JP2531695B2 - Recovery method for valuable substances - Google Patents

Recovery method for valuable substances

Info

Publication number
JP2531695B2
JP2531695B2 JP21214287A JP21214287A JP2531695B2 JP 2531695 B2 JP2531695 B2 JP 2531695B2 JP 21214287 A JP21214287 A JP 21214287A JP 21214287 A JP21214287 A JP 21214287A JP 2531695 B2 JP2531695 B2 JP 2531695B2
Authority
JP
Japan
Prior art keywords
arsenic
antimony
leachate
solution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21214287A
Other languages
Japanese (ja)
Other versions
JPS6455342A (en
Inventor
靖弘 岡島
武 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP21214287A priority Critical patent/JP2531695B2/en
Publication of JPS6455342A publication Critical patent/JPS6455342A/en
Application granted granted Critical
Publication of JP2531695B2 publication Critical patent/JP2531695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、硫黄分を含有する銅製錬工程における溶融
マットを真空精製する際に発生するダスト中の砒素、ア
ンチモンなどの有価物質を分離し、夫々の組成物の浸縮
度を高めて回収し得る有価物の回収方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention separates valuable substances such as arsenic and antimony in dust generated during vacuum refining of a molten mat in a sulfur-containing copper smelting process. The present invention relates to a method of recovering valuable materials that can be recovered by increasing the degree of infiltration of each composition.

(従来の技術) 非鉄金属の製錬に際して発生する物質の処理方法に関
しては種々なる報告がなされているが、砒素、アンチモ
ン、硫黄を主要組成として混在する物質については、該
物質より各組成物を濃縮して分離回収する方法がある。
(Prior Art) Various reports have been made regarding the method of treating substances generated during the smelting of non-ferrous metals, but for substances containing arsenic, antimony, and sulfur as the main components, each composition should be selected from those substances. There is a method of concentrating and separating and collecting.

(発明が解決しようとする問題点) しかしながら、上記構成の方法は充分でなく、適切な
処理方法が見出されていなかつた。例えば本発明で対象
とする砒素、アンチモン、硫黄を主要組成として銅の製
錬工程より産出するスラグ等の物質は、主として浮選法
により処理されている。
(Problems to be Solved by the Invention) However, the method of the above configuration is not sufficient, and an appropriate processing method has not been found. For example, substances such as slag produced by the smelting process of copper having arsenic, antimony, and sulfur as the main components in the present invention are mainly treated by the flotation method.

浮選法では銅がかなりの収率で回収されるものの、一
度は転炉スラグ中に除去された砒素、アンチモン、ビス
マス等の一部がマツト溶錬炉へ繰返し送り込まれること
になり、マツト溶錬炉の処理能力を圧迫していると共
に、浮選工程から発生する尾鉱は用途も限られるため、
その処理も問題となりつつある。
In the flotation method, although copper is recovered in a considerable yield, some of the arsenic, antimony, bismuth, etc. that were once removed in the converter slag are repeatedly sent to the smelting furnace for smelting. Since the processing capacity of the smelting furnace is being pressed and the tailings generated from the flotation process have limited applications,
The processing is also becoming a problem.

一方、銅製錬工程において、従来不純物と表現されて
きた砒素やアンチモンが最近では機能性材料の構成元素
として注目をあびており、その原料源として、これを確
保する必要が生じてきている。
On the other hand, in the copper smelting process, arsenic and antimony, which have been conventionally expressed as impurities, have recently attracted attention as constituent elements of functional materials, and it has become necessary to secure them as a raw material source.

更に真空精製で生じた硫化物ダストをそのまま長く放
置する時には、存在する砒素が経年変化により酸化さ
れ、亜砒酸を生成することに連らなり、これが公害源と
なり、時によつては大量の人命までも損うという環境並
びに安全管理上の弊害を多く持ち合せていた。
Furthermore, when the sulfide dust generated by vacuum purification is left as it is for a long time, the existing arsenic is oxidized by aging, which leads to the generation of arsenous acid, which becomes a pollution source and sometimes even a large amount of human life. It had many harmful effects on the environment and safety management.

以上の数々の要件から砒素、アンチモン、硫黄を主要
組成とする物質から各組成物を濃縮して分離回収する必
要が叫ばれていた。
From the above requirements, it has been emphasized that each composition needs to be concentrated and separated and recovered from a substance containing arsenic, antimony, and sulfur as main compositions.

(問題点を解決するための手段) 本発明は前記従来技術の問題点を解決するため、硫黄
分を含有する銅製錬工程における溶融マットを真空精製
する際に発生するダストを硫黄分を含まないアルカリ溶
液にて処理した後、溶液のPH度並びに溶液温度を調整す
ることにより、溶液と沈澱物に分離し、処理物質中の砒
素並びにアンチモン等の組成物を各々次工程で容易に精
製処理できる形で分離回収すると共に、硫化物、ダスト
等を野積みした場合にみられる該物質からの亜砒酸等の
生成と大気中自然放散による公害事故を未然に防止する
ようにしたものである。
(Means for Solving Problems) In order to solve the problems of the above-mentioned conventional techniques, the present invention does not include sulfur content in dust generated when vacuum-refining a molten mat containing sulfur content in a copper smelting process. After treatment with an alkaline solution, the pH and solution temperature of the solution can be adjusted to separate into a solution and a precipitate, and the composition of arsenic and antimony in the treated substance can be easily purified in the next step. In addition to the separation and recovery in the form of sulfides, dusts, etc., are prevented from causing pollution accidents due to the generation of arsenous acid and the like from the substances and natural emission in the atmosphere, which are observed when the substances are piled up.

すなわち、本発明は、硫黄分を含有する銅製錬工程に
おける溶融マットを真空精製する際に発生するダストで
あって、硫黄分を22%程度含有する銅製錬工程における
溶融マツトを真空精製する際に発生し、砒素5〜30重量
%、アンチモン5〜30重量%、鉛0〜5重量%、銅2〜
10重量%、硫黄20〜50重量%の組成を有する硫化物ダス
トを対象として砒素、アンチモン等の有価物を分離回収
するようにしたものである。
That is, the present invention is a dust generated when vacuum-refining a molten mat in a copper smelting step containing a sulfur content, and when vacuum-refining a molten mat in a copper smelting step containing a sulfur content of about 22%. Generated, arsenic 5-30% by weight, antimony 5-30% by weight, lead 0-5% by weight, copper 2-
It is intended to separate and recover valuable substances such as arsenic and antimony for sulfide dust having a composition of 10% by weight and 20 to 50% by weight of sulfur.

更に詳しく述べるならば、本発明にあつては、硫黄分
を含有する銅製錬工程における溶融マットを真空精製す
る際に発生するダストを、硫黄を含まないアルカリ、例
えば苛性ソーダ等のアルカリ溶液に浸漬した後、溶液の
PHを10以上に保つと共に液温を60〜80℃に保ち、且つ浸
出液中の砒素濃度を20g/l以下に保つよう調整すること
により、該物質中の砒素並びにアンチモンを充分に浸出
液中に浸出させたのち、未反応の残渣を分離除去し、更
に残渣を分離した後の浸出液に対して例えば硫酸等の酸
を添加することにより、浸出液のPHを7.0〜9.5に調整し
て後、この工程において生成したアンチモン並びに硫黄
分に富んだ沈澱物を中和溶液から分離することにより中
和液中に砒素を濃縮し、且つ、アンチモンを沈澱物とし
て回収するようにしたものである。
More specifically, in the present invention, dust generated during vacuum refining of a molten mat in a copper smelting process containing a sulfur content is immersed in a sulfur-free alkali, for example, an alkaline solution such as caustic soda. After the solution
By adjusting the pH to 10 or more, the liquid temperature to 60 to 80 ° C, and the arsenic concentration in the leachate to 20 g / l or less, the arsenic and antimony in the substance are sufficiently leached into the leachate. After that, the unreacted residue is separated and removed, and the pH of the leachate is adjusted to 7.0 to 9.5 by adding an acid such as sulfuric acid to the leachate after the residue is further separated. By separating the antimony and the sulfur-rich precipitate formed in (1) from the neutralization solution, arsenic is concentrated in the neutralization solution, and antimony is recovered as a precipitate.

(作用) 本発明になるアルカリ浸出工程において、浸出液のPH
を10.0以上と限定したのは、PH値が10未満の場合には処
理される物質中のアンチモンの捕集率が99.50重量%を
割込むようになつて、浸出液中に充分に浸出させ得なく
なるためである。
(Function) In the alkali leaching step according to the present invention, the pH of the leachate is
Is limited to 10.0 or more, when the PH value is less than 10, the collection rate of antimony in the substance to be treated falls below 99.50% by weight, and it cannot be sufficiently leached into the leachate. This is because.

また、浸出液の液温を60〜80℃に保つようにしたの
は、液温が60℃未満では砒素もアンチモンも浸出液中に
浸出して来る速度が遅くなつて、有価物の回収作業性を
低下させてしまうためであり、液温が80℃を超えると浸
出液中に浸出してくる不要成分の浸出量が突出して来
て、目的とする有価物の純度を下げてしまうためであ
る。また中和工程でPHを7.0〜9.5に限定したのは、中和
液のPHが7.0未満では中和液中への砒素の浸出が充分で
なく、9.5を超えた場合には中和液中へのアンチモンの
浸出が激しくなり、砒素とアンチモンを分離することに
困難を生じるためである。なお、浸出液中の砒素濃度を
20g/l以下と規定したのは、浸出液中の砒素濃度が20g/l
を超えると浸出液中において、砒素とアンチモンの共沈
現象が生じて両者の分離回収を困難にしてしまうためで
ある。次いで、未反応の残渣を分離除去するがこれによ
って回収品の品位を高くし得るものである。
Also, the temperature of the leachate is kept at 60 to 80 ° C because the leaching speed of arsenic and antimony into the leachate is slow when the liquid temperature is lower than 60 ° C, and the workability of recovering valuables is improved. The reason for this is that when the liquid temperature exceeds 80 ° C., the leaching amount of unnecessary components leaching into the leachate becomes prominent, and the purity of the intended valuables is reduced. Also, the PH was limited to 7.0 to 9.5 in the neutralization step because the leaching of arsenic into the neutralization solution was not sufficient when the pH of the neutralization solution was less than 7.0, and in the neutralization solution when it exceeded 9.5. This is because the leaching of antimony into the steel becomes severe and it becomes difficult to separate arsenic and antimony. The arsenic concentration in the leachate
20g / l or less is defined as the arsenic concentration in the leachate is 20g / l
This is because, when it exceeds, the coprecipitation phenomenon of arsenic and antimony occurs in the leachate, which makes separation and recovery of both difficult. Then, the unreacted residue is separated and removed, which can enhance the quality of the recovered product.

(実施例) 以下実施例により説明する。(Example) An example will be described below.

実施例1 銅製錬工程における溶融マツトを真空精製する際に発
生した砒素20.8重量%、アンチモン34.0重量%、銅8.07
重量%、鉛0.24重量%、硫黄36.8重量%の硫化物ダスト
400gを100メツシユ以下に粉砕後、苛性ソーダ溶液を用
いてPH10.50を保持しつつ液温80℃にて2時間の浸出処
理を施した。
Example 1 Arsenic 20.8% by weight, antimony 34.0% by weight and copper 8.07 generated when vacuum-refining a molten mat in a copper smelting process
%, Lead 0.24%, sulfur 36.8% sulfide dust
After crushing 400 g to 100 mesh or less, leaching treatment was performed for 2 hours at a liquid temperature of 80 ° C. while maintaining PH 10.50 with a caustic soda solution.

浸出後の液量は7.8l、残渣量は50gであつた。 The amount of liquid after leaching was 7.8 l and the amount of residue was 50 g.

浸出液の品位は砒素が10.6g/l、アンチモンが16.5g/l
であり、残渣の品位は砒素が0.9重量%、アンチモン15.
1重量%、銅58.1重量%、鉛1.7重量%、硫黄20.9重量%
であつた。
Leachate quality is 10.6 g / l for arsenic and 16.5 g / l for antimony.
The quality of the residue is 0.9% by weight of arsenic and 15.
1% by weight, copper 58.1% by weight, lead 1.7% by weight, sulfur 20.9% by weight
It was.

これにより硫化物中の砒素の99%並びにアンチモンの
94%が浸出液中に浸出された。
As a result, 99% of arsenic in sulfide and antimony
94% was leached into the leachate.

上記浸出液を過して残渣を分離した後の浸出液に対
し、常温で5%濃度の硫酸水を滴下させながらPHを7.5
まで低下させることにより総量9.2lの中和液中のアンチ
モンを沈澱物として分離した。
After passing through the above-mentioned leachate and separating the residue, pH of the leachate was 7.5
The antimony in the neutralized solution with a total volume of 9.2 l was separated as a precipitate.

この際、生成した中和液の品位は砒素が7.8g/l、アン
チモンが0.01g/l以下であつた。また、生成した沈澱物
量は真空乾燥後で232g、組成として砒素4.7重量%、ア
ンチモン55.3重量%、硫黄38.9重量%であつた。
At this time, the quality of the produced neutralization liquid was 7.8 g / l for arsenic and 0.01 g / l or less for antimony. The amount of precipitate formed was 232 g after vacuum drying, and the composition was 4.7% by weight of arsenic, 55.3% by weight of antimony, and 38.9% by weight of sulfur.

上記したように、本発明の実施により中和液として砒
素の総量71.8g、沈澱物としてアンチモン128.3gを回収
することができ、砒素並びにアンチモン夫々86.4%、9
4.4%の回収を確保できた。
As described above, according to the present invention, it is possible to recover a total amount of arsenic of 71.8 g as a neutralizing solution and antimony of 128.3 g as a precipitate.
We were able to secure 4.4% recovery.

実施例2 実施例1と同じ組成の硫化物ダスト400gを100メツシ
ユ以下に粉砕後、苛性ソーダ溶液を用いてPH10.50を保
持しつつ液温80℃にて2時間の浸出処理を施した。
Example 2 400 g of sulfide dust having the same composition as in Example 1 was crushed to 100 mesh or less, and then leached at a liquid temperature of 80 ° C. for 2 hours while maintaining PH 10.50 using a caustic soda solution.

浸出後の液量は7.8l、残渣量は50gであつた。浸出液
の品位は砒素が10.6g/l、アンチモン16.5g/lであり、残
渣の品位は砒素が0.9重量%、アンチモン15.1重量%、
銅58.1重量%、鉛1.7重量%、硫黄20.9重量%であつ
た。
The amount of liquid after leaching was 7.8 l and the amount of residue was 50 g. The leachate grades were arsenic 10.6 g / l and antimony 16.5 g / l, and the residue grades were arsenic 0.9 wt% and antimony 15.1 wt%.
Copper was 58.1% by weight, lead was 1.7% by weight, and sulfur was 20.9% by weight.

上記浸出液を過して残渣を分離した後の浸出液に対
し、常温で5%濃度の硫酸水を滴下させつつPHを8.0ま
で低下させることにより総量9lの中和液中のアンチモン
を沈澱物として分離した。
After the leaching solution was passed to separate the residue, the pH of the leaching solution was lowered to 8.0 while 5% sulfuric acid was added dropwise at room temperature to separate the antimony in the neutralization solution in a total volume of 9 l as a precipitate. did.

この際生成した中和液の品位は砒素が9.2g/l、アンチモ
ンが6.0g/lであつた。また、生成した沈澱物量は真空乾
燥後で136g、組成としてアンチモン53.52重量%、硫黄4
4.4重量%であり、砒素は痕跡しか含まなかつた。
The quality of the neutralization liquid generated at this time was 9.2 g / l for arsenic and 6.0 g / l for antimony. The amount of precipitate formed was 136 g after vacuum drying, and the composition was 53.52% by weight antimony and 4% sulfur.
It was 4.4% by weight and contained only traces of arsenic.

上記のように、本発明の実施により中和液として砒素
の総量82.7g、沈澱物としてアンチモン74.4gを回収する
ことができ、砒素並びにアンチモン夫々99.5%、54.7%
の回収を確保できた。
As described above, according to the present invention, a total amount of arsenic 82.7 g as a neutralizing solution and 74.4 g of antimony as a precipitate can be recovered, and arsenic and antimony are 99.5% and 54.7%, respectively.
Was secured.

比較例1 実施例1と同じ組成の硫化物ダスト400gを用い、同じ
工程にてアルカリ浸出を行つて得られた浸出液の品位は
砒素10.6g/l、アンチモン16.5g/lであつた。この浸出液
に対して常温で5%濃度の硫酸水を滴下させつつPHを1
0.0まで低下させて総量8.0lの中和液とした。
Comparative Example 1 400 g of sulfide dust having the same composition as in Example 1 was used to carry out alkali leaching in the same step, and the quality of the leachate obtained was arsenic 10.6 g / l and antimony 16.5 g / l. To this leachate, add 5% concentration of sulfuric acid water at room temperature while adding 1% of PH.
It was lowered to 0.0 to give a total volume of 8.0 l of neutralization solution.

しかしながら、この際生成した中和液の品位は砒素が
10.3g/l、アンチモンが16.0g/lであり、沈澱物の生成は
みられず、中和液よりアンチモンを分離することはでき
なかつた。
However, the quality of the neutralization liquid generated at this time is
Since 10.3 g / l and antimony were 16.0 g / l, no precipitation was observed and antimony could not be separated from the neutralized solution.

比較例2 実施例1と同じ組成の硫化物ダスト400gを用いて同じ
工程にてアルカリ浸出を行なつて得られた浸出液に対し
て、常温で5%濃度の硫酸水を滴下させつつPHを6.0ま
で低下させた場合、総量9.8lの中和液と沈澱物が得られ
た。
Comparative Example 2 400 g of sulfide dust having the same composition as in Example 1 was used to carry out alkali leaching in the same step to the leachate obtained, and 5% concentration of sulfuric acid water was added dropwise at room temperature to pH 6.0. The total amount of neutralization solution and the precipitate was 9.8 l.

この場合、中和液の品位はアンチモンを全く含まなか
つたが、砒素は3g/lでしかなかつた。また、沈澱物の品
位は砒素が17.6重料%、アンチモン42.4重量%、硫黄3
8.9重量%であつて、中和液として回収される砒素は35.
4%でしかなく、沈澱物の中には砒素の64重量%分とア
ンチモンの94.4重量%分が混在する結果となり、当初の
目的とする砒素、アンチモンの分離回収を不能とした。
In this case, the quality of the neutralization solution contained no antimony, but contained only 3 g / l of arsenic. The quality of the precipitate is 17.6% by weight arsenic, 42.4% by weight antimony and 3% sulfur.
8.9% by weight, and arsenic recovered as a neutralizing solution is 35.
Only 4%, 64% by weight of arsenic and 94.4% by weight of antimony were mixed in the precipitate, which made it impossible to separate and recover the originally intended arsenic and antimony.

(発明の効果) 以上詳細に説明したように、本発明によれば銅の精製
工程にて発生してくる硫化物ダスト等より電子工業界に
て重宝がられている有価物質である砒素とアンチモンを
極めて容易に分離回収できるため電子機器産業界に寄与
するところ極めて大なるものがある。
(Effects of the Invention) As described in detail above, according to the present invention, arsenic and antimony, which are valuable substances that are favored in the electronics industry, are more useful than sulfide dust generated in the copper refining process. Since it can be separated and collected very easily, there is an extremely great contribution to the electronic equipment industry.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】硫黄分を含有する銅製錬工程における溶融
マットを真空精製する際に発生するダストをPH10.0以
上、温度60〜80℃の硫黄分を含まないアルカリ水溶液中
に浸漬して、該物質中の砒素並びにアンチモンを該溶液
中に浸出させた後、浸出液中の砒素濃度を20g/l以下に
調整し、未反応の残渣を分離除去し、さらに残渣を分離
した後の浸出液に対して酸を添加して浸出液のPHを7.0
〜9.5に調整し、PH調整時に生成した沈殿物を溶液から
分離することを特徴とする有価物質の回収方法。
1. Dust generated during vacuum refining of a molten mat in a copper smelting process containing sulfur is immersed in a sulfur-free alkaline aqueous solution having a pH of 10.0 or more and a temperature of 60 to 80 ° C., After leaching arsenic and antimony in the substance into the solution, the arsenic concentration in the leachate was adjusted to 20 g / l or less, the unreacted residue was separated and removed, and the leachate after separating the residue Acid to add PH of leachate to 7.0
A method for recovering valuable substances, which comprises adjusting the pH to 9.5 and separating the precipitate generated during pH adjustment from the solution.
JP21214287A 1987-08-26 1987-08-26 Recovery method for valuable substances Expired - Lifetime JP2531695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21214287A JP2531695B2 (en) 1987-08-26 1987-08-26 Recovery method for valuable substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21214287A JP2531695B2 (en) 1987-08-26 1987-08-26 Recovery method for valuable substances

Publications (2)

Publication Number Publication Date
JPS6455342A JPS6455342A (en) 1989-03-02
JP2531695B2 true JP2531695B2 (en) 1996-09-04

Family

ID=16617585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21214287A Expired - Lifetime JP2531695B2 (en) 1987-08-26 1987-08-26 Recovery method for valuable substances

Country Status (1)

Country Link
JP (1) JP2531695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402680C (en) * 2004-03-31 2008-07-16 郁南县广鑫冶炼有限公司 Pollution-free arsenic alkali slage treating technique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151027A (en) * 1984-12-25 1986-07-09 Nippon Mining Co Ltd Selective leaching of antimony and/or arsenic

Also Published As

Publication number Publication date
JPS6455342A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
US5453253A (en) Method of reprocessing jarosite-containing residues
US4298379A (en) Production of high purity and high surface area magnesium oxide
US3798026A (en) Copper hydrometallurgy
US4545963A (en) Process for separately recovering zinc and lead values from zinc and lead containing sulphidic ore
CN111394582B (en) Copper-nickel sludge resource recycling process
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
US3816105A (en) Hydrometallurgical process for extraction of copper and sulphur from copper iron sulphides
CN1045625C (en) Hydrometallurgical conversion of zinc sulfide to sulfate from zinc sulfide containing ores and concentrates
US3529957A (en) Production of elemental sulphur and iron from iron sulphides
JP3052535B2 (en) Treatment of smelting intermediates
JP3403289B2 (en) Method for separating arsenic contained in smelting intermediate and method for recovering arsenic
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
US2996440A (en) Method for the production of zinc
CA1057506A (en) Method of producing metallic lead and silver from their sulfides
US8974753B2 (en) Precipitation of zinc from solution
US5961691A (en) Recovery of lead and others metals from smelter flue dusts
JP3069520B2 (en) Method for separating arsenic from smelting intermediates containing arsenic sulfide
JP2531695B2 (en) Recovery method for valuable substances
EP0244910B1 (en) Separation of non-ferrous metals from iron-containing powdery material
CN113528845B (en) Full-resource recovery method for smelting soot of waste circuit board
WO2011035380A1 (en) Recovering metals from industrial residues/wastes
US4384890A (en) Cupric chloride leaching of copper sulfides
GB2096982A (en) Process for the recovery of lead and silver chlorides
JPH086151B2 (en) Recovery method for valuable substances containing tin
US2695227A (en) Indium purification using proteinaceous materials