JPS61149423A - Operating method of vacuum degassing device provided with heating electrode - Google Patents

Operating method of vacuum degassing device provided with heating electrode

Info

Publication number
JPS61149423A
JPS61149423A JP27926284A JP27926284A JPS61149423A JP S61149423 A JPS61149423 A JP S61149423A JP 27926284 A JP27926284 A JP 27926284A JP 27926284 A JP27926284 A JP 27926284A JP S61149423 A JPS61149423 A JP S61149423A
Authority
JP
Japan
Prior art keywords
vacuum degassing
heating electrode
heating
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27926284A
Other languages
Japanese (ja)
Inventor
Masaru Shibata
勝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27926284A priority Critical patent/JPS61149423A/en
Publication of JPS61149423A publication Critical patent/JPS61149423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To prevent the consumption of a heating electrode owing to oxidation and the sticking of a base metal to the inside wall of a vacuum degassing vessel by detecting the O2 and CO2 concn. in the waste gas from said vessel and adjusting the exothermic temp. of the heating electrode according to the concn. thereof. CONSTITUTION:The temp. on the surface of the heating electrode 1 is measured by a noncontacting type surface thermometer 3 and the signal corresponding thereto is outputted to a central control unit 7. On the other hand, the O2 and CO2 concn. in the waste gas in the vacuum degassing vessel 11 is analyzed and the value thereof is converted to a processable signal which is outputted to the central control unit 7. The central control unit 7 determines the surface temp. of the heating electrode 1 as the target value in accordance with the input value from an IR gas analyzing instrument 6, compares the same with the actually measured value from the noncontacting type surface thermometer 3 and controls the electric energy to be thrown by a heating control circuit 8 to an electric power source 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融金属の加熱電極を備えた真空脱ガス処
理設備の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of operating a vacuum degassing facility equipped with a molten metal heating electrode.

〔従来の技術〕[Conventional technology]

真空脱ガス装置においては、転炉又は電気炉等の精錬炉
から出鋼された溶鋼を炉外績、錬する場合に、前記装置
内の真空脱ガス槽内に地金が付着しないように電極加熱
装置を設置することが行われている。またこの電極加熱
装置は、電極棒(炭素棒)に直流電流を流して発熱させ
、その輻射熱で脱ガス槽内を加熱する方法が一般的であ
る。従って、前記電極棒に電流を流して発熱させている
状態では、真空脱ガス槽内のガス組成が電極棒の寿命に
大きく影響することになる。
In a vacuum degassing device, when molten steel tapped from a refining furnace such as a converter or an electric furnace is refined, an electrode is used to prevent metal from adhering to the vacuum degassing tank inside the device. Installation of heating devices is being carried out. In addition, this electrode heating device generally uses a method in which a direct current is passed through an electrode rod (carbon rod) to generate heat, and the inside of the degassing tank is heated by the radiant heat. Therefore, when a current is passed through the electrode rod to generate heat, the gas composition in the vacuum degassing tank greatly influences the life of the electrode rod.

即ち、電極棒は炭素からなるため高温状態では02、C
O2等の酸化性ガスに+11. (2)式のように酸化
されてその消耗が促進される。
That is, since the electrode rod is made of carbon, it has a temperature of 02, C at high temperatures.
+11. to oxidizing gas such as O2. As shown in equation (2), it is oxidized and its consumption is accelerated.

C(電極棒) +CO2→2CO・・・・(1)C(電
極棒)+02→2CO・・・・(2)このため、真空脱
ガス処理中に脱炭又は昇熱を目的として槽内の溶鋼へ酸
素ガス又は酸素ガスを含有する混合ガスを供給した場合
に、未反応ガス又は発生するCO2ガスにより電極棒が
酸化、消耗して、酸素ガス又は酸素ガスを含有する混合
ガスを供給しない場合に比較して著しく電極棒の寿命が
短くなる。
C (electrode rod) +CO2 → 2CO (1) C (electrode rod) +02 → 2CO (2) Therefore, for the purpose of decarburization or heat raising during vacuum degassing treatment, When oxygen gas or a mixed gas containing oxygen gas is supplied to molten steel, the electrode rod is oxidized and consumed by unreacted gas or generated CO2 gas, and oxygen gas or a mixed gas containing oxygen gas cannot be supplied. The life of the electrode rod will be significantly shorter than that of the previous one.

(第1表) 真空脱ガス装置による溶鋼処理時の一般的な溶鋼成分、
及び酸素供給時の酸素供給条件を表1に示し、またこの
条件下で脱ガス処理を行った時の脱ガス槽内のガス組成
の経時的変化を第1図に示す。
(Table 1) General molten steel components during molten steel processing using vacuum degassing equipment,
Table 1 shows the oxygen supply conditions during oxygen supply, and FIG. 1 shows the change over time in the gas composition in the degassing tank when degassing was performed under these conditions.

溶鋼中に浸漬された羽口から供給される大部分の酸素は
、溶鋼中のCと反応してCO又はCO2となる。また一
部の酸素は溶鋼中の金属元素2例えばFe、St、Aj
!、Mn、Cr等の酸化にも消費されるが、未反応の酸
素ガスとして溶鋼中を浮上し排気されるものもある。こ
のため、排ガス中の酸素濃度は処理条件によっては数%
存在する場合がある。勿論この酸素濃度は処理時の溶鋼
成分、酸素供給量及び溶鋼に対する羽口の浸漬深さに大
きく影響を受けるものである。
Most of the oxygen supplied from the tuyeres immersed in the molten steel reacts with C in the molten steel to become CO or CO2. Also, some oxygen is absorbed by metal elements 2 in molten steel, such as Fe, St, Aj
! , Mn, Cr, etc., but some of it floats up in the molten steel as unreacted oxygen gas and is exhausted. For this reason, the oxygen concentration in the exhaust gas may be several percent depending on the processing conditions.
It may exist. Of course, this oxygen concentration is greatly influenced by the composition of the molten steel during treatment, the amount of oxygen supplied, and the depth of immersion of the tuyere into the molten steel.

電極棒の消耗速度は、第2図に示すように処理中の電極
棒の表面温度とガス中の02 、 COZ tM度に大
きく左右される。即ち、表面温度が高く且つ酸化性ガス
濃度が高いほど、電極棒の消耗速度が顕著に増大してい
ることが分かる。
As shown in FIG. 2, the rate of wear of the electrode rod depends largely on the surface temperature of the electrode rod during processing and the 02, COZ tM degree in the gas. That is, it can be seen that the higher the surface temperature and the higher the oxidizing gas concentration, the more the electrode rod wear rate increases significantly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

真空脱ガス槽内が高温で減圧下にあっては、炭素が共存
する状態ではCO2よりもCOのほうが化学的に安定で
あり、そのため前記(1)式の反応が促進され、またo
2が存在する状態では燃焼反応のため前記(2)式の反
応が促進されやすい。かくしてこのいずれの状態にあっ
ても、真空脱ガス槽内が高温になっているときには、炭
素を構成物質とする電極棒の酸化による消耗が促進され
るという問題点がある。
When the inside of the vacuum degassing tank is at high temperature and under reduced pressure, CO is chemically more stable than CO2 in the presence of carbon, so the reaction of formula (1) above is promoted, and o
In the presence of 2, the reaction of formula (2) is likely to be promoted due to the combustion reaction. In either of these conditions, there is a problem in that when the inside of the vacuum degassing tank is at a high temperature, the electrode rod, whose constituent material is carbon, is rapidly consumed due to oxidation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、加熱電極を備えた真空脱ガス装置を用い、
溶鋼に酸素ガス又は酸素ガスを含有する混合ガスを供給
しながら溶鋼を脱ガス処理する真空脱ガス装置の操業方
法において、真空脱ガス処理中に、真空脱ガス槽からの
排ガス中の02.CO2濃度を検出し、これらの濃度に
応じて加熱電極の発熱温度を調整して、その濃度が大で
あるときには真空脱ガス槽内の温度を低下させて前記(
11,f21式の反応の進行を鈍化させることにより、
炭素を構成物質とする電極の、酸化による消耗を防止す
る一方、その濃度が小であるときには前記温度を所定値
に維持して真空脱ガス槽内壁に地金が付着することを防
止して歩留りの向上を図る。
This invention uses a vacuum degassing device equipped with a heating electrode,
In a method for operating a vacuum degassing apparatus for degassing molten steel while supplying oxygen gas or a mixed gas containing oxygen gas to the molten steel, 02. The CO2 concentration is detected and the heating temperature of the heating electrode is adjusted according to these concentrations, and when the concentration is high, the temperature in the vacuum degassing tank is lowered and the above (
By slowing down the progress of the 11,f21 reaction,
This method prevents consumption of electrodes whose constituent material is carbon due to oxidation, and when the concentration of carbon is low, maintains the temperature at a predetermined value to prevent metal from adhering to the inner wall of the vacuum degassing tank, thereby improving yield. We aim to improve

〔実施例〕〔Example〕

第3.4図はこの発明の一実施例を示す、第3図はRH
式真空脱ガス装置を示している。両図中11は真空脱ガ
ス槽であり、lは炭素を構成成分としている棒状の加熱
電極である。加熱電極1は真空脱ガス槽11内に設置さ
れている。真空脱ガス槽11には排気ダクト4が設けら
れ、これが排気装置(図中路)に連続している。排気ダ
クト4にはガスサンプリング管5の一端が接続され、そ
の他端には赤外線ガス分析装置6が接続される。
Figure 3.4 shows an embodiment of the invention, Figure 3 shows the RH
The figure shows a type vacuum degassing device. In both figures, numeral 11 is a vacuum degassing tank, and l is a rod-shaped heating electrode containing carbon as a constituent component. The heating electrode 1 is installed in a vacuum degassing tank 11. The vacuum degassing tank 11 is provided with an exhaust duct 4, which is continuous with an exhaust device (path in the figure). One end of a gas sampling tube 5 is connected to the exhaust duct 4, and an infrared gas analyzer 6 is connected to the other end.

また真空脱ガス槽11には、酸素吹込羽口12の先端と
、還流ガス供給管13の基端が夫々臨む。
Further, the tip of the oxygen blowing tuyere 12 and the base end of the reflux gas supply pipe 13 face the vacuum degassing tank 11, respectively.

真空脱ガス槽11の下側には溶f414の取鍋1゜が配
置される。真空脱ガス槽11の上面には耐熱ガラス2を
介して非接触型表面温度計3が配置される。第4図にお
ける7は中央制御装置、8は加熱制御回路、9は電源を
示す。
A 1° ladle of melted F414 is placed below the vacuum degassing tank 11. A non-contact surface thermometer 3 is placed on the top surface of the vacuum degassing tank 11 with a heat-resistant glass 2 interposed therebetween. In FIG. 4, 7 is a central control device, 8 is a heating control circuit, and 9 is a power source.

而して、非接触型表面温度計3により加熱電極1表面の
温度を計測してその温度に対応する信号を中央制御装置
7に出力する一方、赤外線ガス分析装置6により真空脱
ガス槽11内の排ガス中に含有される02.CO2の濃
度を分析し、その値を、中央制御装置7で処理可能な信
号に変換して中央制御装置7に出力する。
The non-contact surface thermometer 3 measures the temperature on the surface of the heating electrode 1 and outputs a signal corresponding to the temperature to the central controller 7, while the infrared gas analyzer 6 measures the temperature inside the vacuum degassing tank 11. 02. contained in the exhaust gas of The concentration of CO2 is analyzed, the value is converted into a signal that can be processed by the central control device 7, and the signal is output to the central control device 7.

中央制御装置7は、非接触型表面温度計3と赤外線ガス
分析装置6とからの信号を入力して、加熱制御回路8が
電源9に投入すべき電力量を制御する。この制御は、赤
外線ガス分析装置6からの入力値に基づいて02濃度X
iとC0zfi度Yjとの関係から、加熱電極1の表面
温度Tfjを算出する二次元記憶テーブルを参照して、
加熱電極1の目標値としての表面温度Tijを求め、こ
れと、非接触型表面温度計3から入力された信号に基づ
く加熱電極1表面温度の実測値とを比較する。そして、
実測値が目標値を上回るときには、電源9が加熱電極1
に投入する電力量を低減させるための信号を加熱制御回
路8に出力する。この処理は一定時間毎に行うものとす
る。前記目標値としての表面温度Tij は、大体60
0〜800℃程度の範囲で設定される。その理由は、加
熱電極1の消耗速度はその表面温度が1000℃を超え
ると急激に大きくなるからである。
The central controller 7 inputs signals from the non-contact surface thermometer 3 and the infrared gas analyzer 6 and controls the amount of power that the heating control circuit 8 should input to the power source 9 . This control is based on the input value from the infrared gas analyzer 6.
With reference to a two-dimensional memory table for calculating the surface temperature Tfj of the heating electrode 1 from the relationship between i and the C0zfi degree Yj,
A surface temperature Tij as a target value of the heating electrode 1 is determined, and this is compared with an actual value of the surface temperature of the heating electrode 1 based on a signal input from the non-contact surface thermometer 3. and,
When the measured value exceeds the target value, the power source 9 turns the heating electrode 1 on.
A signal for reducing the amount of power input to the heating control circuit 8 is output to the heating control circuit 8. It is assumed that this process is performed at regular intervals. The surface temperature Tij as the target value is approximately 60
It is set in a range of about 0 to 800°C. The reason for this is that the rate of wear of the heating electrode 1 increases rapidly when its surface temperature exceeds 1000°C.

なお、酸素吹込羽口12からの酸素吹込み処理が終了す
ると、02.CO2の発生が減少するので、その後の酸
素吹込みをしない間には真空脱ガス槽11内に地金が付
着することを防止するため加熱電極lへの供給電力を上
げて真空脱が2槽内を所定の温度にまで昇温し、維持す
る。
Note that when the oxygen blowing process from the oxygen blowing tuyere 12 is completed, 02. Since the generation of CO2 is reduced, the power supplied to the heating electrode 1 is increased to prevent metal from adhering to the vacuum degassing tank 11 while the oxygen is not being blown into the vacuum degassing tank 11. Raise the temperature to a predetermined temperature and maintain it.

この発明者は、この発明の効果を確認するために次の実
験を行った。
The inventor conducted the following experiment to confirm the effects of this invention.

即ち、転炉から出鋼された、C及びMnを夫々0.10
%、0.30%、含有する1635℃の溶鋼をRH式真
空脱ガス装置によって真空脱ガス処理を行った。脱炭を
短時間で行うため、肩口より溶鋼1トンに対し1分間当
たり0.035Nn?の酸素を5分間にわたって酸素吹
込羽口より吹込んだ。
That is, the C and Mn tapped from the converter are each 0.10
%, 0.30%, molten steel at 1635° C. was subjected to vacuum degassing treatment using an RH type vacuum degassing device. In order to decarburize in a short time, 0.035Nn per minute is applied to 1 ton of molten steel from the shoulder. of oxygen was blown through the oxygen blowing tuyere for 5 minutes.

この間の排ガス組成は、処理開始直後においては35〜
45%C0,10〜15%C0212〜4%02であっ
て、その後徐々にCO及びCO2?74度が減少し、0
24度が微増した。これは脱炭反応がある程度完了した
ため、Co、 CO2量が相対的に減少したためと考え
られる。
During this period, the exhaust gas composition is 35 to 35% immediately after the start of treatment.
45% CO, 10~15% CO2 12~4%02, and then CO and CO2 gradually decrease to 74 degrees until 0
The temperature increased slightly by 24 degrees. This is thought to be because the decarburization reaction was completed to some extent, and the amounts of Co and CO2 were relatively reduced.

この実験ではOz?i度が1%以上、 CO2’1M度
が3%以上になったときに、前記テーブルを用いて加熱
電極1の表面温度を制御するように予め設定しておいた
ので、中央制御装置7から加熱制御回路8に対して前記
テーブルに従った電力値が中央制御装置7に印加された
In this experiment, Oz? Since it was previously set to control the surface temperature of the heating electrode 1 using the table when the i degree is 1% or more and the CO2'1M degree is 3% or more, the central controller 7 can control the surface temperature of the heating electrode 1. A power value according to the table was applied to the central controller 7 for the heating control circuit 8 .

この発明に係る方法が実施されない場合では、通常60
0〜750kwHの電力が投入され、真空脱ガス槽11
への地金付着を防止するため壁面温度を900〜100
0℃に上昇させるが、この実験では前記テーブルの値に
従って150〜250kwt+の電力投入量に抑えられ
、加熱電極1表面温度は950℃以下に維持した。
If the method according to this invention is not carried out, it is usually 60
Electric power of 0 to 750 kwH is applied to the vacuum degassing tank 11.
The wall temperature is set to 900-100 to prevent metal from adhering to the
Although the temperature was raised to 0°C, in this experiment, the power input was limited to 150 to 250kwt+ according to the values in the table above, and the surface temperature of the heating electrode 1 was maintained at 950°C or lower.

その後酸素吹込みを終了した後は、02.CO2の発生
量が著しく減少し、夫々1%未満、3%未満となったの
で、前記したように600〜750kiIHの最大電力
を脱ガス処理終了まで投入して、15分間真空脱ガス処
理し、真空脱ガス槽11内の地金付着を防止した。
After that, after finishing oxygen injection, 02. Since the amount of CO2 generated was significantly reduced to less than 1% and less than 3%, respectively, the maximum power of 600 to 750 kiIH was applied until the end of the degassing treatment as described above, and vacuum degassing treatment was performed for 15 minutes. Metal adhesion inside the vacuum degassing tank 11 was prevented.

(第2表) かかる制御を酸素吹込み処理毎に継続した結果、加熱電
極lの損耗速度の低:$i(加熱電極1寿命の向上)と
、真空脱ガス槽11内の地金付着による歩留りの低下防
止との効果を確認することができた。
(Table 2) As a result of continuing this control for each oxygen blowing process, the wear rate of the heating electrode 1 is low: $i (improvement in the life of the heating electrode 1) and the wear rate due to metal adhesion inside the vacuum degassing tank 11 is reduced. The effect of preventing a decrease in yield could be confirmed.

第2表は、この発明方法と従来方法とにおける加熱電極
1用炭素棒の径の消耗速度を比較したものであり、この
発明方法の場合は消耗速度が極端に低いことが理解でき
る。
Table 2 compares the rate of wear of the diameter of the carbon rod for heating electrode 1 between the method of this invention and the conventional method, and it can be seen that the rate of wear is extremely low in the case of the method of this invention.

なおこの実験では加熱電極1として棒状の電極を用いた
が、加熱電極1の形状としては必ずしも棒状に限らず、
各種の形状のものを用いることができる。
Although a rod-shaped electrode was used as the heating electrode 1 in this experiment, the shape of the heating electrode 1 is not necessarily limited to the rod-shape.
Various shapes can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、真空脱ガス槽
からの排ガス中の02.CO2濃度を検出し、これらの
濃度に応じて加熱電極の発熱温度を調整するものであり
、その濃度が大であるときには真空脱ガス槽内の温度を
低下させ、且つその濃度が小であるときには前記温度を
所定値に維持して、炭素を構成物質とする電極の、酸化
による消耗を防止する一方、真空脱ガス槽内壁に地金が
付着することを防止して歩留りの向上を図ることができ
る効果がある。
As explained above, according to the present invention, 02.0% in the exhaust gas from the vacuum degassing tank. It detects the CO2 concentration and adjusts the heating temperature of the heating electrode according to these concentrations.When the concentration is high, the temperature inside the vacuum degassing tank is lowered, and when the concentration is low, the temperature inside the vacuum degassing tank is lowered. By maintaining the temperature at a predetermined value, it is possible to prevent the electrodes containing carbon from being consumed due to oxidation, and at the same time to prevent the metal from adhering to the inner wall of the vacuum degassing tank, thereby improving the yield. There is an effect that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱ガス処理を行った時の脱ガス槽内のガス組
成の経時的変化を示すクラ7、第2図は、処理中の電極
棒の表面温度とガス中の02.CO2濃度と電極棒の消
耗速度とを示すクラ7、第3図は、この発明の一実施例
を示す説明図、第4図は、この発明の一実施例を示すブ
ロック図である。 1・・・加熱電極、3・・・非接触型表面温度計、4・
・・排気ダクト、5・・・ガスサンプリング管、6・・
・赤外線ガス分析装置、7・・・中央制御装置、8・・
・加熱制御回路、9・・・電源、10・・・取鍋、11
・・・真空脱ガス槽、12・・・酸素吹込羽口、
Figure 1 shows the change over time in the gas composition in the degassing tank during degassing treatment, and Figure 2 shows the surface temperature of the electrode rod during treatment and the 02. FIG. 3 is an explanatory diagram showing one embodiment of the present invention, and FIG. 4 is a block diagram showing one embodiment of the present invention. 1... Heating electrode, 3... Non-contact surface thermometer, 4...
...Exhaust duct, 5...Gas sampling pipe, 6...
・Infrared gas analyzer, 7... Central control unit, 8...
・Heating control circuit, 9...Power supply, 10...Ladle, 11
...Vacuum degassing tank, 12...Oxygen blowing tuyere,

Claims (1)

【特許請求の範囲】[Claims] 加熱電極を備えた真空脱ガス装置を用い、溶鋼に酸素ガ
ス又は酸素ガスを含有する混合ガスを供給しながら溶鋼
を脱ガス処理する真空脱ガス装置の操業方法において、
真空脱ガス処理中に、排ガス中のO_2、CO_2濃度
を検出し、これらの濃度に応じて前記加熱電極の発熱温
度を調整することを特徴とする加熱電極を備えた真空脱
ガス装置の操業方法。
In a method for operating a vacuum degassing device that uses a vacuum degassing device equipped with a heating electrode to degas molten steel while supplying oxygen gas or a mixed gas containing oxygen gas to the molten steel,
A method for operating a vacuum degassing apparatus equipped with a heating electrode, characterized in that during vacuum degassing treatment, O_2 and CO_2 concentrations in exhaust gas are detected and the heating temperature of the heating electrode is adjusted according to these concentrations. .
JP27926284A 1984-12-25 1984-12-25 Operating method of vacuum degassing device provided with heating electrode Pending JPS61149423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27926284A JPS61149423A (en) 1984-12-25 1984-12-25 Operating method of vacuum degassing device provided with heating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27926284A JPS61149423A (en) 1984-12-25 1984-12-25 Operating method of vacuum degassing device provided with heating electrode

Publications (1)

Publication Number Publication Date
JPS61149423A true JPS61149423A (en) 1986-07-08

Family

ID=17608709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27926284A Pending JPS61149423A (en) 1984-12-25 1984-12-25 Operating method of vacuum degassing device provided with heating electrode

Country Status (1)

Country Link
JP (1) JPS61149423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122110A (en) * 2010-12-10 2012-06-28 Jfe Steel Corp Operating method for rh vacuum degasser
JP2018109633A (en) * 2013-11-27 2018-07-12 ウジン エレクトロナイト インコーポレイテッド Continuous temperature measuring device and rh apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122110A (en) * 2010-12-10 2012-06-28 Jfe Steel Corp Operating method for rh vacuum degasser
JP2018109633A (en) * 2013-11-27 2018-07-12 ウジン エレクトロナイト インコーポレイテッド Continuous temperature measuring device and rh apparatus including the same

Similar Documents

Publication Publication Date Title
US3046107A (en) Decarburization process for highchromium steel
CN110804684B (en) CO converter2-O2Dynamic control method for temperature of mixed blowing smelting fire point area
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
JPS61149423A (en) Operating method of vacuum degassing device provided with heating electrode
CN108148945B (en) A kind of blowing process that RH refining furnace second-time burning efficiency can be improved
CN106011384A (en) Method for smelting non-sedating molten steel
US3236630A (en) Oxygen steelmaking
JP3247781B2 (en) Operation method of electric furnace
CN109280741A (en) A kind of austenitic stainless steel method of refining
JPH0776715A (en) Decarburization of carbon-containing metallic melt
JP2001280849A (en) Method and apparatus for controlling rotary kiln
JPH0348248B2 (en)
JP2002285223A (en) Method for dephosphorizing molten iron
US2502284A (en) Decarburization of steel
CN110484691A (en) A kind of RH vacuum drying oven change rifle position variable-flow decarburization and cr yield method
JPS6063307A (en) Converter steel making method of dead soft steel
JP4277819B2 (en) Heating method of molten steel
JPS6010087B2 (en) steel smelting method
US3832160A (en) Decarburizing molten steel
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPS6249347B2 (en)
JPS56130417A (en) Decarburizing method for stainless steel in arc furnace
JPS60181216A (en) Method for controlling refining of molten steel
JPS61174312A (en) Control method of melting and refining
JPH0435526B2 (en)