JP2587814B2 - Method for treating concentrate from copper converter - Google Patents

Method for treating concentrate from copper converter

Info

Publication number
JP2587814B2
JP2587814B2 JP18413686A JP18413686A JP2587814B2 JP 2587814 B2 JP2587814 B2 JP 2587814B2 JP 18413686 A JP18413686 A JP 18413686A JP 18413686 A JP18413686 A JP 18413686A JP 2587814 B2 JP2587814 B2 JP 2587814B2
Authority
JP
Japan
Prior art keywords
mat
copper
concentrate
converter
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18413686A
Other languages
Japanese (ja)
Other versions
JPS6342335A (en
Inventor
隆義 木村
康夫 尾島
芳秋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18413686A priority Critical patent/JP2587814B2/en
Publication of JPS6342335A publication Critical patent/JPS6342335A/en
Application granted granted Critical
Publication of JP2587814B2 publication Critical patent/JP2587814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は銅転炉から排出される転炉からみを固化し
た後、浮遊選鉱処理して得られる銅転炉からみ精鉱(以
下、「からみ精鉱」という)をそのまゝ溶錬炉へ繰返す
ことなく、別の炉で単独で溶解処理し、不純物を効率よ
く除去した後、不純物の少ない銅分を既存の銅製錬工程
へ繰返す方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a copper converter entrained concentrate (hereinafter referred to as "Kamimi") obtained by solidifying a converter exhaust discharged from a copper converter and then performing a flotation treatment. Concentrate)), without melting the smelting furnace as it is, dissolving it in a separate furnace, removing impurities efficiently, and then repeating the copper content with less impurities to the existing copper smelting process. Things.

〔従来技術〕(Prior art)

銅転炉から排出される転炉からみは一般に銅分が3〜
7重量%も含有されているため、そのまゝ廃棄すること
ができず、種々の方法で有価金属が回収される。
In general, the copper content of the converter discharged from the copper converter is 3 ~.
Since it contains as much as 7% by weight, it cannot be discarded as it is, and valuable metals are recovered by various methods.

従来用いられている転炉からみの処理法として、転炉
からみを溶体のまゝ溶錬用の反射炉、あるいは電気炉に
繰返すことが行なわれる。しかしこの場合には転炉から
み中にFe3O4が多量に含まれるため、炉底が上り炉内の
有効容積が減少しやすい欠点がある。また、近時溶融状
態の転炉からみを還元剤を使用した所謂スラグクリーニ
ングが提案されているが、転炉からみの全量を溶体のま
ゝで処理するため、かなりの大きさの炉を必要とし、ま
た回収された銅分中には転炉からみ中に含まれたAs,Sb
等の不純物が濃縮されるが、これら不純物は後工程であ
る電解精製工程で多量に含まれることが好ましくないの
で、回収した銅分を既存の銅製錬工程例えば転炉へ装入
するためには、回収した銅分を別途に精製する工程が必
要となるが、回収銅分は処理転炉からみに対して6重量
%程度の発生量となるので、この精製工程も比較的規模
の大きい設備が必要であった。
As a conventional method of treating the converter stake, the converter stake is repeatedly returned to a reverberation furnace for melting or an electric furnace. However, in this case, since a large amount of Fe 3 O 4 is contained in the converter, there is a disadvantage that the furnace bottom rises and the effective volume in the furnace tends to decrease. Also, a so-called slag cleaning using a reducing agent from a converter in a recently melted state using a reducing agent has been proposed, but a large-sized furnace is required in order to treat the entire amount of the converter from the converter as a solution. In the recovered copper content, As, Sb contained in the converter
Although impurities such as are concentrated, it is not preferable that these impurities are contained in a large amount in the subsequent electrolytic refining process, so that the recovered copper component is charged into an existing copper smelting process such as a converter. Separately, a process of purifying the recovered copper is required. However, since the recovered copper is generated at about 6% by weight with respect to the processing converter, this purification process also requires relatively large-scale equipment. Was needed.

この他従来最も広く用いられている転炉からみの処理
方法としては、転炉からみを一旦凝固させた後微粉砕し
て浮遊選鉱法により銅分の高い精鉱を回収し溶錬炉に繰
返すもので、得られたからみ精鉱はそのまゝ硫化精鉱を
溶錬する溶錬炉、例えば自溶炉に繰返して処理されてい
た。
In addition, the most widely used conventional method of treating the converter refuse is to once solidify the converter refuse, pulverize it, recover the concentrate with high copper content by flotation, and repeat it to the smelting furnace. The obtained enamel concentrate was then repeatedly treated in a smelting furnace for smelting sulfide concentrate, for example, a flash smelting furnace.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

浮遊選鉱法によって得られたからみ精鉱を、そのまゝ
溶錬炉に繰返すと、転炉の操業において転炉からみ中に
除去されたAs,Sb等の不純物の殆んどが選鉱工程でから
み精鉱中へ分配されるため、溶錬炉へ不純物が繰返して
装入される結果を来たす欠点があった。この溶錬炉では
不純物の一部は溶錬炉産のからみ中に除去されるが、不
純物の溶錬炉への装入量が増加すれば、必然的に産出マ
ット中に分配される不純物量も増え、最終的には電解精
製に供するアノード中の不純物品位が高くなって好まし
くない。
When the enamel concentrate obtained by the flotation process is repeated in the smelting furnace, most of the impurities such as As and Sb removed during the operation of the converter during the operation of the converter are entangled in the ore concentrating process. The disadvantage is that the impurities are repeatedly charged into the smelting furnace because they are distributed into the concentrate. In this smelting furnace, some of the impurities are removed during the smelting furnace production, but if the amount of impurities charged into the smelting furnace increases, the amount of impurities distributed in the production mat will inevitably increase. And the quality of impurities in the anode used for electrolytic refining eventually increases, which is not preferable.

このため溶錬炉に装入される不純物の総量は一定の基
準以下とする必要があるが、からみ精鉱が溶錬炉へ持込
む不純物量は溶錬炉へ装入される不純物中のかなりの割
合を占め、不純物品位の高い銅精鉱の処理許容量が制限
されてしまう。
For this reason, the total amount of impurities charged into the smelting furnace needs to be below a certain standard, but the amount of impurities brought into the smelting furnace by the enrichment concentrate is quite a fraction of the impurities charged into the smelting furnace. , And the processing capacity of copper concentrate with high impurity quality is limited.

転炉からみの浮遊選鉱においては不純物としてのAs,S
bは凝固した転炉からみ中では主として金属銅と合金を
形成している他、一部はNiと金属間化合物を形成してい
るため選鉱工程でこれらの不純物を除去することはきわ
めて困難であり、からみ精鉱中への不純物の濃縮は避け
られないと云う問題点があった。
As, S as impurities in flotation from converter
b forms mainly an alloy with metallic copper when viewed from the solidified converter, and because it forms an intermetallic compound with Ni, it is extremely difficult to remove these impurities in the beneficiation process. However, there is a problem that the concentration of impurities in the enamel concentrate is inevitable.

また一方からみ精鉱中には20〜35重量%のFeが含まれ
るが、その大部分はFe3O4を形成しており、このFe3O4
自溶炉のような溶錬炉へ装入されると、からみの粘性上
昇による銅の持去り損失の増加、炉底の上昇、からみと
マットの境界にねたり層を形成して溶融からみの排出を
困難にする問題を惹き起す。この他からみ精鉱はS品位
が低く、通常の銅精鉱のS/Cu重量比が1前後であるのに
対し、からみ精鉱のS/Cu比は0.2前後であるため、自溶
炉精鉱バーナーでの燃料性が悪く、補助燃料必要量が増
加し、自溶炉の溶解能力を減少させると云う問題があっ
た。
Although it contains 20 to 35 wt% of Fe during viewed concentrate from one, most of which forms a Fe 3 O 4, the smelting furnace as for the Fe 3 O 4 is a flash smelting furnace When charged, this causes problems such as increased copper carry-out loss due to increased entanglement viscosity, rise in the hearth, and formation of a spatter layer at the interface between the entanglement and the mat, making it difficult to discharge the molten entanglement. In addition, S concentrate has low S grade, and the S / Cu weight ratio of ordinary copper concentrate is around 1, while the S / Cu ratio of gang concentrate is around 0.2. There is a problem in that the fuel properties of the ore burner are poor, the required amount of auxiliary fuel increases, and the melting capacity of the flash smelter decreases.

本発明はこのような欠点を解消したからみ精鉱の処理
方法を提供せんとするものである。
An object of the present invention is to provide a method for treating ash concentrate which has solved such disadvantages.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明はこの目的を達成するために、銅転炉からみを
選鉱処理して得られたからみ精鉱を、弱還元性又は中性
雰囲気下、1200〜1300℃でCu/S重量比を4.3以上に維持
しつつ溶解して、からみ、マット及び金属の3相を得、
該金属相を分離回収し、分離回収した金属相の溶湯にマ
ットを形成するための硫黄源を添加してマットの溶湯を
生成させた後、該マットの溶湯を真空精製装置内で減圧
してAs、Sbのような不純物を揮発除去することにより、
該マットの溶湯を精製するようにしたものである。
In order to achieve this object, the present invention is to concentrate the copper concentrate obtained by beneficiating the converter from the copper converter, under a weak reducing or neutral atmosphere, at a temperature of 1200 to 1300 ° C and a Cu / S weight ratio of 4.3 or more. Dissolving while maintaining the entangled, matte and metal three phases,
The metal phase is separated and recovered, and after adding a sulfur source for forming a mat to the separated and recovered metal phase molten metal to generate a molten metal of the mat, the molten metal of the mat is depressurized in a vacuum purification device. By volatilizing and removing impurities such as As and Sb,
The molten metal of the mat is purified.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

通常の溶錬炉産出のマット処理用の銅転炉から排出さ
れた銅転炉からみは、通常の方法に従って凝固、粉砕
し、浮遊選鉱法によって銅分の高いからみ精鉱と、銅分
を殆んど含有しない尾鉱とに分離される。このとき不純
物の分配は転炉からみ中の品位や選鉱条件にもよるが、
転炉からみ中のSbの40〜90重量%、Asの50〜80重量%が
からみ精鉱中に分配される。尾鉱は廃棄し、からみ精鉱
は本発明方法に従って溶解炉で溶融される。
The copper converter discharged from the copper converter for mat treatment produced by the ordinary smelting furnace is solidified and pulverized in accordance with a normal method, and the enrichment concentrate having high copper content and almost all of the copper content are separated by flotation. It is separated into tailings that do not contain much. At this time, the distribution of impurities depends on the grade in the converter and the conditions of the beneficiation.
40 to 90% by weight of Sb and 50 to 80% by weight of As in the converter are distributed in the gang concentrate. The tailings are discarded and the lees concentrate is melted in a melting furnace according to the method of the invention.

この溶解炉は弱還元性又は中性雰囲気下でからみ精鉱
が溶解できれば、炉の形式は特に限定されないが、実用
上電気炉が便利である。溶解温度は1200〜1300℃程度で
よい。からみ精鉱中のCu/S重量比が4.3以上であれば、
からみ精鉱を単独で溶解するだけで、からみ、マット、
金属の3相が得られるが、Cu/S重量比が4.3未満の場合
はからみ、マットの2相しか得られないので、銅スクラ
ップなどの金属銅を添加して3相が得られるようにする
と良い。
The type of the melting furnace is not particularly limited as long as the entangled concentrate can be melted in a weak reducing or neutral atmosphere, but an electric furnace is practically convenient. The melting temperature may be about 1200-1300 ° C. If the Cu / S weight ratio in tangled concentrate is 4.3 or more,
Just dissolve tangled concentrate alone, tangled, matte,
Three phases of metal can be obtained, but if the Cu / S weight ratio is less than 4.3, only two phases of mat can be obtained, so if metal copper such as copper scrap is added to obtain three phases good.

溶解炉でからみ、マット、金属の3相が形成される
と、からみ精鉱中のAs,Sbの90%以上が金属相に分配さ
れる。銅製錬におけるAs,Sbのこのような挙動について
は例えばAkira Yazawa“Distribution of various elem
ents between copper,matte and slag"Erzmetall 33(1
980)p.377〜382に記載されているように実験室規模の
平衡実験でも確認されている。
When three phases of mat and metal are formed in the smelting furnace, 90% or more of As and Sb in the leash concentrate are distributed to the metal phase. For such behavior of As and Sb in copper smelting, see, for example, Akira Yazawa “Distribution of various elem
ents between copper, matte and slag "Erzmetall 33 (1
980) has also been confirmed in laboratory scale equilibrium experiments as described on pages 377-382.

からみ精鉱の溶解炉では、からみ精鉱と共に脱銅スラ
イムや銅精製炉からみなどのAs,Sb品位が高い中間製品
を装入して処理してもよい。
In the smelting furnace of the gang concentrate, an intermediate product with a high As and Sb grade such as a copper removal slime or a slag of a copper refining furnace may be charged and treated together with the gang concentrate.

この溶解炉で産出されるからみはそのまま棄却しても
よいが、銅品位が高い場合には転炉からみの選鉱工程へ
繰返してもよい。産出されるマットはAs,Sb等の品位が
低いのでそのまゝ溶錬炉産出のマット処理用の銅転炉に
装入することができる。しかし産出される金属相は前記
したようにAs,Sb等が濃縮されるので、以下に述べる精
製工程を経て銅転炉に装入されるが、この金属相の生成
量は少量なので精製工程は小規模なもので済む。
The filth produced in this melting furnace may be rejected as it is, but if the copper quality is high, the process may be repeated from the converter to the beneficiation process. Since the produced mat has low quality of As, Sb, etc., it can be directly charged into a copper converter for mat treatment produced in a smelting furnace. However, since the produced metal phase is enriched in As, Sb, etc. as described above, it is charged into a copper converter through the purification step described below. Only small things are needed.

溶解炉で産出し分離回収された銅を主成分とする金属
相は次いで真空炉に装入される。こゝで溶融状態を保持
しながらマット相を形成する程度まで硫黄源を添加す
る。硫黄源としては元素状硫黄を窒素ガスにより吹込ん
でもよく、硫化鉄鉱を添加してもよい。マットのS品位
は22重量%以上となるように硫黄源を添加するのが好ま
しく、S品位が22重量%未満ではAs,Sbの揮発率が低下
するので好ましくない。次いで真空炉内の圧力が0.6mmH
g以下に至るまで減圧を続け、0.6mmHg以下となったら、
この状態を5分以上保持して溶融マット中に含有される
Zn,Pb,As,Sb,Bi等を揮発回収する。揮発する成分の多い
間は装置の規模や、吸引の能力にもよるが、真空度はあ
まり高くならず、真空度が0.6mmHg以下となるともはや
それ以上の揮発はあまり望めず、この状態を5分以上続
けると良い。真空炉の溶湯温度は低周波誘導炉等を用い
て溶融温度以上に保持すれば良く、特別に高温にする必
要はない。
The copper-based metal phase produced and separated and recovered in the melting furnace is then charged into a vacuum furnace. Here, while maintaining the molten state, a sulfur source is added to the extent that a mat phase is formed. As a sulfur source, elemental sulfur may be blown by nitrogen gas, or iron sulfide may be added. It is preferable to add a sulfur source so that the S grade of the mat is 22% by weight or more. If the S grade is less than 22% by weight, the volatility of As and Sb is undesirably reduced. Next, the pressure inside the vacuum furnace is 0.6 mmH
g until the pressure drops below 0.6 mmHg.
This state is maintained in the molten mat for at least 5 minutes.
Volatile recovery of Zn, Pb, As, Sb, Bi, etc. While the amount of volatile components is large, the degree of vacuum does not increase so much depending on the scale of the apparatus and the suction capacity, and when the degree of vacuum is 0.6 mmHg or less, further volatilization can no longer be expected. It is good to continue for more than a minute. The temperature of the molten metal in the vacuum furnace may be maintained at a temperature equal to or higher than the melting temperature by using a low-frequency induction furnace or the like.

真空炉で揮発させたPb,Zn,Sn,As,Sb,Bi等は適当な集
塵装置で回収後、湿式処理法等で夫々の金属に分離回収
することができる。
Pb, Zn, Sn, As, Sb, Bi, and the like volatilized in a vacuum furnace can be separated and recovered into respective metals by a wet treatment method or the like after being recovered by an appropriate dust collector.

真空炉で不純物を極力揮発除去した精製ずみマットは
前述の溶解炉で産出したマットと共に溶錬炉産出のマッ
ト処理用の通常の銅転炉に繰返して処理することにより
からみ精鉱中に含有された銅の大部分は電解精製のルー
トにのせることができる。
The refined mat from which impurities have been removed by a vacuum furnace as much as possible is contained in the mash concentrate by repeatedly processing the mat produced in the melting furnace described above together with the ordinary copper converter for mat processing produced in the smelting furnace. Most of the copper can be put on the route of electrolytic refining.

精製ずみマットをマット処理の転炉のどの工程に繰返
すかについては、本発明におけるマット生成に元素状硫
黄を使用したときは特に鉄分が混入していないので造銅
期に装入すればよく、また硫黄源として硫化鉄鉱を用い
た場合にはマット中に鉄を含有するので造かん期に繰返
す必要がある。
Regarding which step of the converter of the mat treatment, the purified mat is to be repeated, when the elemental sulfur is used for the mat formation in the present invention, it is sufficient to charge the mat during the copper making stage, since iron is not particularly mixed. When iron sulfide is used as a sulfur source, the mat contains iron, so it is necessary to repeat the fermentation period.

なお、溶解炉から産出する金属相の精製方法として、
本発明の方法以外に例えば金属銅を硫化することなく直
接真空精製する方法、金属銅にNa化合物やCa化合物を添
加して不純物をからみ化して除去する方法、金属銅を硫
化してマットとした後、不活性ガスを吹込んで不純物を
揮発除去する方法などがある。然しながら金属銅の真空
精製法や不活性ガス吹込み法では不純物、特にSbの除去
率が低い。またNa,Ca化合物を添加する方法では生成す
るからみ中にかなりの銅分が含まれるため、銅の損失が
増加する上、からみ中のAs,Sbは安定な酸化物となって
いるため、からみからの回収が困難である欠点がある。
In addition, as a method of purifying the metal phase produced from the melting furnace,
In addition to the method of the present invention, for example, a method of directly performing vacuum purification without sulphiding metallic copper, a method of adding a Na compound or a Ca compound to metallic copper to remove impurities by entangling, a method of sulphidizing metallic copper to form a mat Thereafter, there is a method of blowing an inert gas to volatilize and remove impurities. However, the removal rate of impurities, particularly Sb, is low by the vacuum purification method or the inert gas injection method of metallic copper. In addition, in the method of adding the Na and Ca compounds, a considerable amount of copper is contained in the entangled product, so that the loss of copper is increased, and As and Sb in the entangled are stable oxides. There is a drawback that it is difficult to recover from wastewater.

この他金属相の精製方法として出願人が特願昭60−98
722号で出願したように金属相のまま真空処理して揮発
しやすいZn,Pb等を除去した後、溶銅を加硫してマット
化し、さらに真空精製してAs,Sb等を除去することもで
きる。
In addition, as a method for purifying a metal phase, the applicant has filed Japanese Patent Application No. 60-98.
After applying vacuum treatment in the metal phase to remove volatile Zn and Pb etc. as filed in Application No. 722, vulcanizing the molten copper to form a mat, then purifying in vacuum to remove As, Sb etc. Can also.

〔実施例〕〔Example〕

実施例1 第1表に記載のからみ精鉱250gにコークス2.5gを添
加、混合したものをアルミナ製ルツボに入れてアルミナ
製の蓋を施し、N2を1/min流しているシリコニット炉
内で加熱し、1300℃で4時間保持した後ルツボを取り出
し冷却、凝固させた後試料の観察、秤量、化学分析を行
った。ルツボ内の試料はからみ、マット、金属の3相に
分れており、その分離性は良好であった。産出物量、分
析値(重量%)を第1表に示す。
Example 1 2.5 g of coke was added to 250 g of the enamel concentrate described in Table 1 and the mixture was placed in an alumina crucible, covered with an alumina cover, and placed in a siliconite furnace in which N 2 was flowing at 1 / min. After heating and holding at 1300 ° C. for 4 hours, the crucible was taken out, cooled and solidified, and the sample was observed, weighed, and subjected to chemical analysis. The sample in the crucible was entangled and separated into three phases of mat and metal, and the separability was good. Table 1 shows the yield and the analytical value (% by weight).

上表から明らかなようにAs,Sbの大部分は金属相に濃
縮してきていることがわかる。
As is clear from the above table, most of As and Sb are concentrated in the metal phase.

実施例2 煉瓦内径600mm、深さ880mm、トランス容量200KVAの単
相式電気炉にて実施例1に用いたと同じからみ精鉱182K
gを添加物なしで88分かけて溶解した。消費電力は104KW
Hであった。結果を第2表に示す。
Example 2 182 K of entangling concentrate same as that used in Example 1 in a single-phase electric furnace having a brick inner diameter of 600 mm, a depth of 880 mm, and a transformer capacity of 200 KVA.
g was dissolved over 88 minutes without additives. Power consumption is 104KW
H. The results are shown in Table 2.

実施例3 この実施例には本発明のからみ精鉱の溶解によって得
られた銅をマット相に転換し、真空精製装置内で不純物
を揮発除去する例について述べる。
Example 3 This example describes an example in which copper obtained by dissolving enamel concentrate according to the present invention is converted to a matte phase, and impurities are volatilized and removed in a vacuum purifier.

重量%でCu84.1、As1.40、Sb1.51、Fe3.4、S0.26の回
収銅をそのまゝ又はこれに元素硫黄を加えて1200℃に保
持してS含有量が22.4重量%、及び11.2重量%としたも
のを内径33mm、高さ150mmのタンマン管に装入し、高周
波真空溶解炉で炉内を中性ガスで置換した後約30分で所
定温度にまで昇温し、真空ポンプに真空度を上げて揮発
分を吸引し、真空度を0.04〜0.6mmHgに至らしめた後5
〜15維持した。不純物除去後の精製ずみマット等の品位
を第3表に示す。
The recovered copper of Cu84.1, As1.40, Sb1.51, Fe3.4, and S0.26 is maintained at 1200 ° C by weight or by adding elemental sulfur to the content of S at 22.4% by weight. , And 11.2% by weight were charged into a Tamman tube having an inner diameter of 33 mm and a height of 150 mm, and the inside of the furnace was replaced with a neutral gas in a high-frequency vacuum melting furnace, and then heated to a predetermined temperature in about 30 minutes. After increasing the degree of vacuum with a vacuum pump and sucking volatiles, bring the degree of vacuum to 0.04 to 0.6 mmHg, then 5
Maintained ~ 15. Table 3 shows the quality of the purified mat and the like after removing the impurities.

上表の結果から試験No.1は加硫を行なわず、金属状態
のまゝ真空精製を行なったもので、As,Sbは殆んど除去
されない。試験No.2〜4は本発明方法に従ったものでこ
のうちNo.2はS22.4%になるように加硫し、1230℃で真
空度0.6mmHgに至らしめて5分間保持したものでAs,Sbの
揮発率も良好であることが認められる。試験No.3は試験
No.2と他は同条件で真空度0.2mmHgに至らしめて15分保
持し、試験No.4は温度1150℃としたが、いずれも揮発率
は良好であった。試験No5はマット相形成のための加硫
を十分行なわずに真空精製を行なったもので、金属相と
マット相の両者が残留し、Sbの揮発は殆んど行なわれな
かったがAsは大部分が揮発した。
From the results in the above table, Test No. 1 was obtained by performing vacuum purification in the metal state without vulcanization, and almost no As and Sb were removed. Test Nos. 2 to 4 were conducted in accordance with the method of the present invention. Among them, No. 2 was vulcanized to S22.4%, brought to a vacuum of 0.6 mmHg at 1230 ° C., and held for 5 minutes. It was also found that the volatility of Sb was good. Test No. 3 is a test
No. 2 and others were brought to a vacuum of 0.2 mmHg under the same conditions and maintained for 15 minutes, and in Test No. 4, the temperature was 1150 ° C., but the volatility was good in each case. In test No. 5, vacuum purification was performed without sufficient vulcanization for forming the mat phase, and both the metal phase and the mat phase remained, and Sb was hardly volatilized, but As was large. The part volatilized.

これらの結果からからみ精鉱を溶解して回収した金属
銅分はSを添加して完全なマット相を形成する程度まで
加硫しておくことが不純物の揮発除去のために有効であ
る。
From these results, it is effective to volatilize impurities by volatilizing the metallic copper recovered by dissolving the entangled concentrate to the extent that S is added to form a complete matte phase.

〔効 果〕(Effect)

以上詳細に説明したように本発明方法によればからみ
精鉱中の銅分から比較的小規模な設備でAs,Sb等の不純
物を除去して回収することができ、回収銅分は従来の転
炉工程に繰返すことができるので、溶錬炉での不純物処
理の許容能力が増大する他、からみ精鉱を溶錬炉で処理
するためのFe3O4に起因する問題が解消され、溶錬炉で
の原料精鉱処理能力の増加や、補助燃料量の低減が可能
となる。
As described above in detail, according to the method of the present invention, it is possible to remove impurities such as As and Sb from copper in the entangled concentrate with relatively small-scale equipment and recover the recovered copper. Since it can be repeated in the furnace process, the allowable capacity of impurity treatment in the smelting furnace is increased, and the problem caused by Fe 3 O 4 for processing entangled concentrate in the smelting furnace is solved, and smelting It becomes possible to increase the raw material concentrate processing capacity in the furnace and to reduce the amount of auxiliary fuel.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅転炉からみを選鉱処理して得られた銅転
炉からみ精鉱を、弱還元性又は中性雰囲気下、1200〜13
00℃で、Cu/S重量比を4.3以上に維持しつつ溶解して、
からみ、マット及び金属の3相を得、該金属相を分離回
収する工程と、分離回収した前記金属相の溶湯にマット
を形成するための硫黄源を添加してマットの溶湯を生成
させる工程と、該マットの溶湯を真空精製装置内で減圧
して不純物を揮発除去することにより、該マットの溶湯
を精製する工程とから成る銅転炉からみ精鉱の処理方
法。
1. A concentrate obtained from a copper converter obtained by beneficiating a concentrate from a copper converter is subjected to a weak reducing or neutral atmosphere at 1200 to 13%.
At 00 ° C., dissolving while maintaining the Cu / S weight ratio at 4.3 or higher,
Entangling, obtaining three phases of mat and metal, separating and recovering the metal phase, and adding a sulfur source for forming a mat to the separated and recovered melt of the metal phase to generate a molten metal of the mat; And purifying the molten metal of the mat by depressurizing the molten metal of the mat in a vacuum purifier to volatilize and remove impurities, thereby purifying the molten metal of the mat.
JP18413686A 1986-08-07 1986-08-07 Method for treating concentrate from copper converter Expired - Fee Related JP2587814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18413686A JP2587814B2 (en) 1986-08-07 1986-08-07 Method for treating concentrate from copper converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18413686A JP2587814B2 (en) 1986-08-07 1986-08-07 Method for treating concentrate from copper converter

Publications (2)

Publication Number Publication Date
JPS6342335A JPS6342335A (en) 1988-02-23
JP2587814B2 true JP2587814B2 (en) 1997-03-05

Family

ID=16148002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18413686A Expired - Fee Related JP2587814B2 (en) 1986-08-07 1986-08-07 Method for treating concentrate from copper converter

Country Status (1)

Country Link
JP (1) JP2587814B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751100B2 (en) * 2005-04-28 2011-08-17 三井金属鉱業株式会社 Copper recovery method by flotation
GB2462481B (en) * 2008-06-21 2013-01-23 Noel Alfred Warner Primary zinc metal process
CN105177303A (en) * 2015-10-23 2015-12-23 云南锡业股份有限公司铜业分公司 Method for producing raw copper from matte converting water quenching slag by adopting reverberatory smelting
CN105177302A (en) * 2015-10-23 2015-12-23 云南锡业股份有限公司铜业分公司 Technique for smelting and producing crude copper from matte converting slag by using side-blown converter

Also Published As

Publication number Publication date
JPS6342335A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
JP5663129B2 (en) Copper-containing raw material processing method
JP5873600B2 (en) Nonferrous metallurgical slag processing method
JP2012092417A (en) Treatment method of converter slag, and method for smelting copper
JP2013209732A (en) Method for recovering nickel
JP2003519288A (en) Method of producing blister copper in suspension furnace
JP2587814B2 (en) Method for treating concentrate from copper converter
JP2012082505A (en) Method for treating converter slag and method for smelting copper
US1896807A (en) Process for the recovery of platimum and its bymetals from mattes
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP3424885B2 (en) Copper electrolytic slime treatment method
US2889196A (en) Removal of germanium values from copper-bearing materials containing same
JPS59162233A (en) Wet treatment of copper refining smoke ash
JP2014196560A (en) Metal recovery method
SU1098968A1 (en) Method for depleting slags from copper and copper and nickel production
JPH0421736B2 (en)
JPS61149445A (en) Method for recovering valuable metal from copper smelting slag
US4021235A (en) Operating method for slag cleaning furnace in copper refining
JP3747852B2 (en) Method for recovering high-purity copper from treated waste
US2097560A (en) Lead and lead alloys
CN114058878A (en) Method for effectively reducing tin content in copper slag in smelting process of tin-containing material
JP2531695B2 (en) Recovery method for valuable substances
JPH04236731A (en) Method for recovering noble metal from decoppered slime
CN112458284A (en) Method for recovering carbon, copper, iron and silver from zinc oxide slag
RU2082791C1 (en) Process for purifying copper melts
JPS6352093B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees