JPH043120B2 - - Google Patents

Info

Publication number
JPH043120B2
JPH043120B2 JP58237602A JP23760283A JPH043120B2 JP H043120 B2 JPH043120 B2 JP H043120B2 JP 58237602 A JP58237602 A JP 58237602A JP 23760283 A JP23760283 A JP 23760283A JP H043120 B2 JPH043120 B2 JP H043120B2
Authority
JP
Japan
Prior art keywords
diamond
semiconductor element
multilayer wiring
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58237602A
Other languages
Japanese (ja)
Other versions
JPS60128697A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58237602A priority Critical patent/JPS60128697A/en
Publication of JPS60128697A publication Critical patent/JPS60128697A/en
Publication of JPH043120B2 publication Critical patent/JPH043120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は半導体素子の搭載が可能な多層配線
基板に関するものであり、特にICチツプの発生
する熱を効率よく放散させ、かつ高密度実装が可
能な多層配線基板に関するものである。
[Detailed description of the invention] (a) Industrial application field This invention relates to a multilayer wiring board on which semiconductor elements can be mounted, and in particular, a multilayer wiring board that can efficiently dissipate heat generated by IC chips and that can be mounted with high density. The present invention relates to a multilayer wiring board capable of

(ロ) 従来技術とその問題点 最近の集積回路等の高密度化の進展は著しく、
例えばコンピユータ用の論理回路用LSIにおいて
は、数年前は100ゲート/チツプであつたものが、
最近では500〜1000ゲート/チツプのものが使用
されるようになつてきた。それとともに回路実装
の高密度化に対する要求はますます高まりこの要
求を満す実装方法として、従来から、多層配線を
施したセラミツク基板上に前記100ゲート/チツ
プのLSIを複数個実装する方法が採用されている
ほどである。
(b) Prior art and its problems Recent advances in the density of integrated circuits, etc. have been remarkable.
For example, LSI for computer logic circuits used to have 100 gates/chip a few years ago.
Recently, devices with 500 to 1000 gates/chip have come into use. At the same time, the demand for high-density circuit packaging is increasing, and the mounting method that satisfies this demand has traditionally been to mount multiple 100-gate/chip LSIs on a ceramic substrate with multilayer wiring. So much so that it has been done.

しかし、従来のAl2O3系のセラミツク基板を用
いた場合、その厚みが比較的厚いことや、Al2O3
系セラミツクの熱伝導度が悪いことから、多層化
を行なつた場合、ICチツプが発生する熱を効率
よく放散させることができず、このことが回路実
装の高密度化の妨げとなつていた。
However, when using a conventional Al 2 O 3 ceramic substrate, it is relatively thick and the Al 2 O 3
Due to the poor thermal conductivity of ceramics, the heat generated by IC chips cannot be efficiently dissipated when multi-layered, and this has been an impediment to higher density circuit packaging. .

また、Al2O3基板に代え、Al基板の表面をアル
マイト化したもの、ホーロー塗付Fe板、アルミ
ナ基板とCu、Mo等の高熱伝導性金属を複合化し
た材料等が考案されている。
In addition, instead of the Al 2 O 3 substrate, materials such as an Al substrate whose surface is anodized, an enameled Fe plate, and a composite material of an alumina substrate and a highly thermally conductive metal such as Cu or Mo have been devised.

上記の材料のうち、アルマイト基板は耐熱性が
不十分なことやベースメタルであるAlの熱膨張
係数が大きく、大型素子の搭載や回路そのものの
大型化が困難である。
Among the above materials, alumite substrates have insufficient heat resistance and the base metal Al has a high coefficient of thermal expansion, making it difficult to mount large elements or enlarge the circuit itself.

また、ホーロー塗付Fe板は、放熱性、熱膨張
特性の両面で中途半端であるばかりでなく、絶縁
層としてのホーロー層が数10μmの厚さとならざ
るを得ないことから、熱抵抗が大きくなる等の欠
点を有している。
In addition, enameled Fe plates are not only unsatisfactory in terms of heat dissipation and thermal expansion properties, but also have a large thermal resistance because the enamel layer as an insulating layer has to be several tens of micrometers thick. It has disadvantages such as:

また、アルミナと金属との複合基板は、本質的
に熱伝導度の小さいアルミナの厚みを0.1μm以下
にすることは困難であり、十分満足できる基板は
得られなかつた。
Furthermore, in the case of a composite substrate of alumina and metal, it is difficult to reduce the thickness of alumina, which inherently has low thermal conductivity, to 0.1 μm or less, and a fully satisfactory substrate has not been obtained.

一方、このような欠点を克服するセラミツク基
板としてBeOやBeO含有SiCが実用化または開発
されているが、いずれも有毒なBeOを用いるこ
とから、今後工業的利用には大きな制約を受けざ
るを得ず、コスト的にも高価となる。またセラミ
ツク基板そのものの反りをはじめとする方法精度
の高精度化が困難であり、今後ますます増大する
であろうと思われる大型基板の製造は極めて困難
である。
On the other hand, BeO and BeO-containing SiC have been put into practical use or developed as ceramic substrates to overcome these drawbacks, but since they both use toxic BeO, their industrial use will be severely restricted in the future. Also, it is expensive in terms of cost. In addition, it is difficult to improve the precision of the method due to warping of the ceramic substrate itself, and it is extremely difficult to manufacture large substrates, which are expected to increase in number in the future.

以上のごとき欠点を克服する方法としてW、
Mo、CuW合金、CuMo合金、その他CuとMoま
たはFeNi系合金等との複合金属などの高熱伝導
性、域いは低熱膨張金属の表面にAl2O3等のセラ
ミツクやガラス成分の材料を薄層被覆した材料が
考案され有効に用いられている。
As a way to overcome the above drawbacks, W.
A thin layer of ceramic or glass component materials such as Al 2 O 3 is applied to the surface of high thermal conductivity or low thermal expansion metals such as Mo, CuW alloys, CuMo alloys, and other composite metals of Cu and Mo or FeNi alloys. Layer coated materials have been devised and used effectively.

しかしながら、このような材料も、半導体素子
の高周波化に伴い薄層セラミツク層が、ベースメ
タルとセラミツク層上に形成した導体回路との間
でコンデンサ化し、その電気特性に悪影響を及ぼ
す欠点が生じてくるようになつた。これは、用い
る薄膜セラミツク層の誘電率が大きいためであ
り、代表的なセラミツクであるAl2O3では1MHz
で8.5〜10.0もあり、熱抵抗を無視できる範囲で
ある10μm以下では、薄層セラミツク層上の導体
回路に電位差が生じると、このセラミツク層を介
してコンデンサの働きを呈し、高周波信号の伝播
に際し電流波形を乱し、回路基板としての役割を
果し得ないこととなる。この欠点を解消するには
被覆セラミツク層の厚さを、20〜30μmに形成す
ることが必要となる。
However, as the frequencies of semiconductor devices become higher, such materials also have the disadvantage that the thin ceramic layer forms a capacitor between the base metal and the conductive circuit formed on the ceramic layer, which adversely affects its electrical properties. I started coming. This is due to the high dielectric constant of the thin ceramic layer used, and the typical ceramic Al 2 O 3 has a high dielectric constant of 1 MHz.
8.5 to 10.0, and in the range of 10 μm or less, where thermal resistance can be ignored, when a potential difference occurs in a conductor circuit on a thin ceramic layer, it acts as a capacitor through this ceramic layer, and when high-frequency signals propagate. This disturbs the current waveform and makes it impossible to function as a circuit board. To overcome this drawback, it is necessary to form the coating ceramic layer to a thickness of 20 to 30 .mu.m.

しかしながら、セラミツク層を20〜30μm設け
ることは、コスト的に極めて高くなるのみなら
ず、熱抵抗が無視できなくなり、高熱放散性回路
基板としての特色を失なうことになる。
However, providing a ceramic layer with a thickness of 20 to 30 .mu.m not only increases the cost significantly, but also causes the thermal resistance to become non-negligible, resulting in the loss of the characteristics of a highly heat-dissipating circuit board.

この発明は、このような問題点を解決し、多数
の高周波半導体素子の搭載が可能あるとともに熱
伝導性良好かつ高密度実装が可能な多層配線用回
路基板を提供することを目的とするものである。
The object of the present invention is to solve these problems and provide a multilayer wiring circuit board that can mount a large number of high-frequency semiconductor elements, has good thermal conductivity, and can be mounted at high density. be.

(ハ) 問題点を解決するための手段 この発明は、上記の目的を達成するために、金
属基板に電気絶縁被覆層としてダイヤモンド、疑
似ダイヤモンド状カーボン膜またはこれらの混合
物質を被覆し、上記電気絶縁被覆層上に多層回路
パターンを形成した多層配線基板において、多層
回路パターンの層間絶縁層をダイヤモンド、疑似
ダイヤモンド状カーボン膜またはこれらの混合物
質によつて形成した構成としたものである。
(C) Means for Solving the Problems In order to achieve the above object, the present invention coats a metal substrate with diamond, a pseudo-diamond-like carbon film, or a mixture thereof as an electrically insulating coating layer, and In a multilayer wiring board in which a multilayer circuit pattern is formed on an insulating coating layer, the interlayer insulating layer of the multilayer circuit pattern is formed of diamond, a pseudo-diamond-like carbon film, or a mixture thereof.

以下、添付図面を参照してこの発明の内容を具
体的に説明する。
Hereinafter, the content of the present invention will be specifically explained with reference to the accompanying drawings.

図は、この発明の回路基板を用いた半導体装置
の例であり、1は金属基板、2はその表面に被覆
された電気絶縁被覆層、3は多層回路パターン、
4は多層回路パターン3の層間絶縁層、5は半導
体素子、6はボンデイングワイヤである。
The figure shows an example of a semiconductor device using the circuit board of the present invention, in which 1 is a metal substrate, 2 is an electrically insulating coating layer coated on the surface thereof, 3 is a multilayer circuit pattern,
4 is an interlayer insulating layer of the multilayer circuit pattern 3, 5 is a semiconductor element, and 6 is a bonding wire.

上記の金属基板1は熱膨張係数が4.5〜9.0×
10-6cm/cm℃であり、かつ熱伝導性良好な材料で
ある次のa〜c群から選択された一つの金属材料
または複合金属材料により形成される。
The above metal substrate 1 has a thermal expansion coefficient of 4.5 to 9.0×
10 −6 cm/cm° C. and is formed of one metal material or composite metal material selected from the following groups a to c, which are materials with good thermal conductivity.

a CuW合金、CuMo合金、CuWMo合金 b W、Mo、コバール、42アロイ c W、Mo、コバールもしくは42アロイと、
Cu、AlもしくはNiとの複合金層 金属基板1を形成する材料の熱膨張係数を上記
のように選定したのは、搭載半導体素子5の結晶
の熱膨張係数(Si:4.0×10-6cm/cm℃、GaAs:
6.7×10-6cm/cm℃)と近似させ、熱膨張の不整
合に起因する応力の影響を小さくするためであ
る。
a CuW alloy, CuMo alloy, CuWMo alloy b W, Mo, Kovar, 42 alloy c W, Mo, Kovar or 42 alloy,
Composite gold layer with Cu, Al or Ni The thermal expansion coefficient of the material forming the metal substrate 1 was selected as described above because the thermal expansion coefficient of the crystal of the mounted semiconductor element 5 (Si: 4.0×10 -6 cm /cm℃, GaAs:
6.7×10 -6 cm/cm°C) to reduce the influence of stress caused by thermal expansion mismatch.

また、a〜c群の材料を選定したのは、これら
の材料が上述の熱膨張特性を有すると共に、金属
基板1の熱伝導度を可能な限り大きくし、半導体
素子5に生じる熱の放散性をよくするためであ
る。
In addition, the materials in groups a to c were selected because these materials have the above-mentioned thermal expansion characteristics, as well as to increase the thermal conductivity of the metal substrate 1 as much as possible and to dissipate heat generated in the semiconductor element 5. This is to improve the

次に、上記の電気絶縁被覆層2および層間絶縁
層4は、誘電率が2.5以上8以下のダイヤモンド、
疑似ダイヤモンド状カーボンまたはこれらの混合
物質を0.5〜20μmの薄層に形成したものであり、
気相蒸着法により金属基板1に被覆される。
Next, the electrically insulating coating layer 2 and the interlayer insulating layer 4 are made of diamond having a dielectric constant of 2.5 or more and 8 or less.
A thin layer of 0.5 to 20 μm of pseudo-diamond-like carbon or a mixture thereof,
The metal substrate 1 is coated by vapor phase deposition.

気相蒸着法としては、PVD法またはCVD法が
好ましい。これら2つの方法は、それぞれ長所お
よび短所を有するが、基本的にはメタン等の炭化
水素系ガスを熱、磁界または高周波もしくは直流
電界等により効果的に分解せしめ、それを基板上
に堆積せしめる方法を採用しており、その蒸着温
度または磁界もしくは電界の出力等の蒸着条件を
コントロールすることにより、被覆層2および層
間絶縁層4の組成をダイヤモンドから疑似ダイヤ
モンド状カーボンまたはこれらの混合物(疑似ダ
イヤモンド状カーボン膜中に微細なダイヤモンド
粒子が分散している形態)まで、自由に蒸着する
ことができる。
As the vapor phase deposition method, PVD method or CVD method is preferable. These two methods each have their own advantages and disadvantages, but basically they are methods in which hydrocarbon gas such as methane is effectively decomposed using heat, magnetic field, high frequency, DC electric field, etc., and then the decomposition is deposited on the substrate. By controlling the deposition conditions such as the deposition temperature and the output of the magnetic field or electric field, the composition of the coating layer 2 and the interlayer insulating layer 4 can be changed from diamond to pseudo-diamond-like carbon or a mixture thereof (pseudo-diamond-like carbon). It is possible to freely deposit a carbon film with fine diamond particles dispersed in it.

また、上記被覆層2および層間絶縁層4の誘電
率を2.5以上5.5以下に選定したのは次の理由によ
る。
Further, the reason why the dielectric constant of the coating layer 2 and the interlayer insulating layer 4 was selected to be 2.5 or more and 5.5 or less is as follows.

周知のとおり、被覆層2および層間絶縁層4の
誘電率は被覆物質の組成によつて決定される。こ
の発明における被覆層2および層間絶縁層4の組
成は前述のように蒸着条件を変化させることによ
り、その組成をコントロールできることから、発
明者らは該被覆層2および層間絶縁層4の誘電率
を必要に応じてコントロールすることを考えてい
た。この点について、発明者らは詳細な実験を行
なつた結果、驚くべきことに該被覆層2および層
間絶縁層4の誘電率を2.5〜5.5までコントロール
しうることが判明した。天然ダイヤモンドの誘電
率は5.5であり、気相蒸着法により合成した被覆
層がこのような幅広い数値を有する理由は不明で
ある。
As is well known, the dielectric constants of the coating layer 2 and the interlayer insulating layer 4 are determined by the composition of the coating material. The compositions of the coating layer 2 and the interlayer insulating layer 4 in this invention can be controlled by changing the deposition conditions as described above. I was thinking of controlling it as needed. Regarding this point, the inventors conducted detailed experiments and surprisingly found that the dielectric constant of the coating layer 2 and the interlayer insulating layer 4 could be controlled within the range of 2.5 to 5.5. Natural diamond has a dielectric constant of 5.5, and it is unclear why the coating layer synthesized by vapor phase deposition has such a wide range of values.

また、上記被覆層2および層間絶縁層4の厚さ
を0.5以上20μm以下としたのは次の理由による。
すなわち、どのような組成の膜を用いても0.5μm
以下ではコンデンサとしての容量が大きくなつて
この発明の効果を害する。また20μm以上になる
と、形成に時間を要するので経済的でないのみな
らず、ダイヤモンドまたは疑似ダイヤモンド状カ
ーボン膜の特質として内部応力により剥離が発生
する等の問題があるからである。
The reason why the thickness of the coating layer 2 and the interlayer insulating layer 4 is set to 0.5 or more and 20 μm or less is as follows.
In other words, no matter what composition of film is used, the thickness is 0.5 μm.
Below this, the capacitance as a capacitor becomes large, which impairs the effect of the present invention. Moreover, if the thickness is 20 μm or more, it is not only uneconomical because it takes time to form, but also there are problems such as peeling due to internal stress, which is a characteristic of diamond or pseudo-diamond-like carbon films.

次に、回路パターン3は材質的には、Cu、Al、
Ni、Ag、Au、AgPb合金のうちのいずれか、ま
たはこれらの組合せから成り、またその形成方法
は薄膜法、厚膜法、転写法等いずれかの方法を用
いることができる。これらの材質、形成方法は用
途、コスト等に応じて適宜選定される。
Next, the circuit pattern 3 is made of Cu, Al,
It is made of any one of Ni, Ag, Au, and AgPb alloys, or a combination thereof, and can be formed by any method such as a thin film method, a thick film method, or a transfer method. These materials and forming methods are appropriately selected depending on usage, cost, etc.

(ニ) 実施例 金属基板として、熱膨張係数を6.5×10-6cm/
cm℃とするために15wt%Cuを含有した厚さ1.0
mm、100mm四方のCuW合金板を、粉末焼結法で製
造したのち、ダイヤモンド層を表面に形成するた
めのプラズマ分解蒸着法を次の方法で実施した。
(d) Example As a metal substrate, the thermal expansion coefficient is 6.5×10 -6 cm/
Thickness 1.0 containing 15wt% Cu to make cm℃
After manufacturing CuW alloy plates with dimensions of 100 mm and 100 mm by a powder sintering method, a plasma decomposition vapor deposition method was performed to form a diamond layer on the surface using the following method.

すなわち、真空容器内に該基板を設置し、赤外
線加熱で450℃に加熱し、CH4ガスを35c.c./min
で容器内に供給しつつ総ガス圧を5×10-3になる
よう調整した。これに、13.56MHzの高周波を用
いて容器内に設置した5ターンのコイルでプラズ
マを発生せしめ、5hrの蒸着を行ない厚さ3μmの
ダイヤモンド膜を得た。得られた膜を反射電子線
回折を行なつたところ、蒸着膜はアモルフアスと
クリスタルの両部分により成ることが判明した。
また、同膜の誘電率を測定したところ1MHzで4.9
であつた。
That is, the substrate was placed in a vacuum container, heated to 450℃ using infrared heating, and CH 4 gas was heated at 35c.c./min.
While supplying the gas into the container, the total gas pressure was adjusted to 5×10 -3 . Plasma was then generated using a 5-turn coil installed in the container using a high frequency of 13.56 MHz, and evaporation was performed for 5 hours to obtain a diamond film with a thickness of 3 μm. When the obtained film was subjected to reflected electron beam diffraction, it was found that the deposited film was composed of both amorphous and crystal parts.
In addition, when we measured the dielectric constant of the same film, it was 4.9 at 1MHz.
It was hot.

さらに、所要の回路パターンに基づき製作した
メタルマスクを用い、厚さ3μmのCu回路パター
ンをRFイオンプレーテイングにより形成した。
その後、層間絶縁層としてダイヤモンド膜を前述
の方法で3μm形成し、スルーホールの必要部分
に部分イオンエツチング法でダイヤモンド膜をエ
ツチングし、スルーホールを形成した。このスル
ーホールにメタルマスクを用いたPFイオンプレ
ーテイング法によりCuを3μmコーテイングし、
さらにCu回路パターンを前述の方法で形成した。
Furthermore, using a metal mask manufactured based on the required circuit pattern, a 3 μm thick Cu circuit pattern was formed by RF ion plating.
Thereafter, a diamond film with a thickness of 3 μm was formed as an interlayer insulating layer using the method described above, and the diamond film was etched using a partial ion etching method in the necessary portions of the through holes to form through holes. This through hole was coated with 3 μm of Cu using the PF ion plating method using a metal mask.
Furthermore, a Cu circuit pattern was formed using the method described above.

この層間絶縁膜形成−スルーホール形成−回路
パターン形成の工程を繰返えし、3層の回路基板
を得た。
This process of forming an interlayer insulating film, forming a through hole, and forming a circuit pattern was repeated to obtain a three-layer circuit board.

この回路基板の最表面回路パターンのワイヤー
ボンデイングおよびダイボンデイングの必要部分
にNiを2μm被覆し、さらにAuを1μm被覆した。
The portions of the circuit pattern on the top surface of this circuit board that were required for wire bonding and die bonding were coated with Ni to a thickness of 2 μm, and further coated with Au to a thickness of 1 μm.

上記の回路基板上に6個のGaAsFETの素子を
AuSn合金によりダイボンデイングした後、Au線
によりワイヤーボンデイングを行なうと共に、チ
ツプコンデンサを搭載した。
Six GaAsFET elements are placed on the above circuit board.
After die bonding using AuSn alloy, wire bonding was performed using Au wire, and a chip capacitor was mounted.

このようにして製作したマルチチツプFETは、
10GHz以上の高周波領域で動作させることがで
き、かつその発熱量を合計30Wとすることができ
た。
The multi-chip FET manufactured in this way is
It was possible to operate in the high frequency range of 10GHz or higher, and the total amount of heat generated was 30W.

(ホ) 効果 以上のように、この発明は、金属基板に被覆す
る電気絶縁被覆層と、回路パターンの層間絶縁層
をともにダイヤモンド、疑似ダイヤモンド状カー
ボン膜またはこれらの混合物質によつて形成した
ものであるから、これらの被覆層および層間絶縁
層を充分薄く形成してもその誘電率を2.5〜5.5の
範囲にコントロールすることができる。したがつ
て、熱抵抗が低く、かつ高周波信号に対する影響
の少ない半導体素子搭載用多層配線基板を得るこ
とができる。
(E) Effect As described above, the present invention provides a method in which both the electrically insulating coating layer covering the metal substrate and the interlayer insulating layer of the circuit pattern are formed of diamond, pseudo-diamond-like carbon film, or a mixture thereof. Therefore, even if these coating layers and interlayer insulating layers are formed sufficiently thin, their dielectric constants can be controlled within the range of 2.5 to 5.5. Therefore, it is possible to obtain a multilayer wiring board for mounting semiconductor elements, which has low thermal resistance and has less influence on high frequency signals.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の基板を使用した半導体装置の
拡大断面図である。 1……金属基板、2……電気絶縁被覆層、3…
…回路パターン、4……層間絶縁層、5……半導
体素子、6……ボンデイングワイヤ。
The drawing is an enlarged sectional view of a semiconductor device using the substrate of the present invention. DESCRIPTION OF SYMBOLS 1...Metal substrate, 2...Electric insulation coating layer, 3...
...Circuit pattern, 4...Interlayer insulating layer, 5...Semiconductor element, 6...Bonding wire.

Claims (1)

【特許請求の範囲】 1 金属基板に電気絶縁被覆層としてダイヤモン
ド、疑似ダイヤモンド状カーボン膜またはこれら
の混合物質を被覆し、上記電気絶縁被覆層上に多
層回路パターンを形成した半導体素子搭載用多層
配線基板において、多層回路パターンの層間絶縁
層をダイヤモンド、疑似ダイヤモンド状カーボン
膜またはこれらの混合物質によつて形成したこと
を特徴とする半導体素子搭載用多層配線基板。 2 金属基板の熱膨張係数が4.5〜9.0×10-6cm/
cm℃であることを特徴とする特許請求の範囲第1
項に記載の半導体素子搭載用多層配線基板。 3 金属基板が、次のa〜c群から選択されたい
ずれか一つの材料から成ることを特徴とする特許
請求の範囲第1項に記載の半導体素子搭載用多層
配線基板。 a CuW合金、CuMo合金、CuWMo合金 b W、Mo、コバール、42アロイ c W、Mo、コバールもしくは42アロイと、
Cu、AlもしくはNiとの被合金層。 4 電気絶縁被覆層と層間絶縁層を気相蒸着法に
より0.5μm以上20μm以下の厚さに形成し、それ
らの誘電率を2.5以上5.5以下としたことを特徴と
する特許請求の範囲第1項に記載の半導体素子搭
載用多層配線基板。 5 搭載する半導体素子がSiまたはGaAsである
ことを特徴とする特許請求の範囲第1項に記載の
半導体素子搭載用多層配線基板。
[Claims] 1. A multilayer wiring for mounting a semiconductor element, in which a metal substrate is coated with diamond, a pseudo-diamond-like carbon film, or a mixture thereof as an electrically insulating coating layer, and a multilayer circuit pattern is formed on the electrically insulating coating layer. 1. A multilayer wiring board for mounting a semiconductor element, characterized in that an interlayer insulating layer of a multilayer circuit pattern is formed of diamond, a pseudo-diamond-like carbon film, or a mixture thereof. 2 The thermal expansion coefficient of the metal substrate is 4.5 to 9.0×10 -6 cm/
Claim 1 characterized in that the temperature is cm°C.
A multilayer wiring board for mounting a semiconductor element as described in 2. 3. The multilayer wiring board for mounting a semiconductor element according to claim 1, wherein the metal substrate is made of any one material selected from the following groups a to c. a CuW alloy, CuMo alloy, CuWMo alloy b W, Mo, Kovar, 42 alloy c W, Mo, Kovar or 42 alloy,
Alloyed layer with Cu, Al or Ni. 4. Claim 1, characterized in that the electrically insulating coating layer and the interlayer insulating layer are formed by vapor deposition to a thickness of 0.5 μm or more and 20 μm or less, and have a dielectric constant of 2.5 or more and 5.5 or less. A multilayer wiring board for mounting a semiconductor element as described in . 5. The multilayer wiring board for mounting a semiconductor element according to claim 1, wherein the semiconductor element to be mounted is Si or GaAs.
JP58237602A 1983-12-15 1983-12-15 Multilayer circuit board for placing semiconductor element Granted JPS60128697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237602A JPS60128697A (en) 1983-12-15 1983-12-15 Multilayer circuit board for placing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237602A JPS60128697A (en) 1983-12-15 1983-12-15 Multilayer circuit board for placing semiconductor element

Publications (2)

Publication Number Publication Date
JPS60128697A JPS60128697A (en) 1985-07-09
JPH043120B2 true JPH043120B2 (en) 1992-01-22

Family

ID=17017750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237602A Granted JPS60128697A (en) 1983-12-15 1983-12-15 Multilayer circuit board for placing semiconductor element

Country Status (1)

Country Link
JP (1) JPS60128697A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181550A (en) * 1988-01-12 1989-07-19 Toppan Printing Co Ltd Multi-layer electronic circuit
JP2689986B2 (en) * 1988-07-13 1997-12-10 富士通株式会社 Electronic equipment
JP3309492B2 (en) * 1993-05-28 2002-07-29 住友電気工業株式会社 Substrate for semiconductor device
JP2004356429A (en) * 2003-05-29 2004-12-16 Sumitomo Electric Ind Ltd Submount, and semiconductor device using the same
JP4946502B2 (en) * 2007-02-23 2012-06-06 株式会社ジェイテクト Circuit structure

Also Published As

Publication number Publication date
JPS60128697A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
USH1471H (en) Metal substrate double sided circuit board
US20160014878A1 (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
KR20160074661A (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
US4777060A (en) Method for making a composite substrate for electronic semiconductor parts
JPH043120B2 (en)
US5161305A (en) Method of processing a circuit board
EP0113088B1 (en) Substrate for mounting semiconductor element
JPS60128625A (en) Base board for mounting of semiconductor element
JPS59184586A (en) Circuit board for placing semiconductor element
US5250327A (en) Composite substrate and process for producing the same
US20070069174A1 (en) Composite and susceptor for semiconductor manufacturing device and power module with the same
JPS58103156A (en) Substrate for semiconductor device
JPS61111598A (en) Manufacture of glass ceramic multilayer circuit board
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPH04218901A (en) Electronic circuit element having thin film resistor and its manufacture
TWM407489U (en) IC carrier board with high thermal conductivity, packaging IC carrier board, and electronic devices
JPH0832244A (en) Multilayer wiring board
JPS58157963A (en) Manufacture of layer of high melting point metal or metal compound
JPS62226645A (en) Wiring substrate
JPH0665210B2 (en) Substrate manufacturing method
JPS60178655A (en) Lead frame
JPH01199460A (en) Circuit substrate
JPH0323513B2 (en)
JPS61108191A (en) Multilayer circuit substrate
JPH0265163A (en) Metallic substrate for integrated circuit