JPS62242363A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS62242363A
JPS62242363A JP8578486A JP8578486A JPS62242363A JP S62242363 A JPS62242363 A JP S62242363A JP 8578486 A JP8578486 A JP 8578486A JP 8578486 A JP8578486 A JP 8578486A JP S62242363 A JPS62242363 A JP S62242363A
Authority
JP
Japan
Prior art keywords
charge transfer
potential
transfer device
charge
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8578486A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
秀和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8578486A priority Critical patent/JPS62242363A/en
Publication of JPS62242363A publication Critical patent/JPS62242363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high speed driving of a charge transfer device by obtaining electric potential distribution necessary for transfer to the next stage of signal charge according to drift action of an electric field by an extremely simple construction by a method wherein the shape of width of a channel region to be formed to a semiconductor substrate is so formed as to be narrowed gradu ally toward the rear of the charge transfer direction. CONSTITUTION:The shape of width of the channel region 1 of a charge transfer device is so formed as to be narrowed gradually toward the rear of the charge transfer direction. When a positive voltage (VH) to make potential to be deep in regard to signal charge (electron) is applied to a terminal phi1, and moreover a positive voltage (VL) to make potential to be shallow is applied to terminals phi2 and phi3, a potential well is generated under a gate electrode 5a. When signal charge is injected to the lower part of the gate electrode 5a in this condition, and the voltage VH is applied to the terminal phi2 in succession, and moreover the voltage VL is applied to the terminals phi1 and phi3, signal charge is transferred rapidly according to drift action receiving force from an electric field according to the gradient of inside potential, and high speed driving of the charge transfer device can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電荷転送装置に関し、特に例えば固体撮像
装置などに用いられる電荷転送装置の改良構造に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge transfer device, and particularly to an improved structure of a charge transfer device used in, for example, a solid-state imaging device.

〔従来の技術〕[Conventional technology]

従来例でのこの種の電荷転送装置として、ご覧では武石
喜幸、香山晋監訳「電荷転送デバイス」近代化学社発行
、第21頁に記載されている電荷転送装置の概要構成を
、第3図(a)、および(b)ないしくd)に示す。第
3図(a)は同電荷転送装置の要部構成を示す断面図、
同図(b)ないしくd)は同上装置の電位分布を示す説
明図である。
As a conventional example of this type of charge transfer device, the general structure of the charge transfer device is shown in Figure 3 ( Shown in a), and (b) to d). FIG. 3(a) is a sectional view showing the main part configuration of the charge transfer device,
Figures (b) to d) are explanatory diagrams showing the potential distribution of the above device.

最初に、この第3図(a)に示す従来の電荷転送装置の
概要構成について述べる。
First, the general structure of the conventional charge transfer device shown in FIG. 3(a) will be described.

すなわち、この第3図(a)において、半導体基板3の
ゲート絶縁膜4上には、同基板3に電荷を蓄積してポテ
ンシャル井戸を形成するのに必要な電圧印加のための9
例えばアルミニウム、多結晶シリコンなどによる第1層
のゲート電極5と第2層のゲート電極6とが形成されて
おり、またゲート絶縁膜4上にあって、第1層のゲート
電極5と第2層のゲート電極6との間に、これらの両電
極を分離するための層間絶縁膜7が形成され、かつ第2
層のゲート電極8の両端部については、電極間に制御し
得ない電位障壁を生じさせないようにするために、層間
絶縁膜7を介して、第1層のゲート電極5の端部に重ね
合せである。
That is, in FIG. 3(a), on the gate insulating film 4 of the semiconductor substrate 3, there are 9 layers for applying a voltage necessary to accumulate charge in the substrate 3 and form a potential well.
For example, a first layer gate electrode 5 and a second layer gate electrode 6 are formed of aluminum, polycrystalline silicon, etc. An interlayer insulating film 7 for separating these two electrodes is formed between the gate electrode 6 of the second layer and the second gate electrode 6.
Both ends of the gate electrode 8 of the first layer are overlapped with the ends of the gate electrode 5 of the first layer via the interlayer insulating film 7 in order to prevent an uncontrollable potential barrier from occurring between the electrodes. It is.

次に、この第3図(a)に示す従来の電荷転送装置を3
相で駆動した時の動作について述べる。この場合、半導
体基板3はp形半導体である。
Next, the conventional charge transfer device shown in FIG.
The operation when driven by phase will be described. In this case, the semiconductor substrate 3 is a p-type semiconductor.

まず、端子φ1に、信号電荷(電子)に対してポテンシ
ャルが深くなるような正の電圧(vH)を印加させ、か
つ順次に隣接する端子φ2およびφ3に、ポテンシャル
が浅くなるような正の電圧(VL)を印加させておき、
この状態で、電圧VHが印加されているゲート電極5a
の下に、信号電荷8を注入する。この信号電荷8が注入
された状態を第3図(b)に示す。
First, a positive voltage (vH) that makes the potential deeper with respect to the signal charge (electron) is applied to the terminal φ1, and a positive voltage that makes the potential shallower is sequentially applied to the adjacent terminals φ2 and φ3. (VL) is applied,
In this state, the gate electrode 5a to which the voltage VH is applied
A signal charge 8 is injected below. The state in which the signal charge 8 is injected is shown in FIG. 3(b).

続いて、端子φ2に電圧VHを印加させ、かつ端子φ1
およびφ3に電圧vLt−印加させると、第3図(c)
に示すように、信号電荷8がゲート電極6aの下に転送
され、さらに、端子φ3に電圧vHを印加させ、かつ端
子φ1およびφ2に電圧V、を印加させると、第3図(
d)に示すように、信号電荷8がゲート電極5bの下に
転送されるのであり、この動作を繰り返すことによって
、信号電荷8を第3図(a)に矢印(A)で示す方向に
、順次、転送させることができるのである。
Subsequently, voltage VH is applied to terminal φ2, and terminal φ1
When voltage vLt- is applied to φ3 and φ3, Fig. 3(c)
As shown in FIG. 3, when the signal charge 8 is transferred to the bottom of the gate electrode 6a and the voltage vH is applied to the terminal φ3 and the voltage V is applied to the terminals φ1 and φ2, as shown in FIG.
As shown in d), the signal charge 8 is transferred below the gate electrode 5b, and by repeating this operation, the signal charge 8 is transferred in the direction shown by the arrow (A) in FIG. 3(a). They can be transferred sequentially.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来での電荷転送装置は、前記のように構成され、かつ
動作されるようになっており、一つの電位井戸から次段
井戸への信号電荷の移動が、その信号電荷の拡散によっ
てなされるために、これを高速のクロックパルスにより
駆動させた場合、信号電荷を転送し切れずに、その転送
効率が低下して了うと云う問題点があった。
Conventional charge transfer devices are configured and operated as described above, and the movement of signal charges from one potential well to the next stage well is achieved by diffusion of the signal charges. Another problem is that when this is driven by high-speed clock pulses, the signal charges cannot be transferred completely and the transfer efficiency decreases.

この発明は従来のこのような問題点を解消するためにな
されたものであって、その目的とするところは、信号電
荷の転送を、電界によるドリフト作用によって行なわせ
るようにした。この種の電荷転送装置を提供することで
ある。
The present invention was made to solve these conventional problems, and its purpose is to transfer signal charges by the drift effect caused by an electric field. The object of the present invention is to provide a charge transfer device of this type.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、この発明に係る電荷転送装
置は、半導体基板に形成されるチャネル領域の幅形状を
、電荷転送方向の後方に向って、徐々に狭くなるように
形成したものである。
In order to achieve the above object, the charge transfer device according to the present invention is such that the width of the channel region formed in the semiconductor substrate is gradually narrowed toward the rear in the charge transfer direction. .

〔作   用〕[For production]

すなわち、この発明においては、チャネル領域の幅の変
化が、素子分離領域からチャネル領域に拡散される不純
物の、チャネル領域のポテンシャル分布に与える影響に
差異を生じさせ、その結果として、電界のドリフト作用
によって、信号電荷を次段に転送させるのに必要な電位
分布を生じさせ得るのである。
That is, in this invention, a change in the width of the channel region causes a difference in the influence of impurities diffused from the element isolation region into the channel region on the potential distribution of the channel region, and as a result, the drift effect of the electric field is reduced. This makes it possible to generate the potential distribution necessary to transfer the signal charge to the next stage.

〔実 施 例〕〔Example〕

以下、この発明に係る電荷転送装置の一実施例につき、
第1図および第2図を参照して詳細に説明する。
Hereinafter, an embodiment of the charge transfer device according to the present invention will be described.
This will be explained in detail with reference to FIGS. 1 and 2.

第1図(a)、(b)はこの実施例装置の概要を示す平
面構成図、断面図、第2図(a)は同電荷転送装置の要
部構成を示す断面図、同図(b)ないしくd)は同上装
置の電位分布を示す説明図である。
FIGS. 1(a) and (b) are a plan view and a cross-sectional view showing an outline of the device of this embodiment, FIG. 2(a) is a cross-sectional view showing the main structure of the charge transfer device, and FIG. ) to d) are explanatory diagrams showing the potential distribution of the same device.

第1図(a) 、 (b)および第2図(a)実施例装
置において、前記第3図(a)従来例装置と同一符号は
同一または相当部分を示しており、また、符号1はn形
チャネル領域、2はp形不純物のドーピングをなした素
子分離領域で、このp形不純物は、高温処理によって充
分に拡散させるものとし、この実施例装置では、第1図
(a)に示したように、前記チャネル領域1の幅形状を
、電荷転送方向の後方に向って、徐々に狭くなるように
形成したものである。
In the embodiment device shown in FIGS. 1(a) and 2(b) and FIG. 2(a), the same reference numerals as in the conventional device shown in FIG. 3(a) indicate the same or corresponding parts, and the reference numeral 1 is The n-type channel region 2 is an element isolation region doped with p-type impurities, and the p-type impurities are sufficiently diffused by high-temperature treatment. As described above, the width of the channel region 1 is formed so as to gradually become narrower toward the rear in the charge transfer direction.

こ−で、今、信号電荷として電子を考えると、素子分離
領域2からのp形不純物の拡散は、電子に対するポテン
シャルを低くするように働き、一方、その時のポテンシ
ャルの低下は、素子分離領域2に近いほど強く働くこと
になり、このため、チャネル領域1の幅形状を、前記し
た如く、電荷転送方向の後方に向い、徐々に狭くなるよ
うに形成することによって、同チャネル領域1の幅の狭
い部分でポテンシャルが低くなり、第2図(b)に示す
ような電位分布になる。
Now, considering electrons as signal charges, the diffusion of p-type impurities from the element isolation region 2 acts to lower the potential for electrons. Therefore, as described above, by forming the width of the channel region 1 so that it gradually narrows toward the rear in the charge transfer direction, the width of the channel region 1 can be reduced. The potential becomes low in the narrow portion, resulting in a potential distribution as shown in FIG. 2(b).

第2図(b)ないしくd)は、この実施例での電荷転送
装置を3相で駆動した時の、ポテンシャルの変化を示し
たものである。
FIGS. 2(b) to 2d) show changes in potential when the charge transfer device in this embodiment is driven in three phases.

こ−でもまず、端子φ1に、信号電荷(電子)に対して
ポテンシャルが深くなるような正の電圧(V )を印加
させ、かつ端子φ およびφ3に、ポH2 テンシャルが浅くなるような正の電圧(VL)を印加さ
せると、ゲート電極5aの下には、第2図(c)に示す
ようなポテンシャル井戸ができ、この状態でゲート電極
5aの下に信号電荷8を注入する。
In this case, first, a positive voltage (V) is applied to the terminal φ1 so that the potential becomes deep with respect to the signal charge (electron), and a positive voltage (V) is applied to the terminals φ and φ3 so that the potential becomes shallow with respect to the signal charge (electron). When a voltage (VL) is applied, a potential well as shown in FIG. 2(c) is created under the gate electrode 5a, and in this state, the signal charges 8 are injected under the gate electrode 5a.

続いて、端子φ に電圧VHを印加させ、かつ端子φ 
およびφ に電圧VLを印加させると、電位分布は、第
2図(c)に示す状態から、第2図(d)に示す状態に
なって、信号電荷8がゲート電極8aの下に転送、つま
り信号電荷8は、内部電位の勾配による電界から力を受
けて、ドリフト作用により迅速に転送されるもので、高
速駆動が可能となり、この動作を繰り返すことによって
、信号電荷8を第2図(a)に矢印(B)で示す方向に
、順次。
Subsequently, voltage VH is applied to terminal φ, and terminal φ
When voltage VL is applied to φ and φ, the potential distribution changes from the state shown in FIG. 2(c) to the state shown in FIG. In other words, the signal charge 8 receives a force from the electric field due to the gradient of the internal potential and is quickly transferred by the drift effect, making high-speed driving possible. By repeating this operation, the signal charge 8 is transferred as shown in FIG. Sequentially in the direction shown by arrow (B) in a).

効率良く転送させ得るのである。This allows for efficient transfer.

なお、前記実施例装置においては、チャネル領域形成の
際での、素子分離領域からの不純物の拡散によるチャネ
ル領域のポテンシャルの変化を利用するようにしている
が、不純物の導入は、適当なマスク材料を用いて、別途
に行なうようにしても良い。
Note that in the device of the above embodiment, the change in the potential of the channel region due to the diffusion of impurities from the element isolation region is utilized when forming the channel region. This may be done separately using .

また、前記実施例装置の場合、チャネル領域の形状は、
これを直線的に変化させているが、曲線的に変化させる
ようにしても良く、適当な形状を選択することで、さま
ざまなポテンシャル分布を実現できることが明らかであ
る。
Furthermore, in the case of the device of the embodiment, the shape of the channel region is as follows:
Although this is changed linearly, it is also possible to change it curvedly, and it is clear that various potential distributions can be realized by selecting an appropriate shape.

さらに、前記実施例装置では、三相のクロックパルス信
号で駆動させる場合について述べたが、その他、二相と
か四相以上のクロックパルス信号により駆動させても良
く、同様な作用、効果を得られるのである。
Further, in the above-mentioned embodiment, the case where the device is driven by a three-phase clock pulse signal has been described, but it may also be driven by a two-phase or four-phase or more clock pulse signal, and similar effects and effects can be obtained. It is.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、半導体基板に形
成されるチャネル領域の幅形状を、電荷転送方向の後方
に向って、徐々に狭くなるように形成するだけの、極め
て簡単な構造により、電界のドリフト作用によって、信
号電荷を次段に転送させるのに必要な電位分布が得られ
、高速駆動が可能で、転送効率が高く、しかも構造の簡
単な装置構成を容易に提供できるなどの優れた特長を有
するものである。
As described in detail above, according to the present invention, the width of the channel region formed in the semiconductor substrate is formed to be gradually narrower toward the rear in the charge transfer direction, which is an extremely simple structure. , the potential distribution necessary to transfer the signal charge to the next stage is obtained by the drift effect of the electric field, high-speed driving is possible, transfer efficiency is high, and a device configuration with a simple structure can be easily provided. It has excellent features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)はこの発明に係る電荷転送装
置の一実施例による概要を示す平面構成図。 および断面図、第2図(a)は同電荷転送装置の要部構
成を示す断面図、同図(b)ないしくd)は同上装置の
電位分布を示す説明図であり、また第3図(a)は従来
例による電荷転送装置の要部構成を示す断面図、同図(
b)ないしくd)は同上装置の電位分布を示す説明図で
ある。 1・・・・チャネル領域、2・・・・素子分離領域、3
・・・・半導体基板、4・・・・ゲート絶縁膜、5・・
・・第1層のゲート電極、6・・・・第2層のゲート電
極、7・・・・層間絶縁膜、8・・・・信号電荷、B・
・・・電荷転送方向。 代理人  大  岩  増  雄 第1図 (0)   □B 7:層間絖林練 第2図 (0)     □B B:電荷転送方向 (b) 8;イJ−等シ1シ釘a5゜ (C) (d) 手続補正書(自発)
FIGS. 1(a) and 1(b) are plan configuration diagrams showing an outline of an embodiment of a charge transfer device according to the present invention. 2(a) is a sectional view showing the main part configuration of the charge transfer device, FIGS. 2(b) to 2d) are explanatory diagrams showing the potential distribution of the above device, and FIG. (a) is a sectional view showing the main part configuration of a conventional charge transfer device;
b) to d) are explanatory diagrams showing the potential distribution of the same device. 1... Channel region, 2... Element isolation region, 3
...Semiconductor substrate, 4...Gate insulating film, 5...
...Gate electrode of the first layer, 6...Gate electrode of the second layer, 7...Interlayer insulating film, 8...Signal charge, B...
...Charge transfer direction. Agent Masuo Oiwa Fig. 1 (0) □B 7: Interlayer kerin Ren Fig. 2 (0) □B B: Charge transfer direction (b) 8; ) (d) Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] (1)チャネル領域、およびこのチャネル領域を分離す
るための不純物領域を有する半導体基板と、この半導体
基板上に順次隣接して形成された、電荷転送のための複
数のゲート電極とを備える電荷転送装置において、前記
各ゲート電極の下でのチャネル領域の幅形状を、電荷転
送方向の後方に向つて、徐々に狭く形成させたことを特
徴とする電荷転送装置。
(1) Charge transfer comprising a semiconductor substrate having a channel region and an impurity region for separating the channel region, and a plurality of gate electrodes for charge transfer formed successively adjacent to each other on the semiconductor substrate. A charge transfer device characterized in that the width of the channel region under each of the gate electrodes is gradually narrowed toward the rear in the charge transfer direction.
JP8578486A 1986-04-14 1986-04-14 Charge transfer device Pending JPS62242363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8578486A JPS62242363A (en) 1986-04-14 1986-04-14 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8578486A JPS62242363A (en) 1986-04-14 1986-04-14 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS62242363A true JPS62242363A (en) 1987-10-22

Family

ID=13868510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8578486A Pending JPS62242363A (en) 1986-04-14 1986-04-14 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS62242363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260368A (en) * 1986-05-06 1987-11-12 Mitsubishi Electric Corp Charge transfer device
JPS6315459A (en) * 1986-07-07 1988-01-22 Sony Corp Charge transfer device
JPH0296730U (en) * 1989-01-18 1990-08-01
JP2005174965A (en) * 2003-12-05 2005-06-30 Nec Kyushu Ltd Charge transfer device and its fabricating process
JP2016115855A (en) * 2014-12-16 2016-06-23 キヤノン株式会社 Solid state image pickup device
JP2019012994A (en) * 2017-06-29 2019-01-24 パナソニックIpマネジメント株式会社 Optical detector and imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260368A (en) * 1986-05-06 1987-11-12 Mitsubishi Electric Corp Charge transfer device
JPS6315459A (en) * 1986-07-07 1988-01-22 Sony Corp Charge transfer device
JPH0296730U (en) * 1989-01-18 1990-08-01
JP2005174965A (en) * 2003-12-05 2005-06-30 Nec Kyushu Ltd Charge transfer device and its fabricating process
JP2016115855A (en) * 2014-12-16 2016-06-23 キヤノン株式会社 Solid state image pickup device
JP2019012994A (en) * 2017-06-29 2019-01-24 パナソニックIpマネジメント株式会社 Optical detector and imaging apparatus

Similar Documents

Publication Publication Date Title
US5521405A (en) Charge transfer device with two-phase two-layered electrode structure and method for fabricating the same
JPS58212176A (en) Charge transfer device
JPS62242363A (en) Charge transfer device
US6111279A (en) CCD type solid state image pick-up device
JPH0695536B2 (en) Charge transfer device
JPS61179574A (en) Charge coupled device
JPS61148876A (en) Charge transfer device
JPS62126671A (en) Charge transfer device
JP2798289B2 (en) Charge transfer device and method of manufacturing the same
JP2909158B2 (en) Charge coupled device
JPH0714050B2 (en) Charge transfer device
JP2573182B2 (en) Charge transfer device
JPS62126670A (en) Charge transfer device
JPH0951089A (en) Charge transfer device and manufacture thereof
JP3360735B2 (en) Charge coupled device and driving method thereof
JPH01272152A (en) Semiconductor element with guard ring
JP2522250B2 (en) Charge transfer device
JP2911146B2 (en) Semiconductor device
JPS63184363A (en) Solid-state image sensing device
JPH11168206A (en) Solid-state image pick-up device and its manufacture
JPH036836A (en) Charge transfer device
JPH03161940A (en) Charge transfer device
JPS6197860A (en) Charge transfer device
JPS60136258A (en) Charge coupled device
JPH0779160B2 (en) Charge coupled device