JPS60181216A - Method for controlling refining of molten steel - Google Patents

Method for controlling refining of molten steel

Info

Publication number
JPS60181216A
JPS60181216A JP59035254A JP3525484A JPS60181216A JP S60181216 A JPS60181216 A JP S60181216A JP 59035254 A JP59035254 A JP 59035254A JP 3525484 A JP3525484 A JP 3525484A JP S60181216 A JPS60181216 A JP S60181216A
Authority
JP
Japan
Prior art keywords
molten steel
content
blowing
arc furnace
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59035254A
Other languages
Japanese (ja)
Inventor
Kenji Fuda
賢治 附田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59035254A priority Critical patent/JPS60181216A/en
Publication of JPS60181216A publication Critical patent/JPS60181216A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To make operation easy in the stage of blowing gaseous O2 and carbonaceous material into a molten steel by using an arc furnace and refining the molten steel by tracing the transition of the temp. of the waste gas from the arc furnace and estimating exactly the content of C in the molten steel. CONSTITUTION:Gaseous O2 increases quickly the temp. of a molten steel when the air enriched with O2 and carbonaceous material are blown into the molten steel in refining of the molten steel using an arc furnace. Blowing of the O2 is then stopped and blowing of the carbonaceous material is continued to reduce part or more of the FeO formed by blowing of the gaseous O2 and to increase the content of C in the molten steel up to a desired level. The point when the content of C in the molten steel attains 0.10% is exactly estimated by measuring the temp. of the waste gas from the arc furnace without analyzing the sample of the molten steel. This method is executed easily and quickly and the operation is made extremely easy. The wasteful operation time is eventually eliminated, the consumption of electric power and material is improved and the variance in the content of C of the product steel material is decreased.

Description

【発明の詳細な説明】 本発明は、アーク炉を用いて行なう溶鋼精錬の管理法に
関し、溶鋼中のC含有量を簡易迅速かつ的確に推定する
ことにより、原料および電力の原単位を向上させ、操業
時間のロスをなく】技術を提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for managing molten steel refining using an arc furnace, and improves the basic unit of raw materials and electric power by simply, quickly and accurately estimating the C content in molten steel. We provide technology that eliminates loss of operating time.

アーク炉による鋼の精錬に関して、コストの中で大きな
比重を占める電力費を低減づるとともに操業ザイクルを
短縮ザることを目的どして、出願人は、溶鋼中に空気ま
たは酸素および炭素質材利く以下、「0月」と記す)を
吹ぎ込み(これを、[C−インジェクション]と記ず)
、c→coへの燃焼に伴う発熱で昇温を促すとともに、
発生したCOガスでスラグを泡立て、これでアークを包
み込むことによって熱損失を低減する技術を開発して、
すでに提案した(特開昭5Fj−89414号)。
Regarding the refining of steel using an arc furnace, the applicant proposes to use air or oxygen and carbonaceous materials in molten steel for the purpose of reducing electricity costs, which account for a large proportion of costs, and shortening the operation cycle. (hereinafter referred to as "0 month") (this will not be referred to as [C-injection])
, as well as promoting temperature rise due to the heat generation associated with combustion from c to co,
We developed a technology that reduces heat loss by foaming slag with the generated CO gas and enveloping the arc with it.
This has already been proposed (Japanese Unexamined Patent Publication No. 5Fj-89414).

こうし1c効果を一層高めるため、C材とともに吹き込
む酸素として純酸素ガスまたは酸素富化空気(以下、1
M索」で代表させる)を用い、当量以上の酸素を供給し
てFeの酸化による発熱をも溶鋼の昇温に利用する技術
とし、これも開示した(特開昭56−87617号)。
In order to further enhance the 1c effect, pure oxygen gas or oxygen-enriched air (hereinafter referred to as 1
This technique was also disclosed (Japanese Patent Application Laid-Open No. 87617/1983) in which the heat generated by oxidation of Fe is also used to raise the temperature of molten steel by supplying an equivalent amount or more of oxygen using a molten steel (represented by M cable).

 Feが酸化されFeOとなった、いわば過酸化状態は
、もちろん原料歩留りの点で不利益であり、スラグ量が
増大することも好ましくない。 しかし、生成したFe
Oは、後のC材の吹き込みによって、少なくとも一部分
、好適な操業を行なえば大部分が還元され、Feに戻る
ことにより過酸化状態は解消Jる。
The so-called overoxidized state in which Fe is oxidized to FeO is of course disadvantageous in terms of raw material yield, and it is also undesirable that the amount of slag increases. However, the generated Fe
O is at least partially reduced by the subsequent blowing of C material, and most of it is reduced if proper operation is carried out, and the overoxidized state is eliminated by returning to Fe.

この改良技術においては、溶鋼中に吹ぎ込むCと02の
割合を当量関係より02過剰にするため、溶鋼中のC含
有量は次第に減少する。 上記の開示において述べたよ
うに、溶鋼中のCの減少する速度は、おおよそ0.10
%を境として、それ以上では反応律速であり、以下では
拡散律速となる。
In this improved technique, the ratio of C and 02 injected into the molten steel is made to be in excess of 02 based on the equivalence relationship, so that the C content in the molten steel gradually decreases. As mentioned in the above disclosure, the rate of decrease of C in molten steel is approximately 0.10
%, above which the reaction rate is rate-limiting, and below it is diffusion rate-limiting.

精錬作業は、上記のようにいったん過酸化状態にしたも
のを引き戻すことであり、ついで所望のレベルまでC含
有量を増大させることである。 到達すべきC含有量が
どのようなレベルのものであるにIよ、作業に当って溶
鋼中のC含有量を迅速的確に把握することが、電力およ
び原料の[1スを避け、操業時間のムダをなくす上で望
ましいことである。
The refining operation consists of pulling back the peroxidized material as described above and then increasing the C content to the desired level. Regardless of the level of C content that should be reached, it is important to quickly and accurately grasp the C content in molten steel during work, to avoid the loss of electricity and raw materials, and to reduce operating time. This is desirable in terms of eliminating waste.

ところが、C含有量の測定を、溶鋼リーンプルの採取と
分析によって行なっていたのでは、わずられしいばかり
でなく、時間の短縮にも限界がある。
However, measuring the C content by sampling and analyzing molten steel lean pull is not only troublesome, but also limits the amount of time it can save.

そこで、もっと簡易に、C含有量を時々刻々把握Cきる
手段があれば、溶鋼精錬の管理が好都合に行なえる。
Therefore, if there were a means to more easily grasp the C content from time to time, the management of molten steel refining could be carried out more conveniently.

さきに出願人は、ベツレル内で溶鋼に酸素ガスを吹き込
んで脱炭を行なう精錬においで、反応容器から出る排ガ
スが単位時間に持り去る熱量を合金元素添加用のシュー
タ−の冷11水の温度上昇の変化を利用して測定し、そ
の変化によって溶鋼中のC含有量を知り、精錬を管理す
る技術を発明した(特願昭57−136532号)。 
これは、溶鋼中C含有量の変化が炉内の熱化学反応を左
右し、発熱量の変化をもたらすので、他の条件を一定に
保って発熱量を追跡することにより、上記の5− C含有量の変化を見出せるという知見にもとづいている
In the refining process in which oxygen gas is blown into the molten steel to decarburize it in Betzler, the applicant has proposed that the amount of heat carried away per unit time by the exhaust gas emitted from the reaction vessel can be absorbed into the cold 11 water of the chute for adding alloying elements. He invented a technique for controlling refining by measuring the C content in molten steel by measuring it using changes in temperature rise (Japanese Patent Application No. 57-136532).
This is because changes in the C content in the molten steel affect the thermochemical reactions in the furnace, resulting in changes in the calorific value, so by keeping other conditions constant and tracking the calorific value, the above 5-C This is based on the knowledge that changes in content can be detected.

続いて出願人は、この知見がアーク炉精錬にも適用でき
ることを明らかにし、すでに提案した(特願昭58−1
313155号)。 アーク炉内で発生ずる熱量の変化
は、炉壁の冷却用水、とくに「ジャムクーラー」とよば
れる冷却ジャケットの冷却用水の熱負荷を測定すること
により把握できる。
Subsequently, the applicant clarified that this knowledge could be applied to arc furnace refining, and had already proposed it (Japanese Patent Application No. 58-1).
No. 313155). Changes in the amount of heat generated in an arc furnace can be ascertained by measuring the heat load of the cooling water on the furnace wall, especially the cooling water on the cooling jacket called a "jam cooler."

さらに研究を進めた結果、アーク炉からの排ガス温度の
推移を追跡づれば、それにもとづいて溶鋼中のC含有量
が推定できることを見出して本発明に至った。
As a result of further research, it was discovered that by tracking the change in exhaust gas temperature from the arc furnace, the C content in molten steel can be estimated based on it, leading to the present invention.

本発明の溶鋼精錬の管理法は、アーク炉を用いて溶鋼を
精錬にするに当り、溶鋼中に酸素およびC材を吹き込ん
で速やかに溶鋼の温度を高め、ついで酸素の吹き込みは
停止するがC材の吹き込みは継続し、酸素の吹き込みに
より生成した酸素鉄の少なくとも一部を還元するととも
に溶鋼中のC含有量を所望のレベルまで増大さける精錬
法にお6− いて、アーク炉からの排ガス温度のlft移にもとづい
て溶鋼中のC含有量を推定することを特徴とする。
The method of controlling molten steel refining of the present invention is that when refining molten steel using an arc furnace, oxygen and C material are injected into the molten steel to quickly raise the temperature of the molten steel, and then the injection of oxygen is stopped, but C The blowing of the material continues, reducing at least a portion of the oxygen iron produced by the blowing of oxygen, and increasing the C content in the molten steel to a desired level. The present invention is characterized in that the C content in molten steel is estimated based on the lft shift of .

本発明は、理論的には、つぎの考察にもとづいている。The present invention is theoretically based on the following considerations.

 すなわち、スラグ中のFe0f7)還元により生成す
るC Oガスか多量に(2るとぎは排ガス温度がそれに
比例して上昇し、従ってその度合からスラグ中Fe(]
III度が推定でき、スラグ中[eOと溶鋼中Cとの平
衡関係からC含有量が推定できるという考えである。
In other words, a large amount of CO gas generated by reduction of Fe0f7) in the slag increases (2) The exhaust gas temperature rises in proportion to it, and therefore, from that degree, Fe0f7) in the slag
The idea is that the C content can be estimated from the equilibrium relationship between eO in the slag and C in the molten steel.

これを概念的に示したものが第1図であって、アーク炉
内でスラグ中f−eo%と溶鋼中C%とが図のA付近に
あるものに対してC−インジェクションを行なうと、F
eo/Cの平衡が、曲線」−をBに向って動く。 前述
のように、C=0.10%以J−では反応律速であるか
ら、8点以降は0%の増大にもかかわらず、Fe0%は
ほぼ一定になる。
This is conceptually shown in Figure 1. When C-injection is performed in an arc furnace where the f-eo% in the slag and the C% in the molten steel are around A in the figure, F
The equilibrium of eo/C moves along the curve ``-'' toward B. As mentioned above, since the reaction is rate-limiting when C=0.10% or more J-, Fe0% becomes almost constant after 8 points despite the 0% increase.

この事実は実験的に確かめられており、それを示すもの
が第2図である。 鋼の組成により曲線の位置は異なる
が、いり゛れも第1図に示したような傾向をみせている
This fact has been experimentally confirmed, and FIG. 2 shows it. Although the position of the curve differs depending on the composition of the steel, it all shows the same tendency as shown in Figure 1.

前述の、COガスの生成量が多くなれば11ガスの温度
が高まるというのは、その燃焼熱が増大づ′るからにほ
かならない。 !l−ると、精錬時間の進行に伴う排ガ
ス温度は、第3図に示すような経過をたどることになる
。 すなわち、C−インジェクションにより、溶鋼中の
C含有量が増大するとともにスラグ中FeOの)W元に
J:り生成するCOが燃焼して排ガス温度は上昇するが
、Fe0(7)3!元が進んでその速度が衰えてくると
調度上昇も鈍くなり、C=0.10%をこえて反応律速
の領域になると、COの生成量は頭打ちからFeOの減
少につれて減りはじめ、排ガス温度は頭打ちから低下傾
向をみせることになる。
The reason why the temperature of gas 11 increases as the amount of CO gas produced increases is simply because the heat of combustion thereof increases. ! l-, the exhaust gas temperature will follow the course as shown in FIG. 3 as the refining time progresses. That is, due to C-injection, the C content in the molten steel increases, and the CO generated from the W of FeO in the slag is combusted and the exhaust gas temperature rises, but Fe0(7)3! As the rate decreases as the concentration progresses, the temperature rise also slows down, and when C = 0.10% is exceeded and the reaction rate is limited, the amount of CO produced reaches a plateau and begins to decrease as FeO decreases, and the exhaust gas temperature decreases. It will start to show a downward trend after hitting a plateau.

この考えが正しいことも、実験により確められた。 1
なわち、第4図に示すように、80M440鋼のアーク
炉精錬において、酸素吹き込みを止めたのちC−インジ
ェクションを停止する少し前に排ガス温度の最高値があ
り、その点に至ったときのサンプルは、0含有岨が0.
10%内外であった。 また、第3図における排ガス温
度の三つの領域、すなわら A・・・・・・上昇過程 B・・・・・・最高温度から5°C以内C・・・・・・
下降過程 のそれぞれで採取した溶鋼サンプル中のC含有量の分布
は、第5図に示すとおりである。 Bの領域つまり排ガ
スの温度が最高温度から5℃以内の領域と、C=0.1
0±0.02%の範囲とが対応していることが明らかで
ある。
The validity of this idea was also confirmed through experiments. 1
In other words, as shown in Figure 4, in the arc furnace refining of 80M440 steel, the exhaust gas temperature reaches its maximum value shortly before stopping C-injection after stopping oxygen injection, and the sample when that point is reached. has a 0-containing slope of 0.
It was within 10%. In addition, the three regions of exhaust gas temperature in Fig. 3 are A... Rising process B... Within 5°C from the maximum temperature C...
The distribution of C content in the molten steel samples taken during each descending process is as shown in FIG. Region B, that is, the region where the exhaust gas temperature is within 5°C from the maximum temperature, and C = 0.1
It is clear that the range corresponds to 0±0.02%.

このことは、排ガスの温度が最高点に達した点をもって
、C=0.10%と推定しで誤りではないことを示して
いる。 最高温度への到達は、いうまでもなく温度の変
化率がゼロに低下した点であるから、変化率を連続的に
測定することにより、ごくわずかな時間おくれをもって
知ることができる。
This shows that it is not a mistake to estimate C=0.10% at the point where the temperature of the exhaust gas reaches its highest point. Needless to say, reaching the maximum temperature is the point at which the rate of change in temperature has decreased to zero, so by continuously measuring the rate of change, it can be known with a very small delay.

もっども現実の操業においては、排ガス湿度の推移は操
業の条件によって、多少は様相が異なこ9− と、および最高温度を示1時間が若干の幅をもちやすい
といった事実に昭意しなければならない。
However, in actual operations, we must be aware of the fact that the trends in exhaust gas humidity vary somewhat depending on the operating conditions9- and that the hour at which the maximum temperature occurs tends to vary slightly. No.

まず、排ガス温度の推移に対しては、C−インジェクシ
ョンの速度、すなわち一定量の溶鋼とスラグに対して単
位時間に吹き込まれるC材の量が、影響を及ぼす。 こ
の関係を実測したところ、第6図に示1結果を得た。 
図にみるとおり、C−インジェクション速度が高ければ
、最高温度は高くなるが、その影響はさして大きくなく
、図の曲線〈実線フであられしたにうになる。 昇降温
度に対しては大きな影響があり、勾配の急な直線(破線
)で示したような関係がみられた。
First, the rate of C-injection, that is, the amount of C material injected into a certain amount of molten steel and slag per unit time has an effect on the change in exhaust gas temperature. When this relationship was actually measured, the results shown in FIG. 6 were obtained.
As shown in the figure, the higher the C-injection rate, the higher the maximum temperature, but the effect is not so great that the curve in the figure (the solid line F) becomes like that. There was a large effect on the temperature rise and fall, and a relationship as shown by a straight line with a steep slope (dashed line) was observed.

このほかには、C材に先立って、または0月とともに導
入する酸素吹き込み速度の影響がある。
In addition to this, there is an effect of the oxygen blowing rate, which is introduced before or at the same time as the C material.

昇温速度との関係を実測した結果は、第7図に示すとお
りである。
The results of actually measuring the relationship with the temperature increase rate are shown in FIG.

そこで、本発明の実施に当っては、アーク炉の容量や鋼
およびスラグの組成に応じて、酸素吹き込み速度および
C−インジェクション速度を選択すべきである。 いず
れにせよある操業条件にお−1〇− いて、排ガス温度の変化と溶鋼中C含有量とが、最高温
度到達点とC=0.10%との結びつきを中心にどのよ
う4T関係にあるかは、実験的にN1認しな(Jればな
らないが、いらど確認しておけば、以後は排ガス温度の
推移を追跡するだりでよい。
Therefore, in implementing the present invention, the oxygen blowing rate and C-injection rate should be selected depending on the capacity of the arc furnace and the compositions of the steel and slag. In any case, under certain operating conditions, how does the change in exhaust gas temperature and the C content in molten steel have a 4T relationship centered on the connection between the maximum temperature and C = 0.10%? It is necessary to experimentally confirm N1 (J), but once you have confirmed it, you can track the change in exhaust gas temperature from now on.

溶鋼中C含有量が0.10%を超えた後は、C−インジ
ェクションの量に応じて、溶鋼中0含有量が直線的に増
加して行く。 その模様は、第8図に一例を示J−どお
りである。 従って、容易に所望のC含有量をもった鋼
を得ることかできる。
After the C content in the molten steel exceeds 0.10%, the 0 content in the molten steel increases linearly depending on the amount of C-injection. The pattern is as shown in FIG. 8, an example of which is shown in FIG. Therefore, steel with a desired C content can be easily obtained.

本発明の方法は、任意の鋼のM錬に適用できるが、酸素
吹ぎ込み/C−インジェクション精錬法に共通の特徴と
してC50,40%の比較的低炭素領域の鋼を製造する
のに有利である。 酸素の吹き込みにより、C含有量を
極度に低下させるので、^炭素領域に移すためには多量
のC−インジェクションを要覆るからである。
Although the method of the present invention can be applied to M refining of any steel, it is advantageous for producing steel in a relatively low carbon region of C50.40% as a common feature of the oxygen blowing/C-injection refining method. It is. This is because the C content is extremely reduced by blowing in oxygen, and a large amount of C-injection is required to transfer it to the carbon region.

本発明によるとぎは、アーク炉を用いた溶鋼の精錬を、
02冨化−〇インジェクション法で実施覆る場合に、溶
鋼中C=0.10%に至る点を、溶鋼サンプルの分析を
行なわずに、排ガスの温度の測定といったような連続的
で簡易かつ迅速な手段で直ちに知ることができ、その後
の044の吹き込みにより増加したC含有量を、これも
サンプルの分析によらず的確に推定できるから、操業が
著しく容易になる。 その結果、操業時間のムダがなく
なり、電力および資材の原単位が向上し、かつ製品鋼材
のC含有量のバラツキも小さくできる。
The sharpener according to the present invention is capable of refining molten steel using an arc furnace.
02 Enrichment - Implementation using the injection method, the point at which C in molten steel reaches 0.10% can be determined by continuous, simple and quick methods such as measuring the temperature of exhaust gas without analyzing molten steel samples. Since the C content increased by the subsequent blowing of 044 can be accurately estimated without relying on sample analysis, the operation becomes significantly easier. As a result, there is no wasted operating time, the unit consumption of electricity and materials is improved, and the variation in C content of product steel can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、ともにスラグ中FeO濃度と溶
鋼中C含有量との関係をあられすグラフであって、第1
図は概念的な傾向を示し、第2図は実験値にもとづくも
のである。 第3図および第4図は、ともにアーク炉精錬にお(〕る
R間の経過と排ガス温度の推移との関係をあられすグラ
フであって、第3図は概念的な傾向を示し、第4図は実
験値にもとづくものである。 第5図は、第3図の各領域における溶鋼中C含有量の分
布を示すヒストグラムである。 第6図は、C−インジエクションの速度が排ガスの到達
する最高温度および昇温速度に与える影響を示づグラフ
である。 第7図は、酸素吹き込みの速度が排ガスの昇温速度に与
える影響を示1グラフC゛ある。 第8図は、溶鋼中c=o、io%を超えた領域にお【ノ
る、(C−インジェクション吊どC含有量との関係を示
すグラフである。 特許出願人 大同特殊鋼株式会社 代理人 弁理士 須 賀 総 夫 =13− 舞”p < rd −m 〆
1 and 2 are graphs showing the relationship between the FeO concentration in slag and the C content in molten steel.
The figure shows a conceptual trend, and Figure 2 is based on experimental values. Figures 3 and 4 are both graphs showing the relationship between the R time and the flue gas temperature transition in arc furnace refining, with Figure 3 showing a conceptual trend, and Figure 4 Figure 4 is based on experimental values. Figure 5 is a histogram showing the distribution of C content in molten steel in each region of Figure 3. Figure 6 shows that the C-injection speed is Fig. 7 is a graph showing the influence of the maximum temperature reached on the temperature rise rate of the exhaust gas. This is a graph showing the relationship between C-injection and C content in the region exceeding c=o,io% in molten steel.Patent applicant Daido Steel Co., Ltd. Agent Patent attorney Suga Sofu = 13- Mai"p < rd -m 〆

Claims (3)

【特許請求の範囲】[Claims] (1) アーク炉を用いて溶鋼を精錬するに当り、溶鋼
中に酸素ガスまたは酸素富化空気(以下、「IIl素」
で代表さゼる)および炭素質材料(以下、「C材」と記
す)を吹き込んで速やかに溶鋼の温度を高め、ついで酸
素の吹ぎ込みは停止するがC材の吹き込みは継続し、酸
素の吹き込みにより生成した酸化鉄の少なくとも一部を
還元するとともに溶鋼中のC含有量を所望のレベルまで
増大させる精錬法において、アーク炉からの排ガス温度
の推移にもとづいて溶鋼中のC含有量を推定することを
特徴とする溶鋼精錬の管理法。
(1) When refining molten steel using an arc furnace, oxygen gas or oxygen-enriched air (hereinafter referred to as "II element") is added to the molten steel.
The temperature of the molten steel is quickly raised by blowing carbonaceous material (hereinafter referred to as "C material"), and then the blowing of oxygen is stopped, but the blowing of C material continues, and the oxygen In a refining method that reduces at least a portion of iron oxide produced by blowing and increases the C content in molten steel to a desired level, the C content in molten steel is reduced based on changes in the exhaust gas temperature from the arc furnace. A method for managing molten steel refining characterized by estimation.
(2) アーク炉からの排ガスの温度が最高温度に到達
したときに、溶鋼中のC含有量を約0010%と推定す
る特許請求の範囲第1項の管Il!法。
(2) The pipe Il of claim 1, in which the C content in the molten steel is estimated to be approximately 0010% when the temperature of the exhaust gas from the arc furnace reaches the maximum temperature. Law.
(3) 溶鋼中C含有量が0.10%と推定された時点
から後に溶鋼に吹ぎ込まれたC材の量にもとづいて溶鋼
中C含有量を推定づる特許請求の範囲第1項または第2
項の管理法。
(3) Claim 1, which estimates the C content in molten steel based on the amount of C material injected into the molten steel after the time when the C content in the molten steel is estimated to be 0.10%, or Second
How to manage the section.
JP59035254A 1984-02-28 1984-02-28 Method for controlling refining of molten steel Pending JPS60181216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035254A JPS60181216A (en) 1984-02-28 1984-02-28 Method for controlling refining of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035254A JPS60181216A (en) 1984-02-28 1984-02-28 Method for controlling refining of molten steel

Publications (1)

Publication Number Publication Date
JPS60181216A true JPS60181216A (en) 1985-09-14

Family

ID=12436681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035254A Pending JPS60181216A (en) 1984-02-28 1984-02-28 Method for controlling refining of molten steel

Country Status (1)

Country Link
JP (1) JPS60181216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525378A (en) * 2022-01-27 2022-05-24 北京科技大学 Method for determining average carbon content of mixed scrap steel based on Consteel electric arc furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525378A (en) * 2022-01-27 2022-05-24 北京科技大学 Method for determining average carbon content of mixed scrap steel based on Consteel electric arc furnace
CN114525378B (en) * 2022-01-27 2022-11-04 北京科技大学 Method for determining average carbon content of mixed scrap steel based on Consteel electric arc furnace

Similar Documents

Publication Publication Date Title
US3046107A (en) Decarburization process for highchromium steel
US3594155A (en) Method for dynamically controlling decarburization of steel
JP5225308B2 (en) Vacuum decarburization refining method for chromium-containing molten steel
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
JPS60181216A (en) Method for controlling refining of molten steel
US3314781A (en) Method for the control of blast refining of carbon-containing metal melts
JP2001181727A (en) Method for monitoring condition in electric furnace
CN113388712A (en) Low-carbon LF (ladle furnace) process steel converter smelting method
JPS61174312A (en) Control method of melting and refining
JPS6024312A (en) Method for managing refining of molten steel
JP4357082B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH029645B2 (en)
RU2107737C1 (en) Method of steel melting in converter
JPS61149423A (en) Operating method of vacuum degassing device provided with heating electrode
KR100225249B1 (en) Remaining slag control method of of slopping control
JP3254831B2 (en) Metal oxide smelting reduction method
JP3725312B2 (en) Method for refining chromium-containing molten steel
US4619694A (en) Method of refining steel and apparatus
CN116377160A (en) Slag control method for smelting low-carbon steel by converter
JPS61195914A (en) Method for controlling temperature of molten steel in vacuum refining furnace
KR930001010B1 (en) Process for making si-mn
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
JPS62243708A (en) Controlling method for converter blowing
JPH036312A (en) Method for controlling blowing in converter