X-ray absorber material
, mental (Ta), etc. are attracting attention. The above-mentioned metal film can be formed by sputtering deposition method or CVD method.
law is used. However, the metal film formed by sputtering vapor deposition generally has a columnar structure, and the crystal grain size is approximately 0.2 μm, and the line width is 0.25 μm.
It is difficult to stably control the line width below. Furthermore, when trying to control the internal stress of a metal film using a sputtering method, it is possible to optimize the argon gas pressure during sputtering, but as shown in Figure 4, the stress changes rapidly with changes in gas pressure. It is extremely difficult to control stress with good reproducibility. Furthermore, under relatively high pressure conditions where the stress can be relatively weakened, the surface of the metal film may become rough. Furthermore, the CVD method requires a high-temperature process of 400° C. or higher, and the grain size is also larger than that in the sputtering method, making it difficult to control the line width.

従って柱状構造をもたない低応力の重金属膜を形成でき
る方法が求められている。
Therefore, there is a need for a method that can form a low-stress heavy metal film that does not have a columnar structure.

本発明は上記の点に鑑みて創案されたものであり、柱状
構造を有しない低応力X線吸収体を備えたX線マスクの
形成方法を提供することを目的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide a method for forming an X-ray mask equipped with a low-stress X-ray absorber that does not have a columnar structure.

〈問題点を解決するための手段〉 上記の目的を達成するため、本発明のX線マスクの形成
方法は、X線の透過を防げる重金属を主構成元素とする
パターン化されたX線吸収体を保持し、X線に対して透
過率の高いX線透過膜及びこの透過膜を保持する支持枠
を備えたX線マスクの作製工程において、上記のX線吸
収体の作製工程が、タングステンまたはタンタルを含有
する第1のガスと、水素、ボロン、炭素、窒素、酸素。
<Means for Solving the Problems> In order to achieve the above object, the method for forming an X-ray mask of the present invention uses a patterned X-ray absorber whose main constituent element is a heavy metal that can prevent the transmission of X-rays. In the manufacturing process of the X-ray mask, which is equipped with an X-ray transmitting film that holds an A first gas containing tantalum, hydrogen, boron, carbon, nitrogen, and oxygen.

シリコン、リンを主構成元素とする第2のガスを原料と
する気相成長法よりなり、かつ上記の第1及び第2のガ
スの少なくとも一方の気体が気体放電により部分的に励
起2分解されているように構成している。
It is a vapor phase growth method using a second gas containing silicon and phosphorus as the main constituent elements, and at least one of the first and second gases is partially excited and decomposed into two by gas discharge. It is configured as follows.

また、上記X線吸収体用重金属あるいは重金属化合物の
成膜後の応力はI X 10 dyn/i以下であるこ
とが好ましい。
Further, the stress after the film formation of the heavy metal or heavy metal compound for the X-ray absorber is preferably I x 10 dyn/i or less.

また、上記X線吸収体用重金属あるいは重金属化合物が
非晶質状態、あるいは結晶粒の平均的な大きさが300
A以下の結晶粒よりなる多結晶状態よりなることが望ま
しい。
In addition, the heavy metal or heavy metal compound for the X-ray absorber is in an amorphous state or the average size of crystal grains is 300 mm.
It is desirable that it be in a polycrystalline state consisting of crystal grains of A or less.

く作 用〉 本発明のX線マスクの作製方法は、プラズマ励起CVD
法(P CVD )を用いて重金属化合物を作製するこ
とを特徴とするものであり、上記金属膜の例としては、
窒化タングステン(WNx)。
Function> The method for producing an X-ray mask of the present invention is a plasma-excited CVD method.
It is characterized by producing a heavy metal compound using a method (P CVD), and examples of the above metal film include:
Tungsten nitride (WNx).

タングステンシリサイド(WSix)等がある。上記化
合物はスパッタ蒸着法により成膜した金属膜のような柱
状構造をもたず、粒構造を解消することができる。また
成膜条件を変えることにより容易に膜質を制御すること
ができるため、化合物膜の内部応力を制御することが可
能である。
Examples include tungsten silicide (WSix). The above compound does not have a columnar structure like a metal film formed by sputter deposition, and can eliminate grain structure. Furthermore, since the film quality can be easily controlled by changing the film forming conditions, it is possible to control the internal stress of the compound film.

〈実施例〉 以下図面を参照して本発明の一実施例を詳細に説明する
<Example> An example of the present invention will be described in detail below with reference to the drawings.

窒化タングステン膜を成膜する際のPCVD装置の模式
的構造例を第2図に示している。第2図において、1は
PF電源部、2は基板、3は加熱ヒータ、4は真空排気
部、51〜53はマスフローメータ、6は六弗化タング
ステンボンベ、7はアンモニアボンベ、8は水素ボンベ
であり、導入ガスは、六弗化タングステン(WF6)ガ
スと水素(Hz)希釈50%アンモニア(NH3)ガス
を用い、それぞれマスクフローコントローラ51〜53
により流量を制御し、下部電極側より反応室内に導入す
る。またRF電源部1より周波数13.56MHzの高
周波出力をマツチングボックスを介して下部電極側に供
給して電界を印加している。基板2を取り付ける上部電
極にはヒータ3が内蔵されており、400℃までの加熱
が可能である。成膜前に反応室は液体窒素トラップ付の
油拡散ポンプで1×1O−6Torr以下まで排気し、
反応ガスを導入した。反応ガスはコンダクタンスパルプ
を通してメカニカルブースタとロータリーポンプによっ
て排気した。
FIG. 2 shows a schematic structural example of a PCVD apparatus for forming a tungsten nitride film. In Fig. 2, 1 is a PF power supply unit, 2 is a substrate, 3 is a heater, 4 is a vacuum exhaust unit, 51 to 53 are mass flow meters, 6 is a tungsten hexafluoride cylinder, 7 is an ammonia cylinder, and 8 is a hydrogen cylinder. The introduced gases are tungsten hexafluoride (WF6) gas and hydrogen (Hz) diluted 50% ammonia (NH3) gas, and mask flow controllers 51 to 53 are used, respectively.
The flow rate is controlled by , and it is introduced into the reaction chamber from the lower electrode side. Further, a high frequency output with a frequency of 13.56 MHz is supplied from the RF power supply section 1 to the lower electrode side via the matching box to apply an electric field. The upper electrode to which the substrate 2 is attached has a built-in heater 3, which can heat up to 400°C. Before film formation, the reaction chamber was evacuated to below 1 x 1 O-6 Torr using an oil diffusion pump equipped with a liquid nitrogen trap.
Reactant gas was introduced. The reaction gas was exhausted through a conductance pulp by a mechanical booster and a rotary pump.

反応室の圧力は0.5Torrから2Torrの範囲で
コンダクタンスパルプによって制御できる。
The pressure in the reaction chamber can be controlled by a conductance pulp in the range of 0.5 Torr to 2 Torr.

次に本発明による窒化タングステン膜の応力制御につい
て述べる。本例では、ガス比をWF6:NH3: H2
= 5 : 1 : 1 、ガス圧を1.0Torr基
板温度300℃に固定し、RFパワーを100Wから3
50Wまで変化させた。この結果を第3図に示す。本例
での成膜速度は約10OA/分であった。
Next, stress control of a tungsten nitride film according to the present invention will be described. In this example, the gas ratio is WF6:NH3:H2
= 5:1:1, the gas pressure was fixed at 1.0 Torr, the substrate temperature was fixed at 300°C, and the RF power was increased from 100W to 3
The power was varied up to 50W. The results are shown in FIG. The film formation rate in this example was about 10 OA/min.

第3図に示すように、成膜した窒化タングステン膜はR
Fパワーが低い時は引っ張り応力を示すがRFパワーが
上がるに従って圧縮応力に変化する。
As shown in FIG. 3, the formed tungsten nitride film has R
When the RF power is low, it shows tensile stress, but as the RF power increases, it changes to compressive stress.

RFパワーが200Wの時窒化タングステン膜の内部応
力は0.5X10 dynAとなった。この応力はX線
吸収体として使用するのに適当な値である。
When the RF power was 200 W, the internal stress of the tungsten nitride film was 0.5×10 dynA. This stress is a value suitable for use as an X-ray absorber.

また上記窒化タングステン膜の断面を走査電子顕微(S
EM)で観察した結果柱状構造はなく粒は観察できなか
った。この結果、上記方法で作製した低内部応力かつ粒
のない窒化タングステン膜をX線吸収体に用いることに
よって0.25μm以下の微細パターニングが可能にな
る。
In addition, the cross section of the tungsten nitride film was examined using a scanning electron microscope (S
As a result of observation using EM), there was no columnar structure and no grains could be observed. As a result, fine patterning of 0.25 μm or less becomes possible by using the grain-free tungsten nitride film with low internal stress produced by the above method as an X-ray absorber.

上記の実施例では六弗化タングステンと水素希釈アンモ
ニアを用いたが本発明はこれに限定されるものではなく
、原料ガスとしては、多様な組み合わせが可能である。
Although tungsten hexafluoride and hydrogen-diluted ammonia were used in the above embodiments, the present invention is not limited thereto, and various combinations of raw material gases are possible.

また成膜条件も上記の実施例の値に限定されるものでは
ない。
Further, the film forming conditions are not limited to the values of the above embodiments.

さらに上記の実施例では全原料ガスを一度に反応室に導
入し気体放電を発生させたがアンモニア系のみを気体放
電により分解し、六弗化タングステンは直接放電にさら
さないで基板付近に導入し、両原料ガスを基板上で反応
させることも可能である0 次に前記X線吸収体を用いたX線露光用マスクの製造方
法の一例を第1図(a)〜(g)に示す製造工程図に従
って説明する。
Furthermore, in the above example, all the raw material gases were introduced into the reaction chamber at once to generate a gas discharge, but only the ammonia gas was decomposed by the gas discharge, and the tungsten hexafluoride was introduced near the substrate without being directly exposed to the discharge. It is also possible to react both raw material gases on the substrate. Next, an example of a method for manufacturing an X-ray exposure mask using the X-ray absorber is shown in FIGS. 1(a) to (g). This will be explained according to the process diagram.

まずメンブレン13の支持枠となるシリコン(St)基
板11の両面にLPCVD法で窒化ケイ素膜(S i 
3N< )12 、12’を堆積する(第1図(a))
。この5t3N4膜12.12’の膜厚は約toooX
である。次いでメンブレン13となる水素化窒化ケイ素
(S i NxHy )をプラズマCVD法で基板表面
に堆積する(第1図(b) ) C1この5iNxHy
膜13の膜厚は約3pmであり、膜内部応力は約5X1
0 dyn/iの引っ張り応力である。次に第1図(c
)に示すマスク領域となるメンブレン部のシリコン基板
11を取り除く工程に移る。
First, a silicon nitride film (S i
3N< )12, 12' is deposited (Fig. 1(a))
. The film thickness of this 5t3N4 film 12.12' is about tooX
It is. Next, hydrogenated silicon nitride (S i NxHy ), which will become the membrane 13, is deposited on the substrate surface by plasma CVD (FIG. 1(b)).
The thickness of the film 13 is approximately 3 pm, and the internal stress of the film is approximately 5×1.
The tensile stress is 0 dyn/i. Next, Figure 1 (c
) The process moves on to the step of removing the silicon substrate 11 in the membrane portion which becomes the mask area.

単結晶シリコンはSi3N、に比べ、約1万倍も速く水
酸化ナトリウム溶液に溶けるため、マスク領域裏面のS
i3N4膜12′の一部分を取り除き、この部分のシリ
コン(Si)のみを溶解することができる。Si3N、
膜12′のマスク領域裏面に対応した領域の除去はフォ
トリソグラフィー法によってマスク領域外にのみレジス
トを残し、反応性イオンエツチング法を利用して行なう
。次いで約25%水酸化ナトリウム溶液を80℃に加熱
し、シリコンをエツチングして窓部14を形成するのに
約6時間を要した。
Single-crystal silicon dissolves approximately 10,000 times faster in sodium hydroxide solution than Si3N, so S
A part of the i3N4 film 12' can be removed and only the silicon (Si) in this part can be dissolved. Si3N,
The region of the film 12' corresponding to the back surface of the mask region is removed by photolithography, leaving the resist only outside the mask region, and using reactive ion etching. Next, approximately 6 hours were required to form the window portion 14 by heating the approximately 25% sodium hydroxide solution to 80° C. and etching the silicon.

次に第1図(d)に示すようにメンブレン13上にX線
吸収体となる前記窒化タングステン15を上記した方法
により堆積する。窒化タングステン膜15の膜厚は約6
000!である。更に窒化タングステン膜15をバター
ニングするため電子線レジスト膜を塗布し、電子ビーム
描画装置を用いてパターンを描画、現像し、線幅0.2
5μmルールのレジストパターン16を形成する(第1
図(f))o次にレジストパターンをマスクとしてタン
グステン膜15をエツチングガスとして六フッ化硫黄(
SF6)を用いて反応性イオンエツチング法でエツチン
グする。この際上記窒化タングステン膜15は低応力で
、かつ粒構造がないため、パターン歪みがなくかつ線幅
の安定したX線吸収体パターンが得られる。エツチング
後レジスト膜16を除去しX線マスクを完成する(第1
図(ロ)))。
Next, as shown in FIG. 1(d), the tungsten nitride 15, which will become an X-ray absorber, is deposited on the membrane 13 by the method described above. The thickness of the tungsten nitride film 15 is approximately 6
000! It is. Further, an electron beam resist film is applied to pattern the tungsten nitride film 15, and a pattern is drawn and developed using an electron beam lithography device, with a line width of 0.2.
A resist pattern 16 with a 5 μm rule is formed (first
Figure (f)) Next, using the resist pattern as a mask, the tungsten film 15 is etched with sulfur hexafluoride (
Etching is performed using a reactive ion etching method using SF6). At this time, since the tungsten nitride film 15 has low stress and has no grain structure, an X-ray absorber pattern without pattern distortion and with stable line width can be obtained. After etching, the resist film 16 is removed to complete the X-ray mask (first
Figure (b))).

〈発明の効果〉 以上のように本発明によれば、柱状構造を有しない低応
力WNx膜の作製が容易となり、このWNx膜をX線マ
スクの吸収体として用いることにより低歪みかつ線幅制
御性の高いX線マスク製作が可能になる。従って本発明
はX線マスク開発お゛よび生産において不可欠でありX
線リソグラフィーの実用化を通して社会におよぼす波及
的効果は大きく工業的価値は非常に大きいものである。
<Effects of the Invention> As described above, according to the present invention, it is easy to produce a low stress WNx film that does not have a columnar structure, and by using this WNx film as an absorber of an X-ray mask, it is possible to achieve low distortion and line width control. This makes it possible to manufacture highly functional X-ray masks. Therefore, the present invention is indispensable in the development and production of X-ray masks, and
The practical application of line lithography has a large ripple effect on society and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(g)はそれぞれ本発明のX線マスク
の形成方法の一実施例の製造工程を説明するだめの工程
図、第2図は本発明を実施する際に用いたプラズマ励起
CVD装置の構造を示す模式図、第3図は第2図に示す
装置により窒化タングステン膜を成膜した場合のRFパ
ワーにする応力の変化を示す図、第4図はスパッタリン
グ蒸着法によりタングステン膜を成膜した場合の圧力に
よる応力の変化を示す図である。 11・・・枠材となるシリコン基板、12・・・シリコ
ン基板エツチングガスク、13・・・メンブレン、14
・・・窓部、15・・・窒化タングステン製吸収体・く
ターン。 代理人 弁理士 杉 山 毅 至(他1名)第1図 図面の浄古 第1 図 82図 100     200     300     4
00  ty)RFII”クー ’1.3 図 ”                ”       
         ”’(x/(7’7?zrr)1力 *4図 手続補正書(方式) 昭和63年5月ユφ日 2、発明の名称 X線マスクの形成方法 3、補正をする者 事件との関係  特許出願人 住 所 8545大阪市阿倍野区長池1[1122番2
25 ;−名 称 (504)シャープ株式会社 代表者 辻  晴 雄 4、代理人 昭和63年4月26日 6、補正の対象 7、補正の内容 (1)明細書第10頁第13行の「第1図(a)〜(g
)」の記載を「第1図(ム)〜(f)」と訂正致します
。 (2)明細書第12頁第6行の「第1図(f)」の記載
を「第1図(e)」と訂正致します。 (3)明細書の第12頁第14行の「第1図(g)」の
記載を「第1図(f)」と訂正致します。 (41aA細書第工3頁第5行のIN図(a)乃至硫)
」の記載を「第1図(a)乃至(f)」と訂正致します
。 (5)図中、「第1図(f)」及び「第1図(g)」を
それぞれ別紙の如く、「第1図(e)」及び「第1図(
f)」と訂正致します。 以上
FIGS. 1(a) to (g) are process diagrams for explaining the manufacturing process of one embodiment of the method for forming an X-ray mask of the present invention, and FIG. 2 is a diagram showing the plasma used in carrying out the present invention. A schematic diagram showing the structure of the excitation CVD equipment. Figure 3 is a diagram showing the change in stress for RF power when a tungsten nitride film is formed by the equipment shown in Figure 2. Figure 4 is a diagram showing the change in stress for RF power when a tungsten nitride film is formed using the equipment shown in Figure 2. FIG. 3 is a diagram showing changes in stress due to pressure when a film is formed. 11... Silicon substrate serving as frame material, 12... Silicon substrate etching gask, 13... Membrane, 14
...Window part, 15...Tungsten nitride absorber/cutan. Agent Patent Attorney Takeshi Sugiyama (and 1 other person) Figure 1 Drawing of Joko No. 1 Figure 82 Figure 100 200 300 4
00 ty) RFII "Ku'1.3 Figure""
”'(x/(7'7?zrr)1force*4 figure Procedural amendment (method) May 1988, Yuφ day 2, Title of invention: Method of forming an X-ray mask 3, Person making amendment and case Relationship Patent applicant address 1122-2 Nagaike, Abeno-ku, Osaka 8545
25 ;- Name (504) Sharp Corporation Representative Haruo Tsuji 4, Agent April 26, 1988 6, Subject of amendment 7, Contents of amendment (1) “On page 10, line 13 of the specification” Figure 1(a)-(g
)” has been corrected to “Figure 1 (mu) to (f).” (2) The description of "Figure 1 (f)" on page 12, line 6 of the specification will be corrected to "Figure 1 (e)." (3) The description of "Figure 1 (g)" on page 12, line 14 of the specification will be corrected to "Figure 1 (f)." (41aA specification, page 3, line 5 IN diagram (a) to sulfur)
” has been corrected to “Figure 1 (a) to (f).” (5) In the figures, "Figure 1 (f)" and "Figure 1 (g)" are replaced with "Figure 1 (e)" and "Figure 1 (
f)”. that's all

Claims (1)

【特許請求の範囲】 1、X線の透過を防げる重金属を主構成元素とするパタ
ーン化されたX線吸収体を保持し、X線に対して透過率
の高いX線透過膜及び、該透過膜を保持する支持枠を備
えたX線マスクの作製工程において、 上記X線吸収体の作製工程が、タングステンまたはタン
タルを含有する第1のガスと、水素、ボロン、炭素、窒
素、酸素、シリコン、リンを主構成元素とする第2のガ
スを原料とする気相成長法よりなり、且つ上記第1及び
第2のガスの少なくとも一方の気体が気体放電により部
分的に励起、分解されていることを特徴とするX線マス
クの形成方法。 2、前記X線吸収体用重金属あるいは重金属化合物の成
膜後の応力が1×10^9dyn/cm^2以下である
ことを特徴とする特許請求の範囲第1項記載のX線マス
クの形成方法。 3、前記X線吸収体用重金属あるいは重金属化合物が非
晶質状態あるいは結晶粒の平均的な大きさが300Å以
下の結晶粒よりなる多結晶状態よりなることを特徴とす
る特許請求の範囲第1項記載のX線マスクの形成方法。
[Claims] 1. An X-ray transmitting film that holds a patterned X-ray absorber whose main constituent element is a heavy metal that can prevent the transmission of X-rays and has a high transmittance to X-rays; In the process of manufacturing an X-ray mask equipped with a support frame that holds a membrane, the process of manufacturing the X-ray absorber comprises using a first gas containing tungsten or tantalum, and hydrogen, boron, carbon, nitrogen, oxygen, or silicon. , a vapor phase growth method using a second gas containing phosphorus as a main constituent element, and at least one of the first and second gases is partially excited and decomposed by gas discharge. A method for forming an X-ray mask, characterized in that: 2. Formation of the X-ray mask according to claim 1, characterized in that the stress after the film formation of the heavy metal or heavy metal compound for the X-ray absorber is 1×10^9 dyn/cm^2 or less Method. 3. Claim 1, wherein the heavy metal or heavy metal compound for the X-ray absorber is in an amorphous state or a polycrystalline state consisting of crystal grains with an average size of 300 Å or less. A method for forming an X-ray mask as described in .
JP61265788A 1986-11-07 1986-11-07 Formation of x-ray mask Granted JPS63252428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265788A JPS63252428A (en) 1986-11-07 1986-11-07 Formation of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265788A JPS63252428A (en) 1986-11-07 1986-11-07 Formation of x-ray mask

Publications (2)

Publication Number Publication Date
JPS63252428A true JPS63252428A (en) 1988-10-19
JPH0519975B2 JPH0519975B2 (en) 1993-03-18

Family

ID=17422052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265788A Granted JPS63252428A (en) 1986-11-07 1986-11-07 Formation of x-ray mask

Country Status (1)

Country Link
JP (1) JPS63252428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298717A (en) * 1988-10-05 1990-04-11 I M V Kk Oscillation controller
US5464711A (en) * 1994-08-01 1995-11-07 Motorola Inc. Process for fabricating an X-ray absorbing mask

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172725U (en) * 1986-04-21 1987-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172725U (en) * 1986-04-21 1987-11-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298717A (en) * 1988-10-05 1990-04-11 I M V Kk Oscillation controller
US5464711A (en) * 1994-08-01 1995-11-07 Motorola Inc. Process for fabricating an X-ray absorbing mask

Also Published As

Publication number Publication date
JPH0519975B2 (en) 1993-03-18

Similar Documents

Publication Publication Date Title
JP3286103B2 (en) Method and apparatus for manufacturing exposure mask
EP0909989A1 (en) Photolithographic processing method and apparatus
EP1612586B1 (en) Method of manufacturing a polarizing element
US5269848A (en) Process for preparing a functional thin film by way of the chemical reaction among active species and apparatus therefor
US20220146928A1 (en) Multilayer graphene direct growth method and method for manufacturing pellicle for extreme ultraviolet lithography using the same
KR20220006887A (en) Method for fabricating a pellicle for EUV(extreme ultraviolet) lithography
JP3210143B2 (en) X-ray mask structure, method for manufacturing the same, X-ray exposure method using the X-ray mask structure, and device manufacturing method using the X-ray mask structure
JPS63252428A (en) Formation of x-ray mask
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
DE69132516T2 (en) Method of manufacturing a semiconductor device with the selective deposition of a metal
JPS5982732A (en) Manufacture for semiconductor device
JP3380761B2 (en) Method of manufacturing mask for X-ray exposure
JP3220523B2 (en) X-ray mask
US4820546A (en) Method for production of X-ray-transparent membrane
JP2937380B2 (en) Wiring forming method and apparatus
JP2543927B2 (en) X-ray mask manufacturing method
JPH0654756B2 (en) Thin film formation method
JPH06260396A (en) Manufacture of mask for x-ray lithography
JPS63136521A (en) X-ray lithography mask
JPS63250121A (en) Manufacture of x-ray mask
KR20220157136A (en) Pellicle including integrated membrane and frame, Manufacturing method for the same, and Manufacturing apparatus for the Pellicle, and Exposure apparatus including the Pellicle
JPH065497A (en) Correction method of x-ray mask
JPH02143412A (en) Manufacture of soft x-ray optical element
Goodman A spectroscopic investigation of the non-aqueous electrochemical double-layer in ultrahigh vacuum
JPH02243765A (en) Formation of thin film and device thereof