JPH029677B2 - - Google Patents

Info

Publication number
JPH029677B2
JPH029677B2 JP60210185A JP21018585A JPH029677B2 JP H029677 B2 JPH029677 B2 JP H029677B2 JP 60210185 A JP60210185 A JP 60210185A JP 21018585 A JP21018585 A JP 21018585A JP H029677 B2 JPH029677 B2 JP H029677B2
Authority
JP
Japan
Prior art keywords
copper
electrolytic copper
electrolytic
purity
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60210185A
Other languages
Japanese (ja)
Other versions
JPS6270589A (en
Inventor
Shuichi Oodo
Tetsuo Yamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP60210185A priority Critical patent/JPS6270589A/en
Publication of JPS6270589A publication Critical patent/JPS6270589A/en
Publication of JPH029677B2 publication Critical patent/JPH029677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術的分野 本発明は、高純度電気銅の製造法に関する。 従来技術 従来、電気銅は、通常の電気分解による処理に
より99.99%までの純度のものがほとんどであり、
電線用等に用いられていた。 しかしながら、最近においては99.99%以上の
純度の銅が要望されるようになつた。例えば、超
電導材料用等の用途に用い、好ましい特性を得よ
うとしている。そこで、その製法が検討されてい
る。 高純度銅の製法としては例えば、銀が8〜
14ppm、イオウが5〜15ppm含む電気銅を硝酸浴
で電気分解し、イオウ分の少ない電気銅を得る方
法である。 この方法によれば、通常の電気銅中のイオウが
5〜9ppmあるものがかなり低下するのであるが、
最も高い銀については、好ましく除去ができな
い。 発明の構成 そこで発明者等が鋭意検討した結果、以下の発
明をなした。 即ち、本発明は、硝酸酸性の電解浴中に塩素源
を添加し、予め電気分解により得られた電気銅あ
るいは相当品を再電解する高純度電気銅の製造法
である。 さらに、本発明の実施態様として、塩素源を添
加した後の塩素濃度が、20〜130mg/である高
純度電気銅の製造法も提供する。 また、電解浴温度が、20〜65℃である高純度電
気銅の製造法も提供する。 発明の具体的説明 本発明で用いる電解浴は、硝酸酸性浴である。 硝酸の酸濃度は、PHが3以下に保持されるよう
に調整される。好ましくはPH=2.5〜3.0に調整さ
れる。遊離硝酸が過剰に残留すると電極が化学的
に溶出することになるためである。 アノードは電気銅、無酸素銅等を用いる。これ
らの品位は、銀が8〜14ppm、イオウが5〜
15ppm、砒素0.2〜1ppm、アンチモン0.1〜
0.6ppm、ビスマス0.1〜0.5ppm、鉛0.3〜1.0ppm
含むものが、通常である。 これら不純物を効率良く除くために、塩素源を
電解浴中に一定量含ましめておくことが必要であ
る。塩素源としては、塩酸、塩素ガス、塩化銅等
がある。 これらの塩素量としては、フリーの塩素が20〜
130mg/あると好ましく、より好ましくは35〜
100mg/であると不純物が好ましく除けること
が把握された。 また電解浴温度は、20〜65℃が好ましい。 電解浴の組成は、銅が30〜60g/程度が好ま
しい。 カソードは、純銅板、チタン板等が用いられ
る。 電極間の距離は、20〜60mm、電流密度は30〜
70A/m2で行われる。 以上の条件により得られた電着銅は、銀が
1ppm以下、砒素、アンチモン、ビスマス、鉛、
鉄は0.1ppm以下であり好ましい値である。 さらに窒素については2〜6ppm存在するが、
これは170〜300℃以上に加熱することにより分解
し、銅中に存在することがない。 また得られた電気銅をエレクトロ.ビーム溶解
により処理することにより、さらに効率的に不純
物を低減することができる。 発明の効果 以上のように本発明を実施することにより以下
の効果を得ることができた。 (1) 純度99.999%以上の電気銅を得ることができ
る。 (2) 電気銅中の銀を効率的に回収出来、従来回収
し得なかつた銀を得ることができる。 (3) 本発明により得られる電気銅は、超電導材料
等に好適に用いられる。 実施例 1 電気銅(成分品位.Ag;13.9ppm、S;
11.0ppm、As;0.5ppm、Sb;0.3ppm、Bi;
0.3ppm、Pb;0.7ppm)をアノードとして、Ti板
をカソードとして本発明を実施した。 電解浴は、銅45.0g/、硝酸浴とし、PHは
2.5とした。電解温度は20℃で行つた。 電流密度は50A/m2、極間距離は40mm、電解浴
はPHが3.0以上とならないように1/2希釈の硝酸溶
液を添加し、調整しつつ行つた。 塩素の添加量は、10〜200mg/の間で下記の
通りの結果となつた。 即ち、得られた電着銅の品位は、表1のごとく
である。 イオウが、存在しなかつたのは、言うまでもな
い。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing high purity electrolytic copper. Conventional technology Conventionally, most electrolytic copper has a purity of up to 99.99% through ordinary electrolysis treatment.
It was used for electric wires, etc. However, recently there has been a demand for copper with a purity of 99.99% or higher. For example, attempts are being made to obtain desirable characteristics by using it for applications such as superconducting materials. Therefore, its manufacturing method is being considered. For example, as for the manufacturing method of high purity copper, silver is 8~
In this method, electrolytic copper containing 14 ppm of sulfur and 5 to 15 ppm of sulfur is electrolyzed in a nitric acid bath to obtain electrolytic copper with a low sulfur content. According to this method, the sulfur content in ordinary electrolytic copper, which has 5 to 9 ppm, is significantly reduced.
For the highest silvers, removal is not possible. Structure of the Invention As a result of intensive study, the inventors made the following invention. That is, the present invention is a method for producing high-purity electrolytic copper by adding a chlorine source to a nitric acid electrolytic bath and re-electrolyzing electrolytic copper or an equivalent product previously obtained by electrolysis. Furthermore, as an embodiment of the present invention, there is also provided a method for producing high-purity electrolytic copper in which the chlorine concentration after adding a chlorine source is 20 to 130 mg/. The present invention also provides a method for producing high-purity electrolytic copper in which the electrolytic bath temperature is 20 to 65°C. DETAILED DESCRIPTION OF THE INVENTION The electrolytic bath used in the present invention is a nitric acid bath. The acid concentration of nitric acid is adjusted so that the pH is maintained at 3 or less. Preferably, the pH is adjusted to 2.5 to 3.0. This is because if excessive free nitric acid remains, the electrode will be chemically eluted. Electrolytic copper, oxygen-free copper, etc. are used for the anode. The quality of these is 8 to 14 ppm for silver and 5 to 14 ppm for sulfur.
15ppm, arsenic 0.2~1ppm, antimony 0.1~
0.6ppm, bismuth 0.1~0.5ppm, lead 0.3~1.0ppm
What it includes is normal. In order to efficiently remove these impurities, it is necessary to contain a certain amount of a chlorine source in the electrolytic bath. Examples of chlorine sources include hydrochloric acid, chlorine gas, and copper chloride. As for the amount of chlorine in these, free chlorine is 20~
Preferably 130mg/, more preferably 35~
It was found that impurities can be preferably removed when the amount is 100 mg/. Moreover, the electrolytic bath temperature is preferably 20 to 65°C. The composition of the electrolytic bath is preferably about 30 to 60 g/g of copper. A pure copper plate, a titanium plate, etc. are used for the cathode. The distance between the electrodes is 20~60mm, and the current density is 30~
Performed at 70A/ m2 . The electrodeposited copper obtained under the above conditions contains silver.
1ppm or less, arsenic, antimony, bismuth, lead,
The iron content is 0.1 ppm or less, which is a preferable value. Furthermore, nitrogen exists at 2 to 6 ppm,
This decomposes when heated above 170-300°C and is no longer present in copper. In addition, the obtained electrolytic copper is electrolyzed. By processing by beam melting, impurities can be reduced more efficiently. Effects of the Invention By implementing the present invention as described above, the following effects could be obtained. (1) Electrolytic copper with a purity of 99.999% or higher can be obtained. (2) Silver in electrolytic copper can be efficiently recovered, and silver that could not be recovered conventionally can be obtained. (3) Electrolytic copper obtained by the present invention is suitably used as a superconducting material and the like. Example 1 Electrolytic copper (component quality: Ag; 13.9ppm, S;
11.0ppm, As; 0.5ppm, Sb; 0.3ppm, Bi;
The present invention was carried out using a Ti plate as an anode and a Ti plate as a cathode. The electrolytic bath is copper 45.0g/nitric acid bath, and the pH is
It was set to 2.5. The electrolysis temperature was 20°C. The current density was 50 A/m 2 , the distance between the electrodes was 40 mm, and the electrolytic bath was adjusted by adding a 1/2 diluted nitric acid solution so that the pH did not exceed 3.0. The amount of chlorine added was between 10 and 200 mg/h, and the results were as follows. That is, the quality of the obtained electrodeposited copper is as shown in Table 1. Needless to say, sulfur did not exist.

【表】 得られた電着銅を洗浄後、チタン板から剥が
し、溶融(116℃)した後分析した結果、窒素の
値は検知されない値であつた。
[Table] After washing the obtained electrodeposited copper, it was peeled off from the titanium plate, melted (at 116°C), and then analyzed. As a result, the nitrogen content was undetectable.

Claims (1)

【特許請求の範囲】 1 硝酸酸性の電解浴中に塩素源を添加し、予め
電気分解により得られた電気銅あるいは相当品を
再電解することを特徴とする高純度電気銅の製造
法。 2 塩素源を添加した後の塩素濃度が、20〜130
mg/であることを特徴とする特許請求の範囲第
1項記載の高純度電気銅の製造法。 3 電解浴温度が、20〜65℃であることを特徴と
する特許請求の範囲第1項記載の高純度電気銅の
製造法。
[Scope of Claims] 1. A method for producing high-purity electrolytic copper, which comprises adding a chlorine source to a nitric acid electrolytic bath and re-electrolyzing electrolytic copper or an equivalent product previously obtained by electrolysis. 2 The chlorine concentration after adding the chlorine source is between 20 and 130.
1. The method for producing high-purity electrolytic copper according to claim 1, characterized in that the amount is mg/. 3. The method for producing high-purity electrolytic copper according to claim 1, wherein the electrolytic bath temperature is 20 to 65°C.
JP60210185A 1985-09-25 1985-09-25 Manufacture of high purity electrolytic copper Granted JPS6270589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210185A JPS6270589A (en) 1985-09-25 1985-09-25 Manufacture of high purity electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210185A JPS6270589A (en) 1985-09-25 1985-09-25 Manufacture of high purity electrolytic copper

Publications (2)

Publication Number Publication Date
JPS6270589A JPS6270589A (en) 1987-04-01
JPH029677B2 true JPH029677B2 (en) 1990-03-02

Family

ID=16585190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210185A Granted JPS6270589A (en) 1985-09-25 1985-09-25 Manufacture of high purity electrolytic copper

Country Status (1)

Country Link
JP (1) JPS6270589A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644444A (en) * 1987-06-26 1989-01-09 Nippon Mining Co Copper wire for sound and its production
JP2623267B2 (en) * 1987-11-27 1997-06-25 日鉱金属株式会社 Manufacturing method of low-purity high-purity electrolytic copper
JP2622559B2 (en) * 1987-12-10 1997-06-18 株式会社ジャパンエナジー Manufacturing method of high purity copper
JPH0524823U (en) * 1991-09-14 1993-03-30 彰憲 田辺 Seismic structure structure
JP2785908B2 (en) * 1995-05-08 1998-08-13 日鉱金属株式会社 Method of manufacturing copper tube for superconductivity
JP3913725B2 (en) * 2003-09-30 2007-05-09 日鉱金属株式会社 High purity electrolytic copper and manufacturing method thereof
CN107974695B (en) * 2017-11-17 2020-01-10 金川集团股份有限公司 Method for producing ultra-high pure copper by one-step electrolysis method
CN111378992B (en) * 2020-04-27 2021-07-27 阳谷祥光铜业有限公司 Preparation method of copper powder

Also Published As

Publication number Publication date
JPS6270589A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US8216442B2 (en) Ultrahigh-purity copper and process for producing the same
SU1416060A3 (en) Method of producing metals
EP1159467B1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
US10882757B2 (en) Anhydrous nickel chloride and method for producing the same
US4738759A (en) Method for producing calcium or calcium alloys and silicon of high purity
JPH029677B2 (en)
JP2754030B2 (en) Manufacturing method of high purity tin
JP2007231363A (en) Process for electrolytic refining of copper
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP2642230B2 (en) Manufacturing method of high purity tin
JPH034629B2 (en)
JP2777955B2 (en) Desilvering or silver recovery method
US4111688A (en) Method for separating gold from acid aqueous solution
US2907703A (en) Method for the production of cysteine hydrochloride
JP2013227621A (en) Method of electrorefining bismuth
JPH0541712B2 (en)
JP2623267B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JPH0653947B2 (en) High-purity copper manufacturing method
KR100349445B1 (en) Cementation apparatus of high purity copper
JPS62270735A (en) Recovering method for tin
US4166013A (en) Method of making metal beta-alumina and refining metal using it
JP2998623B2 (en) Method for producing low alpha ray lead
JPH0768627B2 (en) High-purity copper manufacturing method
JPS61261491A (en) Manufacture of high purity aluminum-lithium alloy powder
JP2594799B2 (en) Manufacturing method of low-purity high-purity electrolytic copper