JPS62241869A - Manufacture of zirconia base refractories - Google Patents
Manufacture of zirconia base refractoriesInfo
- Publication number
- JPS62241869A JPS62241869A JP61084809A JP8480986A JPS62241869A JP S62241869 A JPS62241869 A JP S62241869A JP 61084809 A JP61084809 A JP 61084809A JP 8480986 A JP8480986 A JP 8480986A JP S62241869 A JPS62241869 A JP S62241869A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- clinker
- weight
- corrosion resistance
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000011819 refractory material Substances 0.000 title description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- 238000005245 sintering Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 239000002893 slag Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000006378 damage Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004901 spalling Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 3
- 102000006463 Talin Human genes 0.000 description 2
- 108010083809 Talin Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000013003 hot bending Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は高耐食性、高耐スポーリング性、高強度及び
高耐熱性を有するジルコニア質耐火物の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for producing a zirconia refractory having high corrosion resistance, high spalling resistance, high strength, and high heat resistance.
ジルコニアは、融点が2700℃と非常に高く、また溶
融金属、溶融ガラス、溶融スラグ等に対する耐食性も優
れているため高温操業用耐火物の原料として使用されて
いる。Zirconia has a very high melting point of 2700° C. and also has excellent corrosion resistance against molten metal, molten glass, molten slag, etc., so it is used as a raw material for refractories for high-temperature operations.
このジルコニアは、1200℃付近の温度で結晶系が単
斜晶系から正方晶系へと変化し、その際大きな体積変化
を生ずる。そこで従来この結晶系の転移に伴う体積変化
を防ぐ方法として、単斜晶ジルコニアに、Cab、Mg
OあるいはY、O,の少なくとも1種を添加して熱処理
することにより、ジルコニアの一部又は全部を立方晶に
する、いわゆる安定化が行なわれている。このようにし
て立方晶となった安定化ジルコニアは室温から2700
℃の融点まで結晶系の変化はなく、安定しており、従っ
て体積変化による組織の破壊がない。特にY z O3
で安定化したジルコニアは耐熱性、耐食性、耐スポーリ
ング性に優れているのであるが、高価であるため用途が
限定され、通常はCaOで安定化したジルコニアが使用
されている。The crystal system of this zirconia changes from a monoclinic system to a tetragonal system at a temperature around 1200° C., and a large volume change occurs at this time. Therefore, as a conventional method to prevent the volume change accompanying the transition of this crystal system, monoclinic zirconia was
By adding O or at least one of Y and O and heat-treating the zirconia, part or all of the zirconia is made into a cubic crystal, so-called stabilization. The stabilized zirconia, which has become a cubic crystal in this way, has a temperature of 2,700 yen from room temperature.
There is no change in the crystal system up to the melting point of °C, and it is stable, so there is no destruction of the structure due to volume changes. Especially Y z O3
Zirconia stabilized with CaO has excellent heat resistance, corrosion resistance, and spalling resistance, but its use is limited because it is expensive, and zirconia stabilized with CaO is usually used.
しかしながら、この安定化ジルコニアの安定化度を高め
るには、安定化剤を多量に使用する必要があり、このよ
うに安定化剤を多量に使用すると、系転移に伴う体積変
化の問題は解消されるが、逆に、熱膨張率が大きくなり
、また安定化剤と、溶融金属スラグ、溶融スラグ、溶融
ガラス等との反応が激しくなる等の現象が見られ、結果
として耐スポーリング性や耐食性の低下を招き、ジルコ
ニア本来の特性を損ねることになり好ましくない。However, in order to increase the degree of stabilization of this stabilized zirconia, it is necessary to use a large amount of stabilizer, and when a large amount of stabilizer is used in this way, the problem of volume change due to system transition is resolved. However, on the contrary, phenomena such as an increase in the coefficient of thermal expansion and an intensified reaction between the stabilizer and molten metal slag, molten slag, molten glass, etc. are observed, resulting in poor spalling resistance and corrosion resistance. This is not preferable because it causes a decrease in the properties of zirconia and impairs the original properties of zirconia.
また、Cab、MgOを安定化剤として使用したジルコ
ニアは、熱履歴により、結晶内の安定化剤が結晶外に抜
は出し、単斜晶ジルコニアに戻るいわゆる脱安定化が生
じ、抜は出した安定化剤と、前述の溶融金属、溶融ガラ
ス、溶融スラグとの反応による耐食性の低下、及びスラ
グ中のSiO□等の不純物の介在により一層脱安定化が
促進される。In addition, in zirconia using Cab or MgO as a stabilizer, due to thermal history, the stabilizer inside the crystal is extracted to the outside of the crystal, resulting in so-called destabilization, which returns to monoclinic zirconia. Deterioration of corrosion resistance due to the reaction between the stabilizer and the aforementioned molten metal, molten glass, and molten slag, and the presence of impurities such as SiO□ in the slag further promote destabilization.
上記のように、ジルコニア耐火物の安定度と耐食性は相
反するという問題があり、このことは高耐食性ジルコニ
ア耐火物の開発の障害となっていた。As mentioned above, there is a problem in that the stability and corrosion resistance of zirconia refractories are contradictory, and this has been an obstacle to the development of highly corrosion resistant zirconia refractories.
〔問題点を解決するための手段〕
この発明は、ジルコニア質耐火物における上記従来の事
情に鑑みて提案されたものであって、系移転に伴う体積
変化がなく、かつ、耐久ポーリング性、耐食性に優れた
ジルコニア耐火物を得ることを目的とするものである。[Means for Solving the Problems] This invention was proposed in view of the above-mentioned conventional circumstances regarding zirconia refractories. The purpose is to obtain a zirconia refractory with excellent properties.
上記目的を達成するために、この発明は以下のような手
段を採用している。すなわち、電融バンプライトクリン
カーを50重量%以上95重量%未満含有するジルコニ
アクリンカー100重量部と、粘土、アルミナ微粉、リ
ン酸等の焼結剤を少なくとも1種、0.3〜3重量部を
混練して成形した後、1600〜1900℃で焼成する
ようにしたものである。In order to achieve the above object, the present invention employs the following means. That is, 100 parts by weight of zirconia clinker containing 50% by weight or more and less than 95% by weight of electrofused bump light clinker, and 0.3 to 3 parts by weight of at least one sintering agent such as clay, alumina fine powder, phosphoric acid, etc. After kneading and shaping, it is fired at 1,600 to 1,900°C.
この発明においては、耐火原料として、1200℃の結
晶系転移温度で、転移はするが組織破壊をしない電融パ
ップライトクリンカーを50重量%以上95%未満含存
するジルコニアクリンカーを使用することが必要である
。電融パップライトは通常の電融法により製造されたも
のが好ましく、その鉱物組成は、単斜晶系ジルコニア単
味である。In this invention, it is necessary to use, as a refractory raw material, a zirconia clinker containing 50% by weight or more and less than 95% of fused paplite clinker, which undergoes transition but does not cause tissue destruction at a crystalline transition temperature of 1200°C. be. The electrofused paplite is preferably produced by a conventional electrofusion method, and its mineral composition is monoclinic zirconia alone.
この電融パップライトに代って天然パップライト、湿式
精製バンプライトは1200℃の系転移で組織破壊を起
こすので好ましくない。In place of this electric fusion pap light, natural pap light and wet refining bump light are not preferred because they cause tissue destruction due to system transition at 1200°C.
上記電融バフプライトクリンカーをsome%以下にす
ると、耐食性に於て従来のジルコニア質耐火物と大差が
なくなり、好ましくない。逆に電融バッデライトタリン
カーを95重量%用いると、後で述べる他のジルコニア
クリンカーの焼結によるフラッフスが形成されにく(,
4900℃以上の超高温による焼結工程が必要となる。If the content of the electrofused buff plyte clinker is reduced to some% or less, there will be no significant difference in corrosion resistance from conventional zirconia refractories, which is not preferable. On the other hand, when 95% by weight of fused Baddeleyte talinker is used, fluff is less likely to be formed due to sintering of other zirconia clinkers, which will be described later.
A sintering process using an ultra-high temperature of 4900°C or higher is required.
電融パップライトクリンカーは目的に応じて、適宜粒度
調整をして使用すればよく、通常は3500〜1000
μm程度の粗粒から、44μm以下程度の微粉の範囲の
ものを用いればよい。The particle size of the fused Paplite clinker may be adjusted as appropriate depending on the purpose, and the particle size is usually 3500 to 1000.
It is sufficient to use particles ranging from coarse particles of about .mu.m to fine particles of about 44 .mu.m or less.
上記ジルコニアクリンカーは電融パップライト以外にO
〜15IIIOIle%のMgO,又はO〜10so
l e%のCaOで安定化したジルコニアクリンカーを
含む。この安定化ジルコニアクリンカーとして湿式精製
ジルコニアクリンカー、焼結ジルコニアクリンカー、電
融ジルコニアクリンカーを用いることができる。ここに
おいて安定化剤がMgOの場合15mof6%、CaO
の場合10so l e%を越えると、安定化剤がジル
コニア粒子の組織外に遊離し、耐食性を損い好ましくな
い。The above zirconia clinker is used in addition to electric fusion pap light.
~15IIIOIle% MgO, or O~10so
Contains zirconia clinker stabilized with le% CaO. As the stabilized zirconia clinker, a wet refined zirconia clinker, a sintered zirconia clinker, or a fused zirconia clinker can be used. Here, if the stabilizer is MgO, 15mof6%, CaO
If it exceeds 10 sol e%, the stabilizer will be released outside the structure of the zirconia particles, impairing corrosion resistance, which is not preferable.
粘土、アルミナ微粉、リン酸、リン酸塩等の焼結助剤の
量が0.3重量%以下では、焼結効果が小さく、逆に3
重量%以上では高温での特性の劣化や、耐食性、耐スポ
ーリング性の劣化が生ずるので好ましくない。If the amount of sintering aids such as clay, fine alumina powder, phosphoric acid, phosphate, etc. is less than 0.3% by weight, the sintering effect will be small;
If it exceeds % by weight, it is not preferable because it causes deterioration of properties at high temperatures, corrosion resistance, and spalling resistance.
焼結助剤は74μm以下の微粉、スリップあるいは液状
で加えるのが好ましい。更に焼結助剤として、必要に応
じてジルコゾール、水酸化ジルコニル等のジルコニウム
塩を添加することもできる。The sintering aid is preferably added in the form of a fine powder of 74 μm or less, a slip, or a liquid. Furthermore, a zirconium salt such as zircosol or zirconyl hydroxide may be added as a sintering aid if necessary.
この発明は、上記した耐火原料及び焼結助剤を配合し、
混練した後、成形して1600℃〜1900℃で3時間
〜10時間焼成する。焼成温度が1600℃以下では充
分に焼結させることはできず、逆に1900℃以上で加
熱することは経済的に不利である。This invention combines the above-mentioned refractory raw materials and sintering aids,
After kneading, it is shaped and baked at 1600°C to 1900°C for 3 to 10 hours. If the firing temperature is below 1600°C, sufficient sintering cannot be achieved, and on the contrary, heating above 1900°C is economically disadvantageous.
上記各原料を第1表に示すような割合で配合して混練後
、皿形形状に成形し、1700℃で5時間焼成して、本
発明のジルコニア質耐火物を得た。The above raw materials were blended in the proportions shown in Table 1, kneaded, formed into a dish shape, and fired at 1700° C. for 5 hours to obtain the zirconia refractory of the present invention.
一方、第1表における電融バソデライトタリン力−をC
a03moI2e%の部分安定化ジルコニアクリンカー
に置換し、本発明品と同じ温度及び時間で焼成して、従
来方法による比較品を作製した。On the other hand, the electric fused bathoderite talin force in Table 1 is C
A comparative product was produced by a conventional method by replacing the product with a partially stabilized zirconia clinker having a03molI2e% and firing at the same temperature and time as the product of the present invention.
上記本発明及び、従来方法による実施品を気孔率、かさ
比重、圧縮強さ、耐食性試験における侵食量について測
定した結果を第2表に掲げる。尚、上記耐食性試験は侵
食剤として転炉スラグを用い、回転侵食法により165
0℃で3時間保持することにより行なった後、溶損1!
t(am)を測定した。Table 2 lists the results of measuring the porosity, bulk specific gravity, compressive strength, and amount of erosion in the corrosion resistance test for the products according to the present invention and the conventional method. The above corrosion resistance test was carried out using converter slag as the corrosive agent, and was carried out by the rotary erosion method.
After holding it at 0℃ for 3 hours, there was 1 melting loss!
t(am) was measured.
第2表からも明らかな如く、本発明品は従来発明品と、
気孔率、かさ比重、圧縮強さ、冷間及び熱間での曲げ強
さに遜色がないにもかかわらず、耐食性において著しく
優れている。As is clear from Table 2, the product of the present invention is different from the conventional product.
Despite being comparable in porosity, bulk specific gravity, compressive strength, and cold and hot bending strength, it is significantly superior in corrosion resistance.
(以下余白)
第1表
第2表
〔発明の効果〕
以上説明したように、この発明は1200℃の結晶系転
移温度で組織破壊をしない電融バッデライトタリン力−
を主成分として用いているので脱安電化現象が生じるこ
となく、従って耐食性が低下することがない高耐食性の
ジルコニア質耐火物を得ることができる効果がある。(Leaving space below) Table 1 Table 2 [Effects of the invention] As explained above, this invention has the advantage that the fused Baddeleyite talin force which does not cause tissue destruction at the crystal system transition temperature of 1200°C.
is used as the main component, it is possible to obtain a highly corrosion-resistant zirconia refractory that does not undergo the desulfurization electrification phenomenon and therefore does not suffer from a decrease in corrosion resistance.
Claims (1)
重量%未満を有するジルコニアクリンカー100重量部
と、粘土、アルミナ微粉、リン酸のうち、少なくとも1
種0.3〜3重量部を混練し、成形した後1600〜1
900℃で焼成することを特徴とするジルコニア質耐火
物の製造方法。50% by weight or more of fused Baddeleyite clinker, 95
100 parts by weight of zirconia clinker having less than 1% by weight, and at least one of clay, alumina fine powder, and phosphoric acid.
After kneading 0.3 to 3 parts by weight of seeds and molding, 1600 to 1
A method for producing a zirconia refractory, characterized by firing at 900°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084809A JPS62241869A (en) | 1986-04-12 | 1986-04-12 | Manufacture of zirconia base refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084809A JPS62241869A (en) | 1986-04-12 | 1986-04-12 | Manufacture of zirconia base refractories |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62241869A true JPS62241869A (en) | 1987-10-22 |
Family
ID=13841047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61084809A Pending JPS62241869A (en) | 1986-04-12 | 1986-04-12 | Manufacture of zirconia base refractories |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62241869A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5696774A (en) * | 1979-12-28 | 1981-08-05 | Kurosaki Refractories Co | High endurance nozzle for casting |
JPS6042274A (en) * | 1983-08-11 | 1985-03-06 | 東芝セラミックス株式会社 | Manufacture of zirconia refractories |
-
1986
- 1986-04-12 JP JP61084809A patent/JPS62241869A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5696774A (en) * | 1979-12-28 | 1981-08-05 | Kurosaki Refractories Co | High endurance nozzle for casting |
JPS6042274A (en) * | 1983-08-11 | 1985-03-06 | 東芝セラミックス株式会社 | Manufacture of zirconia refractories |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3007684B2 (en) | Zircon refractories with improved thermal shock resistance | |
US5053366A (en) | Refractory compositions containing monoclinic zirconia and articles formed from these compositions exhibiting improved mechanical strength at high temperatures and improved resistance to thermal shocks | |
US4849383A (en) | Basic refractory composition | |
US8138110B2 (en) | Fireproof ceramic mix, fireproof ceramic molded body formed of said mix and use thereof | |
JP2003238250A (en) | Yttria refractory | |
JP2001302364A (en) | Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining | |
US3597247A (en) | Alumina refractories | |
JPH10212158A (en) | Refractory for glass fusion furnace | |
JPS62241869A (en) | Manufacture of zirconia base refractories | |
US4999325A (en) | Rebonded fused brick | |
JPH03197356A (en) | Zirconia refractory and its production | |
JP4960541B2 (en) | Magnesia-alumina-titania brick | |
JP3281338B2 (en) | Magnesia spinel refractories for cement rotary kilns | |
JPH01192761A (en) | Ingot azs refractory composition | |
JPH0639483A (en) | Ceramic core | |
US3416938A (en) | Mgo-zr-o2 fused cast refractory | |
US3282579A (en) | Refractory lining | |
JP2999134B2 (en) | Magnesia chrome refractory and cement rotary kiln | |
JP2000044329A (en) | Production of basic refractory | |
JPS6059189B2 (en) | Sintered refractory brick for ultra-dense glass furnace and its manufacturing method | |
JPS62275055A (en) | Zirconia-containing magnesia clinker and manufacture | |
JPH05117019A (en) | Basic refractory brick | |
JPH042655A (en) | Burned high-alumina refractory brick | |
JP3209842B2 (en) | Irregular refractories | |
JPS6364955A (en) | Manufacture of basic brick |