JPS62240785A - Production of high purity copper - Google Patents

Production of high purity copper

Info

Publication number
JPS62240785A
JPS62240785A JP61082748A JP8274886A JPS62240785A JP S62240785 A JPS62240785 A JP S62240785A JP 61082748 A JP61082748 A JP 61082748A JP 8274886 A JP8274886 A JP 8274886A JP S62240785 A JPS62240785 A JP S62240785A
Authority
JP
Japan
Prior art keywords
cathode
treatment
anode
electrolytic
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61082748A
Other languages
Japanese (ja)
Other versions
JPH0653947B2 (en
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61082748A priority Critical patent/JPH0653947B2/en
Publication of JPS62240785A publication Critical patent/JPS62240785A/en
Publication of JPH0653947B2 publication Critical patent/JPH0653947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To economically produce high purity Cu in large quantities when Cu is electrolytically refined, by bringing part of an electrolytic soln. contg. Cu sulfate acidified with sulfuric acid into contact with an Ag adsorbing substance so as to remove impurities. CONSTITUTION:An anode of Cu as starting material and a cathode on which Cu is electrodeposited are placed opposite to each other in an aqueous Cu sulfate soln. acidified with sulfuric acid as an electrolytic soln. One or more kinds of compounds such as Cu or Pd sulfide, selenide and telluride are used as an Ag adsorbing substance. This Ag adsorbing substance is brought into contact with part of the electrolytic soln. to treat the soln. and electrolysis is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は高純度Cu、特に純度99.99〜99.99
9%以上の導電特性、軟質、低温軟化特性が優れた高純
度鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to high-purity Cu, particularly purity 99.99-99.99.
The present invention relates to a method for manufacturing high-purity steel that has excellent conductivity properties of 9% or more, softness, and low-temperature softening properties.

(従来の技術〕 電気Cuは純度99.95%以上、通常99.95〜9
9.99%で02を100〜500ppm含有するタフ
ピッチCuと02を5〜20ppm含有するOFCとし
て利用され、半導体などのボンディングワイヤー、スパ
ッターターゲット、軟質圧延プリント配線、オーディオ
用細電線等に用いられている。これ等は何れも電気分解
にJ−り粗Cu中のPb、Sb、Ni1Bi、As、F
e、Zn等の不純物を高い精錬効率で分離したもので、
通常Cuより真なAQや卑である前記不純物の外、S、
0、C等が微量含まれており、これ等不純物は高純度C
uの特性に有害でおる。
(Prior art) Electrical Cu has a purity of 99.95% or more, usually 99.95-9
It is used as tough pitch Cu containing 9.99% and 100 to 500 ppm of 02 and OFC containing 5 to 20 ppm of 02, and is used in bonding wires for semiconductors, sputter targets, soft rolled printed wiring, thin electrical wires for audio, etc. There is. All of these are Pb, Sb, Ni1Bi, As, and F in crude Cu by electrolysis.
Impurities such as e and Zn are separated with high refining efficiency.
In addition to the above-mentioned impurities, which are usually truer than Cu or more base, S,
Contains trace amounts of 0, C, etc., and these impurities are high purity C.
It is harmful to the properties of u.

このためより高純度Cuを必要とする場合はゾーンメル
ティング、フロートメルティング又は蒸溜などの特殊な
方法が行なわれている。
Therefore, when higher purity Cu is required, special methods such as zone melting, float melting, or distillation are used.

(発明が解決しようとする問題点〕 高純度Cuを1qるための上記の特殊な方法は小規模生
産に留まり、極めて高価なものとなり、近時高純度Cu
の特性に着目した前記の如き大ぎな需要に対応できず、
続演的な工業的製造法、即ち下記事項を満足する製造法
の開発が強く求められている。
(Problems to be solved by the invention) The above-mentioned special method for producing 1 q of high-purity Cu is limited to small-scale production and is extremely expensive.
Unable to meet the above-mentioned large demand that focused on the characteristics of
There is a strong demand for the development of a continuous industrial manufacturing method, that is, a manufacturing method that satisfies the following requirements.

(1〉高純度、即ら純度99.99〜99.999%又
はこれ以上の純Cuを続演的に量産することができるこ
と。
(1> High purity, that is, pure Cu with a purity of 99.99 to 99.999% or higher can be continuously mass-produced.

(2)高純度Cuの特性に特に有害な不純物、たとばS
、0、CAgを効率的に除去できること。
(2) Impurities that are particularly harmful to the properties of high-purity Cu, such as S
, 0, CAg can be removed efficiently.

(3)通常の工業的電解法及びこれを複数回繰返しても
排除できない不純物を能率よく排除てぎること。即ら単
に従来の工業的方法を繰返すのみでは達せられない精錬
度が得られること。
(3) Efficiently remove impurities that cannot be removed even by using a normal industrial electrolytic method and repeating this process multiple times. That is, it is possible to obtain a degree of refinement that cannot be achieved simply by repeating conventional industrial methods.

(4)従来法ではもっとも分離し難いCuと親和性で、
かつ物質の近似した元素でおるAgを効率的に分離して
回収することができること。
(4) Has affinity with Cu, which is the most difficult to separate using conventional methods,
In addition, it is possible to efficiently separate and recover Ag, which is an element similar to the substance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、高純度Cu1特に
純度99.99〜99.999%以上の導電特性、軟質
、低温軟化特性が優れた高純度銅の製造法を開発したも
のである。
In view of this, as a result of various studies, the present invention has developed a method for producing high-purity Cu1, particularly high-purity copper with a purity of 99.99 to 99.999% or higher, which has excellent conductive properties, softness, and low-temperature softening properties.

本発明製造法の一つは、Cu原料からなるアノードとC
uを電析するカソードを対設し、循環する電解液の少な
くとも一部をAQ吸着性物質と接触処理して電解処理す
ることを特徴とするものである。
One of the manufacturing methods of the present invention is to use an anode made of a Cu raw material and a C
The method is characterized in that cathodes for electrodepositing U are disposed opposite each other, and at least a portion of the circulating electrolyte is brought into contact with an AQ-adsorbing substance for electrolytic treatment.

また本発明の製造法の他の一つは、Cu原料からなるア
ノードとCuを電析するカソードを対設し、循環する電
解液の少なくとも一部をAC7吸着性物質と接触処理し
て電解処理した後、電析したCuを溶解して酸化処理し
てから、還元処理又は還元処理後に真空中で再溶解する
ことを特徴とするものである。
Another manufacturing method of the present invention is to electrolytically process at least a part of the circulating electrolyte by contacting it with an AC7 adsorptive substance by disposing an anode made of a Cu raw material and a cathode for electrodepositing Cu. After that, the electrodeposited Cu is dissolved and subjected to an oxidation treatment, and then a reduction treatment or a re-dissolution in a vacuum after the reduction treatment.

即らCu原料をアノードとCuを電析するカソードを対
設して、高純度Cuを電解精製するに際し、電解液の少
なくとも一部をA(J吸着性物質と接触せしめる。電解
液としてはCu分を溶解したH2 So+溶液が望まし
いが、スルファミン酸、ホウフッ酸、酢酸、硝酸、アン
モニヤ、青化物、有機アミン類等の水溶液でもよい。
That is, when electrolytically refining high-purity Cu by placing a Cu raw material at an anode and a cathode for electrodepositing Cu, at least a part of the electrolyte is brought into contact with an A (J adsorbent substance. Although a H2So+ solution in which 50% of H2SO+ is dissolved is preferable, an aqueous solution of sulfamic acid, borofluoric acid, acetic acid, nitric acid, ammonia, cyanide, organic amines, etc. may also be used.

原料CUは電解処理してTi、Zr、SUS等の不溶性
金属や高純度Cuのカソード上に電析ざぜる。電解液は
加温循環することが有利であり、電解電流は条件にもよ
るが、大略0.01〜10A/dm2の範囲であり、同
一槽中にアノードとカソードを交互に多数枚配列するこ
とにより、大間生産を行なうことができる。
The raw material CU is electrolytically treated and deposited on an insoluble metal such as Ti, Zr, SUS or a cathode of high purity Cu. It is advantageous to heat and circulate the electrolytic solution, and the electrolytic current is approximately in the range of 0.01 to 10 A/dm2, depending on the conditions, and a large number of anodes and cathodes are arranged alternately in the same tank. This allows for long-term production.

電解液は熱交換器やフィルターなどに加えてAg吸着性
物質との接触処理工程を介したポンプ駆動の循環系など
により流動循環させる。
In addition to a heat exchanger, a filter, etc., the electrolytic solution is fluidized and circulated through a pump-driven circulation system through a contact treatment process with an Ag-adsorbing substance.

Ag吸着物は特定のキレート樹脂、特定の活性炭、特定
の無機質ゲル等のうち特にCUやPbの硫化物、セレン
化物、テルル化物、イオウ、セレンなどが有効であり、
これ等は単体又は適当な支持体と一緒にしてカラムに充
填して利用できる。吸着処理量は原料Cuや電解条件に
より経験的に決める。カソードに電析したCuはアノー
ドとして繰返し電解処理することでより精製度を高める
ことができる。
Among Ag adsorbents, sulfides, selenides, tellurides, sulfur, selenium, etc. of CU and Pb are particularly effective among specific chelate resins, specific activated carbons, specific inorganic gels, etc.
These can be used alone or together with a suitable support and packed in a column. The adsorption amount is determined empirically based on the raw material Cu and electrolytic conditions. The degree of purification can be further increased by repeatedly electrolytically treating the Cu electrodeposited on the cathode as an anode.

上記の電解精製は電解液透過性隔膜によりアノードとカ
ンード間を仕切り、アノード側で上記吸着処理してから
カソード側に還流する方法により一層精製度を高めるこ
とができる。隔膜として素焼、石綿布などの多孔質無機
物質、サラン布などの有機ポリマー布などが用いられる
In the above electrolytic purification, the degree of purification can be further improved by partitioning the anode and cande with an electrolyte-permeable diaphragm, performing the adsorption treatment on the anode side, and then refluxing the electrolyte to the cathode side. As the diaphragm, unglazed ceramics, porous inorganic materials such as asbestos cloth, organic polymer cloths such as Saran cloth, etc. are used.

また上記により得られたCUは融点以上に加熱溶解し、
脱酸還元するが、予め大気や02ガスと溶Cuを接触さ
せるが、酸化Cuを投入するかしてCu中の02分を高
めて20〜11000pp 。
In addition, the CU obtained above is heated and melted above the melting point,
For deoxidation and reduction, molten Cu is brought into contact with the atmosphere or 02 gas in advance, and oxidized Cu is added to increase the 02 content in Cu to 20 to 11,000 pp.

望ましくは50ppm以上とし、引続ぎH2、天然カス
、CO,木炭Wて7元L、02量を20ppm以下望ま
しくは5pI)m以下とする。必要に応じてこれを繰返
し、更に望ましくは真空中で再溶解するか又は溶湯処理
して残留ガスを完全に脱カスする。真空度は10’ r
orr以下か望ましい。
Desirably, the amount is set to 50 ppm or more, and then the amount of H2, natural scum, CO, charcoal W, 7 elements, and 02 is set to 20 ppm or less, preferably 5 pI)m or less. This process is repeated as necessary, and more preferably, the residual gas is completely removed by remelting in vacuum or by treating the molten metal. Vacuum degree is 10'r
Orr or less is desirable.

(作  用) 電気CuはJISI+2121に規定されているJ:う
にAgをCu分に加算している。これはAQが導電率を
低下させないという事実に基づくものでおるが、近時要
求が高まっている高純度Cuでは、Agもまた有害成分
である。電解精製やこれを繰返すことにより、Agを除
く金属不純物、例えばFe、Zn、3n、N i 、P
b、3b。
(Function) Electrical Cu is J: sea urchin Ag defined in JISI+2121 is added to Cu. This is based on the fact that AQ does not reduce the electrical conductivity, but Ag is also a harmful component in high-purity Cu, for which demand has recently increased. By electrolytic refining and repeating this process, metal impurities other than Ag, such as Fe, Zn, 3n, Ni, P
b, 3b.

3i、AS、 Cd等は190m以下に除去することが
できるがAgは全く除去されない。本発明は電気Cuに
残留する1〜zoppmのAc2分を能率的に除去する
ことかできる。電気Cu中のAg分はCuに固溶した状
態であり、電解中にACJ+として溶出するもので、0
.lppm以下の微NG度ではカソード上にほとんどづ
−へて析出するも、本発明では微量の/’l+を吸着除
去することにより、電解法では不可能視されていたAg
の排除を可能にしたものである。
3i, AS, Cd, etc. can be removed to 190 m or less, but Ag is not removed at all. The present invention can efficiently remove 1 to zoppm of Ac2 remaining in electric Cu. The Ag content in electric Cu is in a state of solid solution in Cu, and is eluted as ACJ+ during electrolysis, and is 0.
.. At a slight NG level of 1ppm or less, most of the NG is deposited on the cathode, but in the present invention, by adsorbing and removing a trace amount of /'l+, Ag
This made it possible to eliminate

吸容剤のうち待にCuやPbの硫化物、セレン化物、テ
ルル化物、中でもCuの硫化物とセレン化物は有効であ
り、その粒子表面ではCu2  S+A  g−A g
 CuS+Cu +十Cu2 S+2Ac>−+A g
Z  S十Cu”などの交換反応が起り、Agを固定化
できる。
Among adsorbents, Cu and Pb sulfides, selenides, and tellurides, especially Cu sulfides and selenides, are effective, and on the particle surface Cu2 S+A g-A g
CuS+Cu +10Cu2 S+2Ac>-+A g
An exchange reaction such as "Z S Cu" occurs, and Ag can be immobilized.

本発明の最も有効な実施状態は隔膜によりアノードとカ
ソードを隔離してアノード側の液を上記吸着処理して微
量のAc1分を除去してカソード側に還流するもので、
同時にアノードから溶出した不純物やコロイド粒子をも
吸着や精密濾過し、高純精製液としてカソード側に供給
し、還流処理間を節減すると共に吸着や濾過効率を極大
化することができる。
The most effective implementation state of the present invention is to separate the anode and cathode with a diaphragm, and perform the above-mentioned adsorption treatment on the liquid on the anode side to remove a trace amount of Ac, which is then refluxed to the cathode side.
At the same time, impurities and colloidal particles eluted from the anode are also adsorbed and microfiltered, and the highly purified liquid is supplied to the cathode side, thereby reducing the time required for reflux treatment and maximizing adsorption and filtration efficiency.

上記電解を必要に応じて繰返ずことにより金属不純物を
1 DI)lit以下に高純化できる。また残留するl
−+2、S、0、C等の非金属成分の量は、電解浴組成
や電解条件にもよるが、10ppm又はこれ以上に達す
る。これらはカソードに電着したCuを融解してから酸
化還元処理、更には真空脱ガス工程を付加することによ
り、完全に除去することができる。微量のS、O,C等
は電解液′Wカビイン、ニカワ、チオ尿素等の添加剤成
分として不可避的に混入し、高純度Cuの特性、特に軟
質性、軟化性に極めて有害に働くので、これを上記処理
により完全に除去する。
By repeating the above electrolysis as necessary, metal impurities can be highly purified to 1 DI) lit or less. Also remaining l
The amount of nonmetallic components such as -+2, S, 0, and C reaches 10 ppm or more, depending on the electrolytic bath composition and electrolytic conditions. These can be completely removed by melting the Cu electrodeposited on the cathode, followed by an oxidation-reduction treatment, and further by adding a vacuum degassing step. Trace amounts of S, O, C, etc. are unavoidably mixed into the electrolyte as additive components such as cavin, glue, thiourea, etc., and have an extremely harmful effect on the properties of high-purity Cu, especially its softness and softening properties. This is completely removed by the above treatment.

〔実 施 例〕〔Example〕

(1)下記電解液中に工業用電気CUからなるアノード
とTiからなる不溶性カソードを対置し、電流密度1.
5A/dm2で電解した。電解液はCuz 8粒を含有
する厚さ0.2μのカートリッジフィルターを通し、2
5回/hrの割りで還流した。電解液にはCu2304
  t509/、G 1H2304309/I 、ニカ
ワ1mg/l、液温48°Cを用いた。
(1) An anode made of an industrial electric CU and an insoluble cathode made of Ti are placed opposite each other in the following electrolytic solution, and the current density is 1.
Electrolysis was carried out at 5 A/dm2. The electrolyte was passed through a cartridge filter with a thickness of 0.2 μ containing 8 Cuz particles.
Reflux was carried out at a rate of 5 times/hr. The electrolyte contains Cu2304
t509/, G 1H2304309/I, 1 mg/l of glue, and a liquid temperature of 48°C were used.

(2)上記(1)においてアノードとカソード間に素焼
ぎ板(厚ざ5 mtn )を配置しアノード側の電解液
をカートリッジフィルターを通し、25回/hrの割り
で還流した。
(2) In the above (1), an unglazed plate (thickness: 5 mtn) was placed between the anode and the cathode, and the electrolyte on the anode side was passed through a cartridge filter and refluxed at a rate of 25 times/hr.

(3〉上記(2)においてCu2S粒を含有するカート
リッジフィルターに代えてCuz 56粒を含有するカ
ートリッジフィルターを用いた。
(3> In (2) above, a cartridge filter containing 56 Cuz particles was used in place of the cartridge filter containing Cu2S particles.

(4)上記(3)により回収したカソード電@Cuを再
びアノードとして再電解した。
(4) The cathode electrode @Cu recovered in (3) above was again used as an anode and electrolyzed again.

(5)上記(2)においてCuz 8粒を含有するカー
トリッジフィルターに代えてPb3粒を含有するカート
リッジフィルターを用いた。
(5) In the above (2), a cartridge filter containing 3 Pb particles was used instead of the cartridge filter containing 8 Cuz particles.

(6)上記(2)において、Cu23粒を含有するカー
トリッジフィルターに代えて単体イオ「ノとヤシガラ炭
との1:1の混合物をつめたカーl−リッジフィルター
を用いた。
(6) In (2) above, a cartridge filter filled with a 1:1 mixture of simple iodine and coconut husk charcoal was used instead of the cartridge filter containing 23 Cu particles.

(7)上記(2)においてCuz 8粒を含有するカー
1〜ツツジフイルターに代えて赤色セレンとX7シガラ
炭との1:1の混合物をつめたカートリッジフィルター
を用いた。
(7) In the above (2), a cartridge filter filled with a 1:1 mixture of red selenium and X7 shigara charcoal was used in place of the Carr 1 to Tsutsuji filter containing 8 Cuz grains.

上記(1)〜(7)によりカソード電着Cuと原料の電
気Cuを分析した。その結果を第1表に示す。
The cathode electrodeposited Cu and the raw material electrical Cu were analyzed according to (1) to (7) above. The results are shown in Table 1.

次に上記(1)〜(7)によりカソード電着Cuを原子
炉級黒鉛ルツボを用いて電気炉で1100’Cに加熱し
、溶解してから空気により酸化させて02分を1500
DDmまで高めた。次にNH3ガスを吹込んで還元した
。これを2回繰返してから凝固させた。続いてAr気流
中で溶解して真空(0,051orr)中で1時間脱気
してから凝固させた。
Next, according to (1) to (7) above, the cathode electrodeposited Cu was heated to 1100'C in an electric furnace using a nuclear reactor grade graphite crucible, melted, and then oxidized with air.
I raised it to DDm. Next, NH3 gas was blown in for reduction. This was repeated twice and then solidified. Subsequently, it was dissolved in an Ar gas flow, degassed in vacuum (0.051 orr) for 1 hour, and then solidified.

これ等について酸化還元後と、脱気後の非金属成分に限
って分析した。その結果を第2表に示す。尚表中全ガス
分は950℃の真空同相抽出法により分析した。
Analysis was limited to the nonmetallic components after oxidation-reduction and degassing. The results are shown in Table 2. All gas components in the table were analyzed by vacuum in-phase extraction at 950°C.

次に第2表の真空脱気した高純度Cuを直径25μまで
伸線加工して焼鈍処理した。これを超音波熱圧着式ワイ
ヤーボンディングマシーン(K&S社製Nodel/1
123)によりボンディングワイA7−としての特性試
験を行なった。
Next, the vacuum-degassed high-purity Cu shown in Table 2 was wire-drawn to a diameter of 25 μm and annealed. This was carried out using an ultrasonic thermocompression wire bonding machine (Nodel/1 manufactured by K&S).
123), a characteristic test was conducted as a bonding wire A7-.

第1ボンド(ボールボンド)の特性は厚さ1μのへ1蒸
着Siウェハー上でのボール圧着の変形能を調べ、第2
ボンド(ステイツチボンド)はCu合金(Cu−0,1
5%Cr−0,2%Sn)にボンドしてプルテストした
。ボンディングは何れも10%H2−N2気流中、温度
250°C,荷重50gr、ボンディング時間50μs
ecで行なった。これ等の結果を電気Cu及び市販のA
u線と比較して第3表に示す。
The characteristics of the first bond (ball bond) were determined by examining the deformability of the ball on a 1μ thick evaporated Si wafer.
The bond (stay bond) is made of Cu alloy (Cu-0,1
5%Cr-0.2%Sn) and a pull test was performed. All bonding was performed in a 10% H2-N2 air flow at a temperature of 250°C, a load of 50g, and a bonding time of 50μs.
I did it with ec. These results were combined with electric Cu and commercially available A
A comparison with the u-line is shown in Table 3.

第3表 D:圧着後の直径 第1表〜第3表から明らかなように、本発明製造法によ
り不純物、特にAQ含有団の少ない高純度Cuが得られ
、例えばボンディング性においてAuと同等以上の特性
を示すことが判る。
Table 3 D: Diameter after crimping As is clear from Tables 1 to 3, the production method of the present invention yields high-purity Cu with few impurities, especially AQ-containing groups, and is equivalent to or better than Au in terms of bonding properties, for example. It can be seen that it exhibits the characteristics of

これは高純度Cuが軟質であるばかりか、再結晶し易く
ボンディング時の荷重で容易に変形し、界面での完全接
合を可能にするためである。
This is because high-purity Cu is not only soft, but also easily recrystallized and easily deformed by the load during bonding, allowing complete bonding at the interface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来法に比べて量産性が高く、しかも純
度99.99〜99.999%以上の導電特性、軟質、
低温軟化特性が優れた高純度銅が得られ、スパッタータ
ーゲット、プリント回路等、細線導体等としてその特性
を著しく向上し得る等、工業上顕著な効果を秦するもの
である。
According to the present invention, mass productivity is higher than that of conventional methods, conductive properties with purity of 99.99 to 99.999% or more, softness,
High-purity copper with excellent low-temperature softening properties can be obtained, and the properties of sputter targets, printed circuits, etc., thin wire conductors, etc. can be significantly improved, resulting in remarkable industrial effects.

Claims (4)

【特許請求の範囲】[Claims] (1)Cu原料からなるアノードとCuを電析するカソ
ードを対設し、循環する電解液の少なくとも一部をAg
吸着性物質と接触処理して電解処理することを特徴とす
る高純度銅の製造法。
(1) An anode made of a Cu raw material and a cathode for electrodepositing Cu are installed opposite each other, and at least a part of the circulating electrolyte is transferred to Ag.
A method for producing high-purity copper characterized by contact treatment with an adsorbent substance and electrolytic treatment.
(2)電解液に硫酸性硫酸Cu水溶液を用い、Ag吸着
性物質にCuやPbの硫化物、セレン化物、テルル化物
、単体イオウ、セレンの少なくとも1種を用いる特許請
求の範囲第1項記載の高純度銅の製造法。
(2) A sulfuric acid Cu sulfate aqueous solution is used as the electrolytic solution, and at least one of Cu, Pb sulfide, selenide, telluride, elemental sulfur, and selenium is used as the Ag adsorbing substance. manufacturing method for high-purity copper.
(3)アノードとカソードを電解液透過性隔膜で隔離し
、少なくともアノード室の電解液をAg吸着性物質と接
触処理してカソード室に還流する特許請求の範囲第1項
又は第2項記載の高純度銅の製造法。
(3) The anode and cathode are separated by an electrolyte-permeable diaphragm, and at least the electrolyte in the anode chamber is brought into contact with an Ag-adsorbing substance and returned to the cathode chamber. A method for producing high-purity copper.
(4)Cu原料からなるアノードとCuを電析するカソ
ードを対設し、循環する電解液の少なくとも一部をAg
吸着性物質と接触処理して電解処理した後、電析したC
uを溶解して酸化処理してから、還元処理又は還元処理
後に真空中で再溶解することを特徴とする高純度銅の製
造法。
(4) An anode made of a Cu raw material and a cathode for electrodepositing Cu are installed opposite each other, and at least a part of the circulating electrolyte is transferred to Ag.
Electrodeposited C after contact treatment with adsorbent material and electrolytic treatment
A method for producing high-purity copper, which comprises dissolving u and subjecting it to oxidation treatment, followed by reduction treatment or re-dissolution in vacuum after the reduction treatment.
JP61082748A 1986-04-10 1986-04-10 High-purity copper manufacturing method Expired - Fee Related JPH0653947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082748A JPH0653947B2 (en) 1986-04-10 1986-04-10 High-purity copper manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082748A JPH0653947B2 (en) 1986-04-10 1986-04-10 High-purity copper manufacturing method

Publications (2)

Publication Number Publication Date
JPS62240785A true JPS62240785A (en) 1987-10-21
JPH0653947B2 JPH0653947B2 (en) 1994-07-20

Family

ID=13783045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082748A Expired - Fee Related JPH0653947B2 (en) 1986-04-10 1986-04-10 High-purity copper manufacturing method

Country Status (1)

Country Link
JP (1) JPH0653947B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device
JP2004221609A (en) * 2004-03-05 2004-08-05 Toshiba Corp Sputtering target, method of manufacturing the same, and copper wiring film
JP2007023390A (en) * 2006-09-21 2007-02-01 Toshiba Corp Method for manufacturing sputtering target, and method for manufacturing copper wiring film
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267188A (en) * 1985-09-20 1987-03-26 Nippon Mining Co Ltd Method for removing ag from copper electrolytic solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267188A (en) * 1985-09-20 1987-03-26 Nippon Mining Co Ltd Method for removing ag from copper electrolytic solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device
JP2004221609A (en) * 2004-03-05 2004-08-05 Toshiba Corp Sputtering target, method of manufacturing the same, and copper wiring film
JP2007023390A (en) * 2006-09-21 2007-02-01 Toshiba Corp Method for manufacturing sputtering target, and method for manufacturing copper wiring film
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor
JP2017141514A (en) * 2012-06-14 2017-08-17 三菱マテリアル株式会社 High purity electrolytic copper and electrolytic refining method therefor

Also Published As

Publication number Publication date
JPH0653947B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US8192596B2 (en) Ultrahigh-purity copper and process for producing the same
JP4298712B2 (en) Method for electrolytic purification of copper
CN113737007B (en) Method for separating and purifying high-antimony crude tin
EP1159467B1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
CN1218071C (en) Method and apparatus for processing metals, and the metals so produced
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
CN112661324B (en) Diamond wire electroplating liquid purification system and purification method thereof
JPS62240785A (en) Production of high purity copper
JP2010196140A (en) Method for recovering bismuth
JPH0558048B2 (en)
JP2642230B2 (en) Manufacturing method of high purity tin
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
JPH029677B2 (en)
JP2587814B2 (en) Method for treating concentrate from copper converter
JPH02301585A (en) Production of high-purity copper
CA1247553A (en) Purifying mixed-cation electrolyte
CA2161308C (en) Selective bismuth and antimony removal from copper electrolyte
KR101931520B1 (en) Concentrating method of precious metal by adjusting the composition of an collecting alloy
US4554058A (en) Electrolytic production of precious metals
JPH03140489A (en) Production of high-purity copper
JPS6024198B2 (en) Manufacturing method of anode material for copper plating
US1186306A (en) Process of extracting metals from their ores.
JPH02254189A (en) Production of high purity copper
JPH02301586A (en) Production of high-purity copper

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees