JPS62243708A - Controlling method for converter blowing - Google Patents

Controlling method for converter blowing

Info

Publication number
JPS62243708A
JPS62243708A JP8568086A JP8568086A JPS62243708A JP S62243708 A JPS62243708 A JP S62243708A JP 8568086 A JP8568086 A JP 8568086A JP 8568086 A JP8568086 A JP 8568086A JP S62243708 A JPS62243708 A JP S62243708A
Authority
JP
Japan
Prior art keywords
molten steel
blowing
temperature
blow
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8568086A
Other languages
Japanese (ja)
Inventor
Masaki Nitta
正樹 新田
Matsuhide Aoki
青木 松秀
Tetsuzo Ogura
小倉 哲造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8568086A priority Critical patent/JPS62243708A/en
Publication of JPS62243708A publication Critical patent/JPS62243708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve the hit rate of a molten steel temp. in the stage of blowing out by measuring the temp. increase rate of a molten metal by the secondary combustion efficiency of CO in an oxygen top blowing furnace from the result of the measurement of the CO2 concn. in a converter exhaust gas at the time of making decarburization refining of the molten iron to the molten steel in said furnace. CONSTITUTION:The exhaust gas formed by the decarburization reaction contains CO at the time of charging the molten steel into the oxygen top blowing furnace and blowing oxygen into the molten steel by a top blowing lance to oxidize and remove the C in the molten iron, thereby refining the molten iron to the molten steel. The CO is secondarily burned by the oxygen from the top blowing lance to form CO2. The molten steel is heated up by the combustion heat thereof. The decarburization reaction efficiency by O2 and the secondary combustion efficiency of the CO are nearly constant when the height of the top blowing lance is maintained constant throughout the entire decarburization efficiency and therefore, the influence to be exerted to the blowing out temp. of the molten steel is exactly estimated by measuring the concn. of CO2 in the exhaust gas as the influence that the heat by the secondary combustion of the CO exerts to the molten steel temp. is nearly constant. The hit rate of the molten steel temp. in the stage of blowing out is thus improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は転炉吹錬方法に関し、詳細には比較的簡単なダ
イナミックコントロール方式で吹き止め温度の適中精度
を高めることのできる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a converter blowing method, and more particularly to a method that can improve the accuracy of blow-stop temperature using a relatively simple dynamic control method. be.

[従来の技術] 転炉吹錬は溶銑の脱炭及び昇温を主目的として行なわれ
るものであり、吹き止め炭素は鋼材の品質に著しい影響
を及ぼしまた吹き止め温度は吹錬以降の処理(成分調整
、脱ガス、鋳造等)時の熱保障を図り操業効率を高める
うえで重要な管理項目とされている。
[Prior art] Converter blowing is carried out mainly to decarburize and raise the temperature of hot metal, and the blowstop carbon has a significant effect on the quality of steel materials, and the blowstop temperature depends on the processing after blowing ( It is considered an important control item to ensure heat during component adjustment, degassing, casting, etc., and to improve operational efficiency.

この様なところから転炉吹錬時における吹き止め炭素及
び吹き止め温度については適中精度の向上を期して様々
の研究が行なわれており、且つ最近では転炉操業の制御
及び運転を全自動化しようとする研究も盛んに進められ
ている。
For this reason, various studies have been conducted with the aim of improving the accuracy of the blow-stop carbon and blow-stop temperature during converter blowing, and recently efforts have been made to fully automate the control and operation of converter operations. Research is also actively underway.

こうした中にあって現在実用化されている転炉自動操業
方式を大別すると、(1)溶銑の温度や成分組成(特に
炭素量や珪素量等)等の初期条件及び酸素吹込み量等を
基にして吹き止め炭素量や吹き止め温度を推定するいわ
ゆるスタティクコントロール方式と、(2)転炉操業時
の各種変動状況(鋼浴温度、排ガス流量、炉壁温度等)
を自動的に検知しながらそれらの値を初期条件に組込ん
で吹き止め温度や吹き止め炭素等を推定するいわゆるダ
イナミックコントロール方式に分けることができる。
Under these circumstances, the converter automatic operation systems currently in practical use can be roughly divided into: (1) initial conditions such as hot metal temperature and composition (especially carbon content, silicon content, etc.), oxygen injection amount, etc. (2) Various fluctuation conditions during converter operation (steel bath temperature, exhaust gas flow rate, furnace wall temperature, etc.)
It can be divided into the so-called dynamic control method, which automatically detects the temperature and incorporates these values into the initial conditions to estimate the blow-stop temperature, blow-stop carbon, etc.

本発明はこれらの自動操業方式のうち後者のダイナミッ
クコントロール方式に分類される操業方式に関するもの
であって、特に吹き止め温度の連中精度を高めることの
できる転炉吹錬制御法を提供しようとするものである。
The present invention relates to an operation method classified as the latter dynamic control method among these automatic operation methods, and particularly aims to provide a converter blowing control method that can improve the continuous accuracy of blow-stop temperature. It is something.

[発明が解決しようとする問題点] 前述の如くダイナメックコントロール方式によって吹き
止め温度の連中精度を高める方法はそれなりの成果を得
ているが、その為には非常に高価な機器と複雑な管理を
必要とし、設備コストに見合フた連中精度が得られてい
るとは言えない。
[Problems to be solved by the invention] As mentioned above, the method of increasing the accuracy of the blow-off temperature using the Dynamec control method has achieved some results, but it requires very expensive equipment and complicated management. It cannot be said that the accuracy is commensurate with the equipment cost.

殊に吹錬途中でスラグの滓化性促進或はスラグ中T−F
e量の低減等を期して上吹きランス高さを変更した様な
場合には、吹き止め温度の連中精度が著しく低下し、と
もすれば最終の造塊工程までに溶鋼の一部が凝固し注湯
不能を生ずる恐れも生じてくる。その為従来は吹き止め
温度を高めに設定しておくことによって熱保障の安全を
期しているが、その結果転炉耐火物の溶損が著しくなり
寿命が短縮されるという問題を生じていた。また場合に
よっては所定の吹き止め温度を確保する為吹錬完了後さ
らに1〜数回の再吹錬が必要になることもあり、操業の
煩雑化及び生産性の低下といフた問題にもつながってく
る。
In particular, promoting slag formation during blowing or T-F in slag
In cases where the height of the top blowing lance is changed in order to reduce the amount of e, the accuracy of the blow stop temperature will drop significantly, and some of the molten steel may solidify before the final ingot making process. There is also the possibility that pouring of hot water may become impossible. For this reason, conventionally, the blow-off temperature was set high to ensure heat security, but as a result, the converter refractories were significantly melted and their lifespan was shortened. In some cases, it may be necessary to re-blow one to several times after the completion of blowing to ensure the specified blow-off temperature, which can lead to problems such as complicating operations and reducing productivity. It's coming.

本発明はこの様な事情に着目してなされたものであって
、その目的は比較的簡単な制御方式で高レベルの吹き止
め温度連中精度を得ることのできる方法を提供しようと
するものである。
The present invention was made in view of these circumstances, and its purpose is to provide a method that can obtain a high level of blow-off temperature control accuracy using a relatively simple control method. .

[問題点を解決する為の手段] 上記の目的を達成することのできた本発明吹錬制御方法
の構成は、転炉吹錬を行なうに当たり、転炉排ガス中の
co、ガス濃度を測定することにより転炉内におけるC
O2ガス濃度を推定し、該CO2ガス濃度から算出され
る溶鋼昇温効果を吹き止め温度の計算に組込んで吹き止
め温度をコントロールするところに要旨を有するもので
ある。
[Means for Solving the Problems] The structure of the blowing control method of the present invention that has achieved the above-mentioned purpose is that, when carrying out converter blowing, the concentration of CO and gas in the converter exhaust gas is measured. C in the converter due to
The gist of this method is to estimate the O2 gas concentration and incorporate the molten steel temperature increase effect calculated from the CO2 gas concentration into the calculation of the blow-off temperature to control the blow-off temperature.

[作用] 前述の如〈従来のダイナミックコントロール方式におい
ては、特に吹錬途中で上吹きランス高さを変えると吹き
止め温度の連中精度が著しく低下する。そこでこの様な
傾向が如何なる原因によって生ずるものかということを
明確にしようとして色々検討を進めるうち、次の様な事
実が明らかとなってきた。
[Function] As mentioned above, in the conventional dynamic control system, if the height of the top blow lance is changed especially during blowing, the continuous accuracy of the blow stop temperature is significantly reduced. As we proceeded with various studies to clarify the causes of this tendency, the following facts became clear.

即ち従来の吹き止め温度制御においては、溶銑中の炭素
の上吹き酸素との反応による昇熱効果までは十分に考慮
されているものの、当該反応により生成した一酸化炭素
の2次燃焼(CO+ 1/202−Co2)については
少なくともダイナミックコントロール方式に関する限り
十分な考慮が払われているとは言えない。そこで種々研
究したところ、2次燃焼によって生じる溶鋼昇温の大小
によって吹き止め温度が著しく変わり、これはダイナミ
ックコントロール方式における制御項目の1つとして考
慮すべきものであるとの結論を得るに至った。更に詳細
に説明すると、全吹錬期間を通して上吹きランス高さを
一定に保った場合、脱炭反応効率及び2次燃焼効率はほ
ぼ一定である為、炭素の燃焼によって生じる熱が溶鋼温
度に与える影響はほぼ等しく、従って吹き止め温考に与
える影響も正確に推定することができる。ところが吹錬
工程で上吹きランス高さを変動させると転炉内における
2次燃焼効率がかなり変化して発生熱量が変わり、溶鋼
に与える昇温効果も変動してくる。
In other words, in conventional blowstop temperature control, although the heating effect due to the reaction of carbon in hot metal with top-blown oxygen is fully taken into consideration, the secondary combustion of carbon monoxide (CO+ 1 /202-Co2), it cannot be said that sufficient consideration has been given, at least as far as the dynamic control method is concerned. After conducting various studies, we came to the conclusion that the blow-off temperature changes significantly depending on the magnitude of the molten steel temperature rise caused by secondary combustion, and that this should be considered as one of the control items in the dynamic control system. To explain in more detail, if the height of the top blowing lance is kept constant throughout the entire blowing period, the decarburization reaction efficiency and secondary combustion efficiency are almost constant, so the heat generated by carbon combustion will affect the molten steel temperature. The effects are almost equal, so the effect on the blow-off temperature can also be estimated accurately. However, when the height of the top blowing lance is varied in the blowing process, the secondary combustion efficiency in the converter changes considerably, the amount of heat generated changes, and the temperature raising effect on the molten steel also changes.

ちなみに第1図は上吹きランス高さと排ガス中のCO2
濃度の関係を統計的に整理して示したグラフであり、ラ
ンス高さを高くすると(ランス−湯面間距離を長くする
と)排ガス中のCO,濃度は明らかに増大する傾向が認
められる。炭素と酸素の反応によって生ずる熱は C+ 1/202− CO+ 2750Kcal/にg
  ・・・(1)C+  02 −Cow +8292
Kcal/Kg −−−t2)であるから、CO3濃度
が変動するということは即ち生成する反応熱がそれだけ
変動することを意味しており、当該反応熱の一部が溶鋼
温度に影響を及ぼす結果、吹き止め温度にまで影響が表
われてくる。ところが従来のダイナミックコントロール
方式ではCOの2次燃焼による昇温効果が吹ぎ止め温度
の制御要素に加えられておらず、その為ランス高さを変
動した場合の吹き止め温度連中精度を高め得なかったも
のと考えられる。
By the way, Figure 1 shows the height of the top blow lance and the CO2 in the exhaust gas.
This is a graph showing the relationship between concentrations statistically organized, and it can be seen that as the lance height increases (as the distance between the lance and the hot water surface increases), the CO concentration in the exhaust gas clearly tends to increase. The heat generated by the reaction of carbon and oxygen is C+ 1/202- CO+ 2750Kcal/g
...(1) C+ 02 -Cow +8292
Kcal/Kg ---t2) Therefore, a change in CO3 concentration means that the generated reaction heat changes accordingly, and as a result, a part of the reaction heat affects the molten steel temperature. , the effect even appears on the blow-off temperature. However, in the conventional dynamic control method, the temperature increase effect due to the secondary combustion of CO is not added to the control element of the blowstop temperature, and therefore it is not possible to improve the accuracy of the blowstop temperature control when the lance height is varied. It is thought that the

本発明はこうした知見のもとで、転炉吹錬時における2
次燃焼によってもたらされる溶鋼昇温効果についてもこ
れを吹き止め温度の制御要素に加えることにより連中精
度を高めようとするものである。具体的には2次燃焼効
率の大小によってCO2生成量が変動するという事実を
活用し、吹錬操業時における転炉排ガス中のCO,濃度
を連続的に測定することにより転炉内のCO2濃度を推
定し、該推定値から2次燃焼熱を求め、更に該2次燃焼
による溶鋼昇温量を加味して吹き止め温度をより正確に
コントロールしようとするものである。
Based on this knowledge, the present invention has developed a
The effect of increasing the temperature of molten steel brought about by the subsequent combustion is also added to the blowstop temperature control element in an attempt to improve the accuracy of the process. Specifically, by taking advantage of the fact that the amount of CO2 produced varies depending on the size of the secondary combustion efficiency, we can continuously measure the CO2 concentration in the converter exhaust gas during blowing operation, and thereby calculate the CO2 concentration in the converter. is estimated, the secondary combustion heat is determined from the estimated value, and the blow-stop temperature is controlled more accurately by taking into consideration the amount of temperature rise of the molten steel due to the secondary combustion.

例えば第2図は85トン容量の転炉を用いた吹錬操業に
おいて、炉内CO2濃度と当該CO,生成時の2次燃焼
熱による着熱効果を調査した結果をまとめてグラフ化し
たものであり、CO2濃度が高くなるにつれて着熱効果
は明らかに上昇している。そして上昇量には若干のばら
つきがあるものの1次直線的な相間々係が認められる。
For example, Figure 2 is a graph summarizing the results of investigating the CO2 concentration in the furnace, the CO2 concentration in the furnace, and the heating effect due to secondary combustion heat during generation in a blowing operation using a converter with a capacity of 85 tons. The heat transfer effect clearly increases as the CO2 concentration increases. Although there is some variation in the amount of increase, a linear linear relationship is observed.

一方、2次燃焼熱による溶鋼の昇温効果は、溶銑装入量
  二 88トン 溶銑[C]    :  4.05% 吹き止め[C]  :  0.20% 反応 : CO(1773°K)+1/202(298
’に)=CO2(1773’K) HMR:  95% 溶銑の比熱  :  0.2 (al/deg−g着熱
効率   :  1CO% とすると、転炉内のCO2濃度が1%増加するにつれて
溶鋼の温度は9.5℃上昇することになる。
On the other hand, the effect of increasing the temperature of molten steel due to the secondary combustion heat is as follows: Hot metal charging amount: 288 tons Hot metal [C]: 4.05% Blowing stop [C]: 0.20% Reaction: CO (1773°K) + 1/ 202 (298
) = CO2 (1773'K) HMR: 95% Specific heat of hot metal: 0.2 (al/deg-g heat transfer efficiency: 1CO%) As the CO2 concentration in the converter increases by 1%, the temperature of molten steel decreases by 1%. will rise by 9.5°C.

即ち前記式(1) 、 (2)を)lcal/+olに
換算すると下記の式(3) 、 (4)を導くことがで
きる。
That is, by converting the above equations (1) and (2) into )lcal/+ol, the following equations (3) and (4) can be derived.

C+1/202−CO+33.0KCal/mol  
””(3)(+  02  →CO2+ 99.5にc
al/mol ・・・(4)一方前掲の処理溶銑量二8
8トン、溶銑[C]: 4.05%、吹止め[C]:0
.20%より、上吹き酸素と反応する[C]を求めると
”次の通りとなる。
C+1/202-CO+33.0KCal/mol
"" (3) (+ 02 → CO2+ 99.5c
al/mol ... (4) On the other hand, the amount of hot metal treated above 28
8 tons, hot metal [C]: 4.05%, blowstop [C]: 0
.. From 20%, calculating [C] that reacts with top-blown oxygen is as follows.

880 x (4,05−0,20)/12−282.
3 Kmol上記の関係より、炉内ガス中のcoガス濃
度が90%、CO2ガス濃度が10%である場合の、前
記式(3) 、 (4)における発熱量を求める次の通
りとなる。
880 x (4,05-0,20)/12-282.
3 Kmol From the above relationship, the calorific value in the above formulas (3) and (4) when the co gas concentration in the furnace gas is 90% and the CO2 gas concentration is 10% is as follows.

33.0xlO’ x282.3 xO,9+99.5
xlO” x282.3x O,1−11,19X  
10’にcal一方、炉内ガス中のCOガス濃度が89
%、CO2ガス濃度が11%である場合の、前記式(3
) 、 (4)における発熱量を求めると次の通りとな
る。
33.0xlO' x282.3xO,9+99.5
xlO" x282.3x O, 1-11, 19X
On the other hand, the CO gas concentration in the furnace gas is 89
%, when the CO2 gas concentration is 11%, the above formula (3
), the calorific value in (4) is calculated as follows.

従って炉内Co2ガス濃度が1%上昇することによって
生じる発熱量の増加は 11.38 XIO’−11,19XIO’ −0,1
9X10’(にcal)となり、この発熱量増加によっ
て生ずる昇温量はということになる。
Therefore, the increase in calorific value caused by a 1% increase in the Co2 gas concentration in the furnace is 11.38 XIO'-11,19XIO'-0,1
9X10' (in cal), and the amount of temperature rise caused by this increase in calorific value is.

尚上記実験条件では[CO,濃度1%の上昇]=[溶鋼
温度の9.5℃上上昇上いう相間々係が得られたが、こ
れらの関係は転炉の形状や容量、上吹きランスのノズル
構造等によっても相当変わってくるので、適用される転
炉毎にCO,濃度上昇と溶鋼昇温量の関係番予め求めて
おき、吹錬操業時における炉内CO2濃度を測定しつつ
当該濃度変化を溶鋼昇温量に換算してやれば、2次燃焼
による溶鋼温度の変動を正確に求めることができる。
In addition, under the above experimental conditions, the following relationship was obtained: [1% increase in CO concentration] = [9.5°C increase in molten steel temperature], but these relationships depend on the shape and capacity of the converter, and the top-blowing lance. Since the relationship between the CO2 concentration increase and the molten steel temperature increase is determined in advance for each converter to be applied, and the CO2 concentration in the furnace is measured during blowing operation, the relevant By converting the concentration change into the amount of temperature increase in molten steel, it is possible to accurately determine the fluctuation in molten steel temperature due to secondary combustion.

従って吹き止め温度のダイナミックコントロール要素の
1つとして上記CO2濃度変化による溶鋼昇温量を組込
み、その変化に応じて例えば冷却材役人量を調整する等
の操作を加えることによって、吹き止め温度の連中精度
を著しく高めることができる。
Therefore, by incorporating the amount of molten steel temperature rise caused by the change in CO2 concentration as one of the dynamic control elements for the blowstop temperature, and adding operations such as adjusting the amount of coolant according to the change, the blowstop temperature can be controlled. Accuracy can be significantly increased.

[実施例] 下記の標準転炉吹錬条件を設定し、従来法と本発明法を
組合せた場合の吹き止め温度の連中精度を比較した。
[Example] The following standard converter blowing conditions were set, and the continuous accuracy of the blow-off temperature was compared when the conventional method and the method of the present invention were combined.

く標準転炉吹錬条件〉 転炉容量   :  88 Ton/C8溶銑[Cコ 
  :  4.05% 吹き止め[C]  :  0.20% 上吹き酸素量:   350ONm’/chランス高さ
  :2.2m 吹錬時間   = 15分 目標吹き止め温度:1660℃ く吹き止め温度制御法〉 従来法 :溶銑条件、溶銑配合率、副原料原単位、吹止
目標等の初期条件 から送酸量、冷却材原単位を計 算しくスタティックコントロー ル)、吹錬中サンプリング、測 温により吹止連中精度を高める ダイナミックコントロール方式 本発明法二転炉排ガスのCO,濃度を連続的に測定して
炉内CO,濃度を 求め、該CO,濃度から求めら れる溶鋼昇温量を上記従来のダ イナミックコントロール方式に 組込んで冷却材(鉄鉱石)の投 入量を調整した。
Standard converter blowing conditions〉 Converter capacity: 88 Ton/C8 hot metal [C
: 4.05% Blowing stop [C] : 0.20% Top blowing oxygen amount: 350ONm'/ch Lance height: 2.2m Blowing time = 15 minutes Target blowing stop temperature: 1660℃ Close blowing temperature control method 〉 Conventional method: Static control that calculates the oxygen supply amount and coolant consumption based on initial conditions such as hot metal conditions, hot metal blending ratio, auxiliary raw material consumption, and blow-off target), blow-off by sampling during blowing, and temperature measurement. Dynamic control method that improves accuracy The method of the present invention Continuously measures the CO concentration of the two converter exhaust gas to determine the CO concentration inside the furnace, and calculates the amount of molten steel temperature rise determined from the CO concentration using the conventional dynamic control method described above. The amount of coolant (iron ore) input was adjusted.

従来法及び本発明法の夫々について15バツチずつの吹
錬実験を行なって夫々の吹き止め温度の連中精度(σ)
を求めたところ、従来法ではσ=10.3であったもの
が本発明法を採用することによりσ=9.5に減少し、
σ=0.8の連中精度向上効果が確認された。
We conducted 15 batches of blowing experiments for each of the conventional method and the method of the present invention, and determined the successive accuracy (σ) of each blow-stop temperature.
When calculated, σ = 10.3 using the conventional method was reduced to σ = 9.5 by adopting the method of the present invention.
The effect of improving accuracy for σ=0.8 was confirmed.

次゛にランス高さを吹錬開始から10分までは22CO
mm、  1−0分から吹錬終了までは16COml1
1に変えた他は上記と同様にして吹き止め温度連中精度
を比較したところ、従来法ではσ= 14.2と非常に
連中精度が悪いのに対し、本発明ではσ=9.8と非常
に高い適′中精度が得られた。
Next, adjust the lance height to 22CO for 10 minutes from the start of blowing.
mm, 16COml1 from 1-0 minutes until the end of blowing
When comparing the blow-stop temperature matching accuracy in the same manner as above except that the temperature was changed to A high degree of accuracy was obtained.

これらの実験より、本発明法によればランス高さを一定
にした場合はもとより、吹錬途中でランス高さを変えた
場合でも安定して高い吹き止め温度連中精度を得ること
ができた。尚実際の吹錬操業においては、CaOの滓化
コントロールやスラグ中T−Fe量の低減等の為ランス
高さの変更が不可欠の要件とされており、こうした実情
を考えれば、ランス高さの変動にもかかわらず高レベル
の吹き止め温度連中精度を得ることのできる本発明の方
法は、実用に即した非常に優れたものと言える。
From these experiments, according to the method of the present invention, it was possible to obtain stable and high blow-stop temperature control accuracy not only when the lance height was kept constant, but also when the lance height was changed during blowing. In actual blowing operations, it is essential to change the lance height in order to control CaO slag formation and reduce the amount of T-Fe in the slag. The method of the present invention, which can obtain a high level of blow-off temperature consistency accuracy despite fluctuations, can be said to be very suitable for practical use.

[発明の効果] 本発明は以上の様に構成されており、吹錬工程で生ずる
COの2次燃焼熱による溶鋼昇温効果を含めた温度制御
を行なうことによって、吹き止め温度の連中精度を大幅
に高めることができる。□その結果、吹き止め温度を高
めに設定しておく必要がなくなり、転炉の溶損が抑制さ
れて寿命延長が可能となるばかりでなく、吹き止め温度
不足による再吹錬の必要もなくなる等、設備面及び操業
面の何れからしても多大な利益を享受することができる
[Effects of the Invention] The present invention is configured as described above, and by controlling the temperature including the effect of increasing the temperature of molten steel due to the secondary combustion heat of CO generated in the blowing process, it is possible to improve the continuous accuracy of the blow-off temperature. can be significantly increased. □As a result, there is no need to set the blow-off temperature to a high level, which not only suppresses converter melting and extends its life, but also eliminates the need for reblowing due to insufficient blow-off temperature. , significant benefits can be enjoyed from both the equipment and operational aspects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はランス高さと炉内CO,濃度の関係を示すグラ
フ、第2図は炉内CO,濃度と熱効果の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between lance height and in-furnace CO concentration, and FIG. 2 is a graph showing the relationship between in-furnace CO concentration and thermal effect.

Claims (1)

【特許請求の範囲】[Claims] 転炉吹錬を行なうに当たり、転炉排ガス中のCO_2ガ
ス濃度を測定することにより転炉内におけるCO_2ガ
ス濃度を推定し、該CO_2ガス濃度から算出される溶
鋼昇温効果を吹き止め温度の計算に組込んで吹き止め温
度をコントロールすることを特徴とする転炉吹錬制御方
法。
When performing converter blowing, the CO_2 gas concentration in the converter is estimated by measuring the CO_2 gas concentration in the converter exhaust gas, and the molten steel temperature increase effect calculated from the CO_2 gas concentration is used to calculate the blow-off temperature. A converter blowing control method characterized by incorporating the blow-stop temperature into a converter blowing control method.
JP8568086A 1986-04-14 1986-04-14 Controlling method for converter blowing Pending JPS62243708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8568086A JPS62243708A (en) 1986-04-14 1986-04-14 Controlling method for converter blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8568086A JPS62243708A (en) 1986-04-14 1986-04-14 Controlling method for converter blowing

Publications (1)

Publication Number Publication Date
JPS62243708A true JPS62243708A (en) 1987-10-24

Family

ID=13865551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8568086A Pending JPS62243708A (en) 1986-04-14 1986-04-14 Controlling method for converter blowing

Country Status (1)

Country Link
JP (1) JPS62243708A (en)

Similar Documents

Publication Publication Date Title
US3046107A (en) Decarburization process for highchromium steel
US3748122A (en) Method for dynamically controlling decarburization of steel
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
CN113981167A (en) Multi-mode smelting method based on molten iron grading system
US3323907A (en) Production of chromium steels
JPS62243708A (en) Controlling method for converter blowing
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
JPH0668123B2 (en) Nitrogenizing method in a converter with a bottom blowing tuyere
JPS6246606B2 (en)
JPS5928515A (en) Method and apparatus for refining steel
JPS5985841A (en) Manufacture of ferrochromium
US2803535A (en) Method of blowing steel melt with oxygen containing gas
JPH0219416A (en) Converter blow-refining method
KR830000064B1 (en) Melting temperature control method for refining subsurface compressed air of steel
SU1065859A1 (en) Apparatus for determining parameters of refining period in open-hearth furnace
Mi Analysis of Heat State in Blast Furnace Producing Low-Silicon Iron at Hangzhou Iron and Steel Works
JPS6389610A (en) Blowing method for converter
JPH0433846B2 (en)
JPH036312A (en) Method for controlling blowing in converter
JPS6184311A (en) Method for heating molten iron by secondary combustion method
SU1678847A1 (en) Method of controlling metal temperature in converter
KR940009670B1 (en) Molton metal cooling method
JPS61149423A (en) Operating method of vacuum degassing device provided with heating electrode
SU883180A1 (en) Method of control of blast furnace thermal conditions
JPS6249347B2 (en)