JPS6024198B2 - Manufacturing method of anode material for copper plating - Google Patents

Manufacturing method of anode material for copper plating

Info

Publication number
JPS6024198B2
JPS6024198B2 JP19674582A JP19674582A JPS6024198B2 JP S6024198 B2 JPS6024198 B2 JP S6024198B2 JP 19674582 A JP19674582 A JP 19674582A JP 19674582 A JP19674582 A JP 19674582A JP S6024198 B2 JPS6024198 B2 JP S6024198B2
Authority
JP
Japan
Prior art keywords
anode
oxygen
copper
anode material
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19674582A
Other languages
Japanese (ja)
Other versions
JPS5989800A (en
Inventor
辰一郎 阿部
正登 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19674582A priority Critical patent/JPS6024198B2/en
Publication of JPS5989800A publication Critical patent/JPS5989800A/en
Publication of JPS6024198B2 publication Critical patent/JPS6024198B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銅〆ッキ用アノード材の製造方法に関するも
のであり、特には少くとも約0.1重量%の酸素を含有
せしめた酸素含有鋼アノード材を80000以上の温度
から徐冷することにより著しく高い溶解活性を持つと同
時にアノードスラツジ生成量を著しく減少せしめる銅〆
ッキ用アノード材の製造方法に関するものである。 現在、光沢鋼メッキ用アノードとして含リン鋼アノード
が広く市販されている。 含リン鋼アノードは良好な溶解特性を持っているが、製
造時に有毒なリンを取扱うこと、メッキ溶中にリンが溶
出し浄液が必要となること、メッキ浴での糟電圧が比較
的高いこと等の点で必ずしも満足のいくものでない。他
方、銅母材に酸素を富化し、そのアノード溶解特性を改
善せんとする試みもあり、いろいろの角度から検討を加
えられてきたが、未だ成功するに至っていない。それは
、酸素を富化すると、アノード材の溶解活性自体は高ま
って良好なのであるが、反面スラツジ生成量がァノード
中の酸素量増加と共に使用に耐えない程に増加するから
である。メッキ用のアノードの特性としては、溶解特性
に優れるのみならず、アノ−ドスラッジ発生率が4・さ
し、ことが特に必要とされるのである。銅〆ッキにおけ
るメッキ膜品質とメッキ作業性の向上への要求は最近益
々厳しくなっており、その一環として優れた特性の銅ア
ノード材の開発が強く要望されている。 銅〆ッキ用ァノード材としては次の要件を少くとも満足
するものでなければならない。‘1} 溶解特性に優れ
ていること、 ■ アノードスラッジ発生率(=スラッジ発生量/溶解
鋼量)が少ないこと、‘31 〆ツキ浴を汚染しないこ
と、 ■ アノード面にスラィム膜が形成されるとメッキ格の
糟電圧が高くなるので、スラィム膜の形成がないこと、
‘5} アノード材製造上のトラブルがないこと。 前述した通り、銅に酸素を加えて、このCu−○系アノ
ードの溶解性能を向上させる研究は既に行われてきたが
、これら教みを失敗に終らしめた原因は、アノード中の
酸素はCら○相の形で存在し、これがアノード溶解と共
に陽極面より一部遊離してスラッジ生成量をいたずらに
増加せしめることにあった。そこでCu20相にまつわ
る弊害を取除くことができるなら、上記要件を満たすき
わめて優れた銅〆ッキ用銅アノード材が得られるはずで
ある。本発明者は、ァノード中の酸素の溶解活性度を高
める促進剤としての効果はうまく生かしたまま、Cu2
0相に関連するスラッジ発生の弊害を取除くべく研究を
重ねた。 その結果、酸素含有銅ァノード材を高温から徐冷するこ
とにより銅組織中のC山○相の少くとも一部をC比○→
Cu○十Cu0 なる反応式に従ってCuOに変換してやるのがきわめて
効果的な方法であることを見出した。 Cu○相は、Cら○相の場合と違って、メッキ液中に遊
離しても、港存酸素などの助けを借りなくとも容易に酸
浸出され、スラッジの一部として留まる率は非常に少く
なる。徐冷開始時の温度が800℃以上で高ければ高い
程そして徐冷温度が遅い程、Cu−0ァノ−ドの活性度
は高まり、Cのへの変換効率が増加する。ここでは、こ
の処理法を「活性化処理」と呼ぶことにする。たとえば
、電気銅のような含有酸素量が極端に底い(〜側風)状
態のものにこの活性化処理を施してもその効果は全くな
い。 充分の酸素量の存在の下で高温からの徐冷による活性化
処理を行うことが本発明の重要な点である。斯くして、
本発明は、硫酸鋼メッキ液に用いる銅製アノード材の製
造方法において、該鋼製アノード材に0.1重量%以上
の酸素を含有せしめそして該酸素含有銅製アノード材を
800℃以上の温度から27000/時間より遅い冷却
速度で徐冷処理することを特徴とする銅〆ッキ用アノー
ド材の製造方法を提供する。 本発明において使用される銅製アノード材は、電気鋼の
ような高純度鋼である。 前述した含リン鋼も、リンに由来する弊害、即ちメッキ
液の浄化および有毒リンの取扱いに対して充分対処しう
る状況にあるなら、本処理を施すことによりその特性を
更に改善しうるので対象となりうる。銅熔湯は先ず酸素
富化処理される。 これは空気、酸素ガス等の吹込みあるいは酸化銅(C仏
0)粉末の添加により実施される。 酸素富化目標量に応じて適正量の酸素が付加される。酸
素含量は所定の溶解特性を得るには100の奴(0.1
重量%)以上とすることが望ましく、含量の増大に伴い
溶解特性は向上する。しかし、650功血を超えると週
乗にu20の一部がCu○へと相変態することなく樹枝
状結晶として、アノードの組識中に析出してくる。上記
酸素含量以上でも後述の実施例に示すごとく、スラッジ
の生成率が1%以下を維持しているもののこれより酸素
含量を多くする必要性はない。従って、酸素含量は一般
に1000〜6500跡の範囲を目標とすることが好ま
しい。酸素富化処理された銅湯は所望のアノード材形態
に応じて板、ショット、ボール、オーパルプレート等任
意のものに成型凝固せしめられる。 凝固した酸素富化アノード材は、活性化処理を受ける。
活性化処理は、アノード材の温度が800℃以下に下が
らないうちに徐冷を行うかまたは一旦冷え切ったものの
場合にはこれを80000以上に加熱してから徐冷を行
うことによって実施される。徐冷速度は15〜2700
0/時間の範囲とするのが好ましい。lyo/時間より
小さいと冷却時間が長くなりすぎ、工業化の際に問題と
なり得るし他方27000/時間より大きいC比○のC
u○への相変態が充分に達成されず所要の活性化過程が
得られない。徐冷開始時の温度が8000○以下である
と、徐冷速度を上記範囲でいかに変えても結晶粒の粗大
化及びCu20のCIのへの相変態が充分に達成されず
、アノード特性がそれ程、極端には改善されない。通常
、徐冷開始は800〜105000の温度から行うのが
よい。徐冷開始時の温度が80000以上で高ければ高
い程そして徐冷速度が遅い程C比○→C止0への変換効
率は高まり、Cu−○アノードの活性度は高まる。徐冷
は例えばアノード材を炉内に置いて炉温を下げていくこ
とにより実施されるが、窒素、アルゴン等の不活性ガス
により非酸化性雰囲気を維持することが望ましい。 上記徐冷操作は少くとも300午○、好ましくは200
午0まで行ない、以後アノード材を炉内から取り出し急
冷しても良い。こうして処理されたアノード材は、硫酸
鋼系鋼〆ツキ浴用のアノードとして供される。 本発明に従い酸素富化+活性化処理を受けたアノード材
は前述した通り、アノード溶解の活性度が未処理の場合
に較べて著しく高まると同時にスラッジの発生量が1%
よりかなり底くなる。更に、本発明に従って製造された
アノード材は、その陽極面にスラィム膜を実質上形成さ
せないので、Cら○十Cぴ十P205なる複合組成をも
った比較的厚いスラィム層が形成して陽極面を覆う市販
の含リン鋼ァノード材と異って、メッキ浴での糟電圧が
例えば15〜20%底くなり、操業時の経済的メリット
も大きい。操業中の俗の汚染も生じない。実施例 1 まず、実験室規模の電解精製によって高純度の折出鋼を
得た(組成、肌:○=9、Ni<1、As=2.5Sb
<1、Se=0.6、Te〈1、Sく5、Fe<1、B
i<0.1、Sn<0.1、Au<5、Ag=10)。 これをアルミナ製るつぼで熔解し、次いでCu20粉末
(試薬級)を適当量添加してその酸素濃度を100〜8
,800血の範囲で調整した。この熔融銅をグラフアィ
トモールドで放冷凝固させた後で、2つに等分割し、一
方を禾処理のまま、そして他方をアルゴン気流中にて熱
処理を施した。熱処理は、はじめ1050qoに加熱後
平均15午C/hの速度で炉温が15000に下がるま
で単純徐冷を続け、その後で空気中に取り出して放冷し
たものである。こうして得られた一連の銅陽極試料の酸
素分折結果を表1に示す。表1 (隣徴値,ppm) 各試料の表面を機械加工して9×5×1.3次の大きさ
に仕上げ、次いでェメリー紙#600までで研磨してか
ら水洗および脱脂後直ちはに解テストを行った。 用いた電解糟(3〆容量)の中に陰極箱に収められたス
テンレス陰極を一対と、その中央に試験陽極を配置させ
た。各陽極はその上端部に絶縁テープで被覆したチタン
様をネジ込んで極全体を電解液中に浸潰した状態で溶解
せしめた。電解条件は電流密度200A/わ、液温55
℃、そして電解時間40〜4斑時間である。電解液の組
成は4咳/そCu、2雌/そNi、20雌/夕日2S0
4で、これに多くの銅〆ッキ工場で用いられているチオ
尿素系光沢剤(商品名UBAC≠1)を約5の上/ク添
加した。実験終了後、生成したアノードスラッジを全部
(陽極面上に付着した分十メッキ槽底部)回収してすみ
やかに水洗→メタノール洗浄してから直ちにデシケータ
ーに入れて真空乾燥した。 秤量したスラッジは主に銅粉CuoとC比0相から構成
されているものと仮定し、したがってその酸素分折値を
もってC比0相の存在量を推定した。得られたスラッジ
生成量、及びその中のCu0とC&○量などを未処理、
徐冷を施した銅陽極全試料について表2にまとめて示す
。表2 A)未処理 B)処理 また、表2のデータに塞いてスラッジ生成率とアノード
材酸素含有量との関係を示すグラフを図面に示す。 これらの結果を総合すると次の主な結論が得られる。 【a’禾処理の場合、酸素量が亜共晶(図参鷹)域で増
加するにつれてスラッジの生成量も顕著に増加し
The present invention relates to a method for manufacturing an anode material for copper plating, and in particular a method for slowly cooling an oxygen-containing steel anode material containing at least about 0.1% by weight of oxygen from a temperature of 80,000 or higher. The present invention relates to a method for producing an anode material for copper plating which has significantly high dissolving activity and at the same time significantly reduces the amount of anode sludge produced. Currently, phosphorus-containing steel anodes are widely commercially available as anodes for bright steel plating. Phosphorus-containing steel anodes have good dissolution properties, but they require the handling of toxic phosphorus during manufacturing, the phosphorus elutes during the plating process and requires purification, and the voltage in the plating bath is relatively high. The results are not necessarily satisfactory in many respects. On the other hand, there have been attempts to improve the anodic dissolution characteristics of the copper base material by enriching it with oxygen, and although these efforts have been investigated from various angles, no success has yet been achieved. This is because enriching oxygen improves the dissolving activity of the anode material itself, which is good, but on the other hand, as the amount of oxygen in the anode increases, the amount of sludge produced increases to an extent that it is unusable. As for the properties of an anode for plating, it is particularly required that it not only have excellent dissolution properties but also have an anode sludge generation rate of less than 4. Recently, demands for improving the quality of the plating film and the workability of plating in copper plating have become increasingly severe, and as part of this, there is a strong demand for the development of copper anode materials with excellent properties. Anode materials for copper plating must meet at least the following requirements: '1} Excellent melting properties, ■ Low anode sludge generation rate (= amount of sludge generated / amount of molten steel), '31 Does not contaminate the finishing bath, ■ Slime film is formed on the anode surface. Since the voltage for plating becomes high, no slime film is formed.
'5} There should be no trouble in manufacturing the anode material. As mentioned above, research has already been conducted to improve the dissolution performance of Cu-○ based anodes by adding oxygen to copper, but the reason why these efforts failed is that the oxygen in the anode is The sludge exists in the form of a phase, and as the anode dissolves, a portion of this is liberated from the anode surface, unnecessarily increasing the amount of sludge produced. Therefore, if the adverse effects associated with the Cu20 phase can be removed, an extremely excellent copper anode material for copper plating that satisfies the above requirements should be obtained. The present inventor has developed a method using Cu2 while successfully utilizing its effect as a promoter to increase the dissolution activity of oxygen in the anode.
We have conducted repeated research to eliminate the negative effects of sludge generation associated with 0-phase. As a result, by slowly cooling the oxygen-containing copper anode material from a high temperature, at least a part of the C mountain ○ phase in the copper structure was reduced to a C ratio ○→
It has been found that an extremely effective method is to convert it into CuO according to the reaction formula: Cu○Cu0. Unlike the C3 phase, even if the Cu phase is released in the plating solution, it is easily leached out with acid without the aid of oxygen existing in the port, and the rate at which it remains as part of the sludge is very low. It becomes less. The higher the temperature at the start of slow cooling (800° C. or higher) and the slower the slow cooling temperature, the higher the activity of the Cu-0 anode and the higher the conversion efficiency of C. Here, this processing method will be referred to as "activation processing." For example, even if this activation treatment is applied to a material such as electrolytic copper whose oxygen content is extremely low (~side wind), there will be no effect at all. An important point of the present invention is to perform the activation treatment by slow cooling from a high temperature in the presence of a sufficient amount of oxygen. Thus,
The present invention provides a method for manufacturing a copper anode material used in a sulfuric acid steel plating solution, in which the steel anode material contains 0.1% by weight or more of oxygen, and the oxygen-containing copper anode material is heated at a temperature of 800°C or higher to 27,000°C. Provided is a method for producing an anode material for copper plating, characterized in that slow cooling treatment is performed at a cooling rate slower than / hour. The copper anode material used in the present invention is high purity steel such as electrical steel. The above-mentioned phosphorus-containing steel is also targeted because its properties can be further improved by applying this treatment, provided that the adverse effects caused by phosphorus, such as purification of the plating solution and handling of toxic phosphorus, can be adequately addressed. It can be. The molten copper is first subjected to oxygen enrichment treatment. This is carried out by blowing air, oxygen gas, etc., or by adding copper oxide (CO) powder. An appropriate amount of oxygen is added according to the oxygen enrichment target amount. The oxygen content must be 100 μm (0.1
It is desirable that the content be greater than 1% by weight, and the solubility characteristics improve as the content increases. However, when the temperature exceeds 650, a part of u20 is precipitated in the structure of the anode as dendrites without undergoing phase transformation to Cu○. Although the sludge production rate is maintained at 1% or less as shown in the examples below even when the oxygen content is above the above, there is no need to increase the oxygen content beyond this. Therefore, it is generally preferable to aim for an oxygen content in the range of 1,000 to 6,500. The oxygen-enriched copper hot water is molded and solidified into any shape, such as a plate, shot, ball, opal plate, etc., depending on the desired form of the anode material. The solidified oxygen-enriched anode material undergoes an activation treatment.
The activation treatment is carried out by slowly cooling the anode material before its temperature drops below 800°C, or in the case of anode material that has already cooled down, heating it to 80,000°C or higher and then slowly cooling it. . The slow cooling rate is 15-2700
The range is preferably 0/hour. If it is smaller than lyo/hour, the cooling time will be too long, which may cause problems during industrialization, and on the other hand, if the C ratio is larger than 27,000/hour, C
The phase transformation to u◯ is not sufficiently achieved and the required activation process cannot be achieved. If the temperature at the start of slow cooling is 8000° or less, no matter how the slow cooling rate is changed within the above range, the coarsening of crystal grains and the phase transformation of Cu20 to CI will not be sufficiently achieved, and the anode properties will not be as good. , it is not significantly improved. Usually, slow cooling is preferably started from a temperature of 800 to 105,000. The higher the temperature at the start of slow cooling (80,000 or higher) and the slower the slow cooling rate, the higher the conversion efficiency from C ratio ○ to C to 0, and the higher the activity of the Cu-○ anode. Slow cooling is carried out, for example, by placing the anode material in a furnace and lowering the furnace temperature, but it is desirable to maintain a non-oxidizing atmosphere using an inert gas such as nitrogen or argon. The slow cooling operation is performed for at least 300 hours, preferably for 200 minutes.
This may be continued until midnight, after which the anode material may be taken out of the furnace and rapidly cooled. The anode material thus treated is used as an anode for a sulfuric acid steel-based steel finishing bath. As mentioned above, the anode material subjected to the oxygen enrichment + activation treatment according to the present invention significantly increases the activity of anode dissolution compared to the untreated case, and at the same time reduces the amount of sludge generated by 1%.
The bottom will be much lower. Furthermore, since the anode material manufactured according to the present invention does not substantially form a slime film on the anode surface, a relatively thick slime layer having a composite composition of C*C*P*P205 is formed on the anode surface. Unlike the commercially available phosphorus-containing steel anode material that covers the anode, the voltage in the plating bath is lowered by, for example, 15 to 20%, and there is a great economic advantage during operation. No pollution occurs during operation. Example 1 First, high-purity deposited steel was obtained by electrolytic refining on a laboratory scale (composition, skin: ○=9, Ni<1, As=2.5Sb
<1, Se=0.6, Te<1, Sku5, Fe<1, B
i<0.1, Sn<0.1, Au<5, Ag=10). This was melted in an alumina crucible, and then an appropriate amount of Cu20 powder (reagent grade) was added to bring the oxygen concentration to 100-8.
, 800 blood. This molten copper was allowed to cool and solidify in a graphite mold, and then divided into two equal parts, one of which was left as-is and the other was heat-treated in an argon stream. In the heat treatment, after heating to 1,050 qo, simple slow cooling was continued at an average rate of 15 qo/h until the furnace temperature dropped to 15,000 qo, and then the material was taken out into the air and allowed to cool. Table 1 shows the oxygen spectroscopy results for a series of copper anode samples thus obtained. Table 1 (Adjacency value, ppm) The surface of each sample was machined to a size of 9 x 5 x 1.3, and then polished with emery paper up to #600, washed with water, and immediately after degreasing. An answer test was conducted. A pair of stainless steel cathodes housed in a cathode box were placed in the electrolytic chamber (3-capacity) used, and a test anode was placed in the center thereof. A piece of titanium coated with insulating tape was screwed into the upper end of each anode, and the entire electrode was immersed in the electrolyte and dissolved. Electrolysis conditions are current density 200A/W, liquid temperature 55
℃, and the electrolysis time was 40 to 4 hours. The composition of the electrolyte is 4 cough/SoCu, 2 female/SoNi, 20 female/Sunset 2S0
In Step 4, about 5% of a thiourea-based brightener (trade name: UBAC≠1), which is used in many copper glazing factories, was added. After the experiment was completed, all the generated anode sludge (at the bottom of the plating tank adhering to the anode surface) was collected, immediately washed with water and then washed with methanol, and then immediately placed in a desiccator and vacuum dried. It was assumed that the weighed sludge was mainly composed of copper powder Cuo and a phase with a C ratio of 0, and therefore, the amount of the phase with a C ratio of 0 was estimated based on the oxygen analysis value. The amount of sludge produced and the amount of Cu0 and C&○ in it are untreated,
Table 2 summarizes all the copper anode samples subjected to slow cooling. Table 2 A) Untreated B) Treated Further, a graph showing the relationship between the sludge production rate and the anode material oxygen content is shown in the drawings in addition to the data in Table 2. Combining these results, the following main conclusions can be drawn. [In the case of a' fertilization treatment, as the amount of oxygen increases in the hypoeutectic (Fig. 3) region, the amount of sludge produced also increases significantly.

〔0〕
=4800地で約6.3%となる。 共晶点近傍ではこれが急激に1%近くまで落ち込み、や
がて過共晶域に入って
[0]
= approximately 6.3% for 4,800 areas. Near the eutectic point, this value suddenly drops to nearly 1%, and eventually enters the hypereutectic region.

〔0〕増加と共に次第に増加を続
ける。‘b)熱処理を施したところ、酸素レベル全域に
わたってスラッジ生成率が非常に低下する。
[0] Gradually continues to increase as it increases. 'b) Heat treatment results in a very low sludge production rate across the range of oxygen levels.

〔0〕=10Q柵と非常に低い未処理アノードから約1
.8%のスラッジ生成率が得られたが、これに熱処理を
加えても殆んど変化がなかった(試料船.1同志を比較
されたい)。 ‘c’ところがこれに酸素を加えて熱処理を施すという
方法を適用すると、スラッジ生成量が逆にかなり減少し
[0] = about 1 from 10Q fence and very low untreated anode
.. A sludge production rate of 8% was obtained, but there was almost no change even after heat treatment (please compare sample ship 1). 'c' However, when a method of adding oxygen and heat treatment is applied, the amount of sludge produced is considerably reduced.

〔0〕=800肌では0.7%、これより[0] = 0.7% for 800 skin, from this

〔0〕を増
していくとこれが更に減少を続け処理試料M.4(〔0
〕=390Q血)では最小値(0.07%)を記録した
。 これ以上では02〜0.3%の範囲でほぼ一定であった
。‘dー 発生スラッジの性状については、
As [0] is increased, this continues to decrease further and the treated sample M. 4 ([0
]=390Q blood), the lowest value (0.07%) was recorded. Above this level, it remained almost constant in the range of 02 to 0.3%. 'd- Regarding the properties of the generated sludge,

〔0〕増加
と共に次第に褐色味が増す。 C均○の含有量が次第に増すからである(表2参照)。
また上のc項中で述べた処理ずみアノード試料船.4か
ら派生したスラッジは黒色でCu:0の分折値は63.
54:14とCu○化合物の化学量論比にむしろ近い。
これは熱処理によって銅組識中でC−○→Cu○十Cザ
なる相変換が確かに起こっている証拠となる。実施例
2 実施例1で述べた如き銅陽極の小試片を作製して、これ
らを800qCに熱してから直ちに徐冷し(約2700
0/h)。 電解試験の結果は次の通りであつた。これより、子熱温
度が低すぎ、また徐冷速度が大きすぎると本発明の精神
が充分に発輝できないことが分る。 但し、スラッジ生成率1%近くを達成するには本熱処理
条件の場合、〔0)を約2000跡以下に仰えれば一応
は良いことが伺える。参考例 10.2靴t.%0を富
化した鋼ショットを約10k9つくり、これをアノード
バスケットに入れ(充填能力約lkg、充填率36%)
電解実験を行った。 条件は実施例1に述べた通りで、1293g溶解したと
ころで実験を打ち切り生成スラッジを回収し水洗・乾燥
後秤量した。スラッジ発生量は8.斑でこれは6.4%
スラツジ発生率に相当する。またこのスラッジはCuo
粉が74%、C均○が26%含まれていることがX線回
折分折の結果判明した。上の結果は、鋼母村に単に0を
富化しただけでは、いたずらにスラッジ生成率を高める
だけで何ら銅〆ッキ用ァノードの溶解特性を改善する手
段とはなり得ないことを示唆する。 以上説明した通り、本発明に従って処理されたアノード
を使用することにより得られるメリットをまとめると次
の通りである。 {a’Cu−02元系合金アノード中のいわゆる“不純
物”は酸素のみである。 従って本アノードの溶解によって銅〆ッキ浴に不純物が
蓄積して汚染されるという心配は全くなく保守点検に対
するコスト減が充分期待できる。‘b’酸素富化量を少
くとも約0.1wt%とし、これに“活性化処理”を単
に施しただけでその溶解活性度は著しく高まり、同時に
スラッジの生成量も1%以下に底下する。 特に
[0] As the color increases, the brownish color gradually increases. This is because the content of C-yen gradually increases (see Table 2).
Also, the treated anode sample vessel mentioned in section c above. The sludge derived from Cu:0 is black and has a split value of 63.
The ratio is 54:14, which is rather close to the stoichiometric ratio of the Cu○ compound.
This is evidence that a phase transformation from C-◯➝Cu◯◯C has indeed occurred in the copper structure due to heat treatment. Example
2 Prepare small specimens of copper anodes as described in Example 1, heat them to 800qC, and immediately cool slowly (approximately 2700qC).
0/h). The results of the electrolytic test were as follows. From this, it can be seen that the spirit of the present invention cannot be fully realized if the child heat temperature is too low and the slow cooling rate is too high. However, in order to achieve a sludge production rate of nearly 1%, in the case of the present heat treatment conditions, it seems to be good if [0] is kept below about 2000 traces. Reference example 10.2 Shoes t. Make about 10k9 of steel shot enriched with %0 and put it into the anode basket (filling capacity about 1kg, filling rate 36%)
An electrolysis experiment was conducted. The conditions were as described in Example 1, and the experiment was terminated when 1293 g was dissolved, and the resulting sludge was collected, washed with water, dried, and weighed. The amount of sludge generated is 8. This is 6.4% for spots.
Corresponds to the sludge occurrence rate. Also, this sludge is Cuo
As a result of X-ray diffraction analysis, it was found that it contained 74% powder and 26% C uniform ○. The above results suggest that simply enriching the steel base with 0 will only unnecessarily increase the sludge production rate and will not be a means of improving the dissolution characteristics of copper cladding anodes. . As explained above, the advantages obtained by using an anode treated according to the present invention are summarized as follows. {The so-called "impurity" in the a'Cu-0 binary alloy anode is only oxygen. Therefore, there is no fear that impurities will accumulate and contaminate the copper glazing bath due to melting of the anode, and a reduction in maintenance and inspection costs can be expected. 'b' By setting the oxygen enrichment amount to at least about 0.1 wt% and simply applying an "activation treatment" to this, the dissolution activity increases significantly, and at the same time, the amount of sludge generated drops to below 1%. . especially

〔0〕=0.4〜0.5wt%でのスラッジ発生量
は0.07%以下と殆んと無視し得る種に小さくなる。
{c)溶解活性度が著しく高まるだけでなく、そのアノ
ード溶解面上にスラィム層が実質上形成しないので、現
在市販されている含りん鋼タイプのアノードと異なり、
メッキ操業時の槽電圧がかなり減少するといった経済的
メリットも充分期待できる。 【d)スラッジ生成量が底いために、たとえばCuoや
C仏○などのスラッジ粒子がメッキ浴中に懸濁しメッキ
対象物(陰極)の表面に付着して粗い、欠陥のあるメッ
キ仕上がりになるといった類いの問題が本質的に解決さ
れる。
When [0]=0.4 to 0.5 wt%, the amount of sludge generated is 0.07% or less, which is almost negligible.
{c) Not only does the dissolution activity increase significantly, but also virtually no slime layer is formed on the anode dissolution surface, unlike currently commercially available phosphor-containing steel type anodes.
Economic benefits such as a considerable reduction in cell voltage during plating operations can also be expected. [d) Because the amount of sludge produced is low, sludge particles such as Cuo and C Buddha ○ are suspended in the plating bath and adhere to the surface of the object to be plated (cathode), resulting in a rough and defective plating finish. Similar problems are essentially solved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例と関連してスラッジ発生率とア/ード含有
酸素量との関係を示すグラフである。
The drawing is a graph showing the relationship between the sludge generation rate and the amount of oxygen contained in the sludge in connection with Examples.

Claims (1)

【特許請求の範囲】[Claims] 硫酸銅メツキ液に用いる銅製アノード材の製造方法に
おいて、該銅製アノード材に0.1重量%以上の酸素を
含有せしめそして該酸素含有銅製アノード材を800℃
以上の温度から270℃/時間より遅い冷却速度で徐冷
処理することを特徴とする銅メツキ用アノード材の製造
方法。
In a method for manufacturing a copper anode material used in a copper sulfate plating solution, the copper anode material contains 0.1% by weight or more of oxygen, and the oxygen-containing copper anode material is heated to 800°C.
A method for producing an anode material for copper plating, characterized by performing a slow cooling treatment from the above temperature at a cooling rate slower than 270° C./hour.
JP19674582A 1982-11-11 1982-11-11 Manufacturing method of anode material for copper plating Expired JPS6024198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19674582A JPS6024198B2 (en) 1982-11-11 1982-11-11 Manufacturing method of anode material for copper plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19674582A JPS6024198B2 (en) 1982-11-11 1982-11-11 Manufacturing method of anode material for copper plating

Publications (2)

Publication Number Publication Date
JPS5989800A JPS5989800A (en) 1984-05-24
JPS6024198B2 true JPS6024198B2 (en) 1985-06-11

Family

ID=16362894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19674582A Expired JPS6024198B2 (en) 1982-11-11 1982-11-11 Manufacturing method of anode material for copper plating

Country Status (1)

Country Link
JP (1) JPS6024198B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE388255T1 (en) * 2001-04-10 2008-03-15 Umicore Climeta Sas USE OF ESSENTIALLY OXYGEN-FREE, DENDRITIC AND UNCOATED COPPER FOR THE GALVANIC COATING OF PRINT CYLINDERS
CN106835242B (en) * 2017-02-05 2018-12-21 桂林理工大学 A kind of Cu2The preparation method of O nano-array
US10477321B2 (en) 2018-03-05 2019-11-12 Google Llc Driving distributed mode loudspeaker actuator that includes patterned electrodes

Also Published As

Publication number Publication date
JPS5989800A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
JP4298712B2 (en) Method for electrolytic purification of copper
WO2000043574A1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
US4364807A (en) Method of electrolytically recovering zinc
Moskalyk et al. Anode effects in electrowinning
US2913378A (en) Two-step electrorefining of titanium alloys
US4287030A (en) Process for producing high-purity indium
JPS6024198B2 (en) Manufacturing method of anode material for copper plating
US2923671A (en) Copper electrodeposition process and anode for use in same
CH686626A5 (en) Process for the direct electrochemical refining of copper scrap.
JP3934685B2 (en) Lead recycling method by continuous electrochemical lead refining
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
CN110616338B (en) Impurity removal method for copper melt and preparation method for high-purity high-conductivity copper
CN111558713B (en) Oxygen reduction method for small-particle-size titanium powder
RU2795912C1 (en) Method for processing tin-plated copper waste
CA2161308C (en) Selective bismuth and antimony removal from copper electrolyte
US2839461A (en) Electrolytic recovery of nickel
JPH0653947B2 (en) High-purity copper manufacturing method
US2942158A (en) Copper alloys for asymmetrical conductors and copper oxide cells made therefrom
JP2013036075A (en) Method of refining indium or indium alloy
US2966407A (en) Electrolytic recovery of nickel
CN116103702A (en) Molten salt electrolytic purification method and device for metal manganese
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
US874707A (en) Electrolytic refining of tin.
CN1047709A (en) The electrolysis polynary insoluble alloy anode of lead, silver, calcium rare earth
JPS622638B2 (en)