JPH0421736B2 - - Google Patents

Info

Publication number
JPH0421736B2
JPH0421736B2 JP9872285A JP9872285A JPH0421736B2 JP H0421736 B2 JPH0421736 B2 JP H0421736B2 JP 9872285 A JP9872285 A JP 9872285A JP 9872285 A JP9872285 A JP 9872285A JP H0421736 B2 JPH0421736 B2 JP H0421736B2
Authority
JP
Japan
Prior art keywords
vacuum
copper
impurities
treatment
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9872285A
Other languages
Japanese (ja)
Other versions
JPS61257432A (en
Inventor
Yasuhiro Okajima
Takeshi Kusakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60098722A priority Critical patent/JPS61257432A/en
Publication of JPS61257432A publication Critical patent/JPS61257432A/en
Publication of JPH0421736B2 publication Critical patent/JPH0421736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、不純物含有量の多い銅から鉛、亜
鉛、ビスマス、カドミウム、ヒ素、アンチモン、
錫等の不純物を真空処理により除去、回収する方
法に関する。 〔従来の技術〕 近年銅製錬では、不純物含有量が高い鉱石の処
理が増加しつつあり、産出スラグ及びダスト、ス
ラツジなど製錬中間物中の不純物も、それにつれ
増加しつつある。これらより銅を回収する方法と
して、還元溶錬法が検討されているが、充分な銅
回収率を得るような強還元条件下では、得られた
銅中には鉛、亜鉛、錫、ヒ素、アンチモン、ビス
マス、カドミウム、鉄、ニツケル、コバルト等の
元素が多量に含まれる。従つて、このまゝ銅製錬
工程に繰り返すと、乾式製錬工程での不純物循環
量が増加し、延いては粗銅中の不純物量が上昇
し、電解精製の際、種々のトラブルの原因となる
ので上該不純物含有量の多い銅から不純物を分離
する必要がある。 特に、鉛、亜鉛、ビスマス、アンチモン、ヒ
素、錫は銅製錬に比較的多く持ち込まれ、精錬あ
るいは電解工程で濃縮されるので、製錬系外への
分離回収が好ましい。 従来、不純物含有量の多いスクラツプなどから
亜鉛、鉛、錫を分離する場合、スラグと共い溶解
し、次いで転炉でコークス、鉄スクラツプを添加
し、空気を送風して製錬することにより揮発回収
されているが、充分な揮発回収が一度に出来ず、
多量のこれら金属が溶錬炉、転炉間を循環し、経
済的に回収できないという欠点があつた。また、
粗銅中のアンチモン、ヒ素を除去する方法として
は、ソーダ灰、石灰石を含むフラツクス処理があ
るが、生成フラツクス塩中への銅の分配が多く、
且つ経済的なアンチモン、ヒ素の回収に困難があ
つた。 〔発明が解決しようとする問題点〕 本発明は、これら不純物含有量が高い銅から製
錬工程及び電解工程で、有害なPb、Zn、Bi、
Cd、As、Sb、Sn等の不純物を効率良く分離回収
する新規な方法を提供することを目的とする。 〔問題点を解決するための手段〕 本発明の方法は、銅からの不純物の分離回収の
ために、不純物を含有する溶銅を真空処理し、次
いでマツトを形成するように溶銅を加硫し、生成
したマツトを溶融状態で真空処理するようにした
ものである。 不純物を含有する溶銅を真空処理容器に装入す
る際、及び低温で装入された銅を加熱、溶解する
際、又は次の真空処理工程で処理するために適切
な温度に調節する際、及び真空状態を常圧状態に
戻す際には銅の酸化を防止するために真空処理容
器内をN2ガス等の不活性ガス雰囲気にすること
が好ましい。 不純物を含有する溶銅を真空処理する際の容器
内圧力は、Zn、Pb、Bi、Cd等不純物を充分に発
揮させるために、25mmHg以下好ましくは0.1〜5
mmHgとするのが望ましい。過度の真空度の上昇
は排気系の経済上好ましくない。また、この際の
溶銅の温度は、真空処理に伴なうスプラツシユを
防止するため、融点以上1350℃以下好ましくは
1200℃以下が望ましい。 残留溶銅を加硫する際には、常圧で不活性ガス
雰囲気で行なうのが好ましい。硫黄源として高品
位の〓なども利用できるが、処理物量の増加を低
くするため元素状硫黄が好ましい。添加方法とし
ては、単純添加方式でもよいが、ランスによる溶
湯中への吹込みが硫黄の歩留上有効である。装入
硫黄量は、生成するマツトの3含有率が15重量%
未満ではマツト、メタル二相分離状態が顕著とな
り、不純物の揮発が不充分となるので、生成する
マツトのS含有率が15重量%以上となるように添
加するのが好ましい。更に好ましくは、Sbの揮
発率の向上のために生成するマツトのS含有率が
20〜25重量%となるように添加するのが望まし
い。 生成マツトを真空処理する際の真空容器内の圧
力は、As、Sb、Sn等不純物を充分揮発するため
に、50mmHg以下好ましくは0.1〜5mmHgとする
のが望ましい。また、この際のマツト温度は、真
空処理に伴なうスプラツシユを防止するため、融
点以上1200℃以下好ましくは1100℃以下が好まし
い。 溶銅またはマツトの真空処理で、真空処理を始
める際には浴温をできるだけ融点近くにしてお
き、処理開始時のガス発生による突沸現象を抑
え、真空度の上昇と共に揮発速度を早めるため、
徐々に昇温していくことが、銅分のスプラツシユ
ロス及び真空排気系の経済性の観点から肝要であ
る。又、不純物の揮発速度は浴温、真空度、溶湯
の撹拌の程度等によつて支配されるので、適切な
撹拌機能を具備した方式の採用が必要である。ま
た、これらの処理で揮発した不純物から成るダス
トは、それぞれサイクロン、バツフル、バグフイ
ルター等で補集される。溶銅の真空処理で揮発
し、補集されたPb、Zn、Bi、Cd等からなるダス
トは鉛、亜鉛製錬工程で処理し、またマツトの真
空処理で揮発し、補集されたAs、Sn、Sb等から
なるダストは浸出工程等からなる別途処理工程で
処理し有価物として回収する。 マツトを真空処理して得られたものは銅製錬転
炉等で処理される 〔作用〕 溶銅を真空処理すると、Zn、Pn、Bi、Cd等の
メタル状蒸気及び一部Sが含有される場合には硫
化物状蒸気が揮発し、マツトを真空処理すると、
As、Sb、Sn等の硫化物状蒸気が揮発して分離す
る。 〔実施例〕 実施例 1 表1に示した組成の粗銅(試料A、これは銅製
錬工程からのスラグ、ダスト及びスラツジを還元
溶解して産出したものである)2000gを真空溶解
炉(高周波誘導加熱方式)に装入し、N2ガス雰
囲気で溶解した。溶銅の温度が1120℃に到達して
から除々に真空排気を開始し、真空溶解炉の観察
孔からの観察により、溶銅から不純物蒸気の発生
が止まるまで真空処理を行なつた。到達真空度は
0.1mmHg、真空処理時間は30分、処理後の溶銅の
温度は1300℃であつた。処理後の溶銅を少量サン
プリングし、分析した結果を表2に示した(試料
c)。この工程でのZn、Pbの揮発率はそれぞれ98
重量%以上であり、As、Sb、Snの揮発率は3%
以下であつた。次いで、真空溶解炉内をN2ガス
雰囲気とした後、硫黄装入装置により溶銅中へ硫
黄を装入してマツトを得た(このマツトの分析結
果等を表3に示した。試料E)。このマツトの浴
温を1050℃に保つた後、徐々に真空排気を開始
し、マツトから不純物蒸気の発生が止まるまで真
空処理を行なつた。到達真空度は0.5mmHg、真空
処理時間は15分であつた。処理後のマツトの分析
結果等を表4に示した(試料G)。この工程での
As、Snの揮発率は98重量%以上であり、Sbの揮
発率は78重量%であつた。 実施例 2 表1に示した組成のスクラツプ銅(試料B)
2000gを次に示す条件以外は実施例1と同様に処
理した。即ち、溶解したスクラツプ銅の真空排気
開始温度は1100℃、到達真空度は0.3mmHg、処理
時間は40分、処理後の溶銅の温度は1320℃であつ
た。処理後の溶銅の分析結果等を表2に示した
(試料D)。この工程でのZn、Bi、Cdの揮発率は
99重量%以上であり、Pbの揮発率は97重量%で
あつた。次いで、加硫して得られたマツトの分析
結果等を表3に示した(試料F)。このマツトを
到達真空度0.4mmHgで真空処理を行なつた(真空
開始温度、処理時間は実施例1と同じである)。
処理後のマツトの分析結果等を表4に示した。
(試料H)この工程でのAs、Snの揮発率は98重量
%以上であり、Sbの揮発率は83重量%であつた。
[Industrial Application Field] The present invention is applicable to copper containing a large amount of impurities such as lead, zinc, bismuth, cadmium, arsenic, antimony,
This invention relates to a method for removing and recovering impurities such as tin by vacuum treatment. [Prior Art] In recent years, in copper smelting, the processing of ores with high impurity content has been increasing, and impurities in smelting intermediates such as produced slag, dust, and sludge are also increasing accordingly. A reduction smelting method is being considered as a method for recovering copper from these materials, but under strong reducing conditions to obtain a sufficient copper recovery rate, lead, zinc, tin, arsenic, It contains large amounts of elements such as antimony, bismuth, cadmium, iron, nickel, and cobalt. Therefore, if the copper smelting process is repeated in this manner, the amount of impurities circulated in the pyrometallurgical smelting process will increase, and the amount of impurities in the blister copper will increase, causing various troubles during electrolytic refining. Therefore, it is necessary to separate impurities from copper, which contains a large amount of impurities. In particular, relatively large amounts of lead, zinc, bismuth, antimony, arsenic, and tin are brought into copper smelting and concentrated during the refining or electrolysis process, so it is preferable to separate and recover them outside the smelting system. Conventionally, when separating zinc, lead, and tin from scrap, etc., which contains a large amount of impurities, they are melted together with slag, then coke and iron scrap are added in a converter, and smelted by blowing air to volatilize them. Although it is being collected, sufficient volatile recovery cannot be done at once.
A drawback was that a large amount of these metals circulated between the smelting furnace and the converter and could not be recovered economically. Also,
A flux treatment containing soda ash and limestone is a method for removing antimony and arsenic from blister copper, but in most cases copper is distributed into the generated flux salt;
Moreover, it was difficult to recover antimony and arsenic economically. [Problems to be Solved by the Invention] The present invention aims at removing harmful Pb, Zn, Bi,
The purpose is to provide a new method for efficiently separating and recovering impurities such as Cd, As, Sb, and Sn. [Means for Solving the Problems] The method of the present invention involves vacuum treating molten copper containing impurities in order to separate and recover impurities from copper, and then vulcanizing the molten copper to form a matte. Then, the produced pine is vacuum-treated in a molten state. When charging molten copper containing impurities into a vacuum processing container, when heating and melting copper charged at low temperature, or when adjusting the temperature to an appropriate temperature for processing in the next vacuum processing step, When returning the vacuum state to a normal pressure state, it is preferable to create an inert gas atmosphere such as N 2 gas in the vacuum processing container in order to prevent oxidation of copper. The pressure inside the container when vacuum-treating molten copper containing impurities should be 25 mmHg or less, preferably 0.1 to 5.
It is desirable to set it to mmHg. An excessive increase in the degree of vacuum is unfavorable from the economic point of view of the exhaust system. In addition, the temperature of the molten copper at this time is preferably higher than the melting point and lower than 1350℃ in order to prevent splash caused by vacuum treatment.
Preferably below 1200℃. When vulcanizing the residual molten copper, it is preferable to vulcanize it at normal pressure in an inert gas atmosphere. Although high-grade sulfur can be used as a sulfur source, elemental sulfur is preferred in order to reduce the increase in the amount of processed material. Although a simple addition method may be used as the addition method, injection into the molten metal using a lance is effective for improving the sulfur yield. The amount of sulfur charged is 15% by weight of the 3 content of the produced pine.
If it is less than this, the mat and metal two-phase separation state will become noticeable and the volatilization of impurities will be insufficient, so it is preferable to add so that the S content of the produced matt will be 15% by weight or more. More preferably, in order to improve the volatility of Sb, the S content of the produced matte is
It is desirable to add it in an amount of 20 to 25% by weight. The pressure in the vacuum container during vacuum treatment of the produced mat is desirably 50 mmHg or less, preferably 0.1 to 5 mmHg, in order to sufficiently volatilize impurities such as As, Sb, and Sn. Further, the mat temperature at this time is preferably higher than the melting point and lower than 1200°C, preferably lower than 1100°C, in order to prevent splash caused by vacuum treatment. When vacuum processing molten copper or matte, the bath temperature should be kept as close to the melting point as possible when starting the vacuum processing to suppress the bumping phenomenon caused by gas generation at the start of the processing and to accelerate the rate of volatilization as the degree of vacuum increases.
It is important to gradually raise the temperature from the viewpoint of copper splash loss and economic efficiency of the vacuum evacuation system. Furthermore, since the rate of volatilization of impurities is controlled by the bath temperature, degree of vacuum, degree of stirring of the molten metal, etc., it is necessary to employ a system equipped with an appropriate stirring function. Further, dust consisting of impurities volatilized in these treatments is collected by a cyclone, a bath, a bag filter, etc., respectively. Dust consisting of Pb, Zn, Bi, Cd, etc., which was volatilized and collected during the vacuum treatment of molten copper, was processed during the lead and zinc smelting process, and dust consisting of As, which was volatilized and collected during the vacuum treatment of pine, was Dust consisting of Sn, Sb, etc. is treated in a separate treatment process including a leaching process and recovered as valuable materials. The material obtained by vacuum treating pine is processed in a copper smelting converter, etc. [Operation] When molten copper is vacuum treated, metal vapors such as Zn, Pn, Bi, Cd, etc. and some S are contained. In some cases, sulfide vapors evaporate, and when pine is vacuum treated,
Sulfide vapors such as As, Sb, and Sn evaporate and separate. [Example] Example 1 2000 g of blister copper (sample A, produced by reducing and melting slag, dust, and sludge from the copper smelting process) having the composition shown in Table 1 was melted in a vacuum melting furnace (high-frequency induction (heating method) and melted in a N2 gas atmosphere. After the temperature of the molten copper reached 1120°C, evacuation was gradually started, and the vacuum treatment was continued until the generation of impurity vapor from the molten copper stopped as observed through the observation hole of the vacuum melting furnace. The ultimate vacuum level is
The vacuum treatment time was 30 minutes at 0.1 mmHg, and the temperature of the molten copper after treatment was 1300°C. A small amount of the molten copper after treatment was sampled and analyzed, and the results are shown in Table 2 (sample c). The volatility rates of Zn and Pb in this process are each 98
% by weight or more, and the volatilization rate of As, Sb, and Sn is 3%.
It was below. Next, after creating a N 2 gas atmosphere in the vacuum melting furnace, sulfur was charged into the molten copper using a sulfur charging device to obtain matt (the analysis results of this matt are shown in Table 3. Sample E ). After maintaining the bath temperature of this mat at 1050° C., evacuation was gradually started and the vacuum treatment was continued until the generation of impurity vapor from the mat stopped. The ultimate vacuum degree was 0.5 mmHg, and the vacuum treatment time was 15 minutes. The analysis results of the pine after treatment are shown in Table 4 (Sample G). In this process
The volatilization rate of As and Sn was 98% by weight or more, and the volatilization rate of Sb was 78% by weight. Example 2 Scrap copper with the composition shown in Table 1 (Sample B)
2000 g was treated in the same manner as in Example 1 except for the following conditions. That is, the evacuation start temperature of the molten scrap copper was 1100°C, the ultimate degree of vacuum was 0.3 mmHg, the treatment time was 40 minutes, and the temperature of the molten copper after treatment was 1320°C. The analysis results of the molten copper after treatment are shown in Table 2 (Sample D). The volatility rates of Zn, Bi, and Cd in this process are
It was 99% by weight or more, and the volatilization rate of Pb was 97% by weight. Next, the analysis results of the pine obtained by vulcanization are shown in Table 3 (Sample F). This mat was subjected to vacuum treatment at an ultimate vacuum of 0.4 mmHg (the vacuum starting temperature and treatment time were the same as in Example 1).
Table 4 shows the analysis results of the pine after the treatment.
(Sample H) The volatilization rate of As and Sn in this step was 98% by weight or more, and the volatilization rate of Sb was 83% by weight.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の効果は、Pb、Zn、Bi、Cd等とAs、
Sbおよび鉛、亜鉛製錬の電解工程で共析するSn
等とを分離して回収することにより、Pb、Zn、
Bi、Cd等を含むダストを既存の鉛、亜鉛製錬工
程の原料として利用できる。従来の銅製錬工程で
はスラグに低濃度で含まれるために回収が困難で
あつたSnやAs、Sb等を高濃度を含んだダストを
得られるので、これらを別途処理プロセスにより
経済的に回収できる。しかも、殆んどCuロスが
無く、得られた精製マツトはそのまゝ銅製錬転炉
工程などへ繰り返すことができる。
The effect of the present invention is that Pb, Zn, Bi, Cd, etc. and As,
Sn eutectoids in the electrolytic process of Sb, lead, and zinc smelting
By separating and recovering Pb, Zn, etc.
Dust containing Bi, Cd, etc. can be used as a raw material for existing lead and zinc smelting processes. In the conventional copper smelting process, it is possible to obtain dust containing high concentrations of Sn, As, Sb, etc., which are difficult to recover because they are contained in low concentrations in slag, so these can be economically recovered through a separate treatment process. . Moreover, there is almost no Cu loss, and the obtained refined pine can be directly used in the copper smelting converter process.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物を含有する溶銅を真空処理し、次いで
マツトを形成するように溶銅を加硫し、生成した
マツトを溶融状態で真空処理することを特徴とす
る銅からの不純物の分離回収方法。
1. A method for separating and recovering impurities from copper, which comprises vacuum-treating molten copper containing impurities, then vulcanizing the molten copper to form a matte, and vacuum-treating the produced matte in a molten state.
JP60098722A 1985-05-08 1985-05-08 Separation and recovery of impurity from copper Granted JPS61257432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098722A JPS61257432A (en) 1985-05-08 1985-05-08 Separation and recovery of impurity from copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098722A JPS61257432A (en) 1985-05-08 1985-05-08 Separation and recovery of impurity from copper

Publications (2)

Publication Number Publication Date
JPS61257432A JPS61257432A (en) 1986-11-14
JPH0421736B2 true JPH0421736B2 (en) 1992-04-13

Family

ID=14227409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098722A Granted JPS61257432A (en) 1985-05-08 1985-05-08 Separation and recovery of impurity from copper

Country Status (1)

Country Link
JP (1) JPS61257432A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368339B1 (en) * 2001-01-16 2003-01-24 최익원 Method for treating metal dust obtained in condenser-preparing process
GB2462481B (en) * 2008-06-21 2013-01-23 Noel Alfred Warner Primary zinc metal process
JP2012052216A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Treatment method for copper smelting dust
CN110438345B (en) * 2019-07-24 2020-07-24 北京科技大学 Method for purifying metal nickel containing volatile Bi element

Also Published As

Publication number Publication date
JPS61257432A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
US4135923A (en) Extraction of metals
JP2024508599A (en) Separation and purification method of high antimony crude tin
CN106834707A (en) A kind of method of arsenic-containing material synthetical recovery and arsenic recycling
Wood et al. The Outotec® Direct zinc smelting process
US4194904A (en) Production of purified lead and antimony oxide
JPH0421736B2 (en)
CA1247865A (en) Method of treating the slag from a copper converter
EP0570942B1 (en) Method for producing easily volatile metals, such as zinc, lead and cadmium, of sulfidic raw materials
GB2196649A (en) Smelting complex sulphidic materials containing lead, zinc and optionally copper
EP0076049B1 (en) Recovery of precious metals from leach residues
EP0007890B1 (en) A method of manufacturing and refining crude lead from arsenic-containing lead raw-materials
JP2587814B2 (en) Method for treating concentrate from copper converter
US3905808A (en) Process for the recovery of metallics from brass skimmings
US2042291A (en) Process for refining copper alloys
US2040825A (en) Treating mixed oxides of lead, tin, and zinc
US2043573A (en) Process for recovering tin
US2235423A (en) Process for separating tin from lead
CA2041066C (en) One step process for the treatment of parkes desilvering crust to recover zinc and produce a suitable feed for cupellation
US2797159A (en) Method of purifying of metallic indium
US2363127A (en) Removal of iron from tin
JP7195509B2 (en) Method of recovering valuable metals from used LIB
JPS6136055B2 (en)
JP2720918B2 (en) How to recover indium from zinc alloy
US2062838A (en) Antimony process
US2000833A (en) Process for the production of zinc

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees