JPS62240739A - B-, c-, and n-containing aluminum alloy for semiconductor wiring material - Google Patents

B-, c-, and n-containing aluminum alloy for semiconductor wiring material

Info

Publication number
JPS62240739A
JPS62240739A JP8218786A JP8218786A JPS62240739A JP S62240739 A JPS62240739 A JP S62240739A JP 8218786 A JP8218786 A JP 8218786A JP 8218786 A JP8218786 A JP 8218786A JP S62240739 A JPS62240739 A JP S62240739A
Authority
JP
Japan
Prior art keywords
alloy
alloying elements
wiring
group
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8218786A
Other languages
Japanese (ja)
Inventor
Susumu Sawada
沢田 進
Osamu Kanano
治 叶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP8218786A priority Critical patent/JPS62240739A/en
Publication of JPS62240739A publication Critical patent/JPS62240739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the breaking of wires and a short circuit between adjacent wirings, by adding, together with B, C, and N, specific amounts of Ti, Ar, Hf, V, Nb, Ta, Cr, Mo, and W to Al containing elements having an elec tromigration-preventing effect, such as Cu, etc. CONSTITUTION:0.0001-0.02% one or more alloying elements M by weight, among Cu, Co, Mn, Ni, Sn, In, Au, and Ag, 0.002-0.07% of one or more alloying elements Me among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, 0.002-0.5% respectively, of B, C, and N, and, if necessary, 0.5-1.5% Si are added to Al. In the above composition, when the additive quantities of the elements B, C, N, and Me are less than the above ranges, B, C, N, and Me perfectly enter into solid solution in Al or Al-Si alloy and therefore MeBx, MeCx, and MeNx are not precipitated and, when they exceed the above ranges, electric resistance is increased. This alloy is used as wiring material for semiconductor device in sputtering and vapor deposition and is effective in preventing electromigration and hillock formation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はMO8型半導体の各電極の接続配線などに用い
る半導体配線材料用アルミニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an aluminum alloy for semiconductor wiring material used for connection wiring of each electrode of an MO8 type semiconductor.

[従来の技術] 半導体集積回路は近年急速に発展し、その機能の拡大と
ともに、各構成素子間を電気的に相互接続する薄膜金属
配線はさらに微細化、高密度化の傾向にある。
[Prior Art] Semiconductor integrated circuits have developed rapidly in recent years, and as their functions have expanded, thin film metal interconnections that electrically interconnect constituent elements are becoming increasingly finer and denser.

簿膜金属配線として現在AI蒸着膜が多く用いられてい
る。これはAlが (a)シリコンとのオーミック接触が容易に得られる。
Currently, AI deposited films are often used as metal interconnects. This is because Al (a) can easily make ohmic contact with silicon.

(b)真空蒸着で導電性の良い膜となる。(b) A film with good conductivity can be obtained by vacuum evaporation.

(c)シリコンの酸化膜(SiO2)との密着性が良い
(c) Good adhesion to silicon oxide film (SiO2).

(d)化学的に安定でSin、と反応しない。(d) Chemically stable and does not react with Sin.

(e)フォトレジストによる加工が容易である。(e) Processing with photoresist is easy.

(to)リードボンディング性が良い。(to) Good lead bonding properties.

など総合的にみて有利であると考えられているからであ
る。蒸着用人1合金としては通常Al−1wt%Si合
金が用いられている。
This is because it is considered to be advantageous overall. An Al-1wt%Si alloy is usually used as the vapor deposition material 1 alloy.

[発明が解決しようとする問題点] 一方、AI配線膜の欠点としては、 (a)エレクl−ロマイグレーションを起こし電流密度
が10’A/am”以上になると断線する。スパッタリ
ングや真空蒸着の際に特に段差のあるところでは均一な
厚さに成膜させることは難しく、第1図に示すように部
分的に薄い所3ができるとその部分の電流密度が高くな
るために上記のエレン1〜ロマイグレーシヨンが発生し
、その部分から断線することがある。
[Problems to be Solved by the Invention] On the other hand, the disadvantages of the AI wiring film are: (a) Electromigration occurs and the wire breaks when the current density exceeds 10'A/am''. In particular, it is difficult to form a film to a uniform thickness in areas with steps, and as shown in Figure 1, if a thin area 3 is formed in some areas, the current density in that area will be high. -Migration may occur and the wire may be disconnected from that part.

(b)ヒロックと呼ばれる突起が発生し、近接配線間(
多層配線間の場合は層間)での短絡を起こす。
(b) Protrusions called hillocks occur between adjacent wires (
In the case of multi-layer wiring, short circuits occur between the layers.

などがある。and so on.

[問題点を解決するための手段] エレクトロマイグレーションとは、高電流密度下でAI
原子が電子と衝突することにより運動エネルギーを得て
電子の動く方向に移動するために、A I 1M子の移
動した跡に原子空孔(ボイド)が発生し、この結果配線
の断面積が減少し電流密度がさらに大きくなり、ジュー
ル熱などによる温度上昇が生じて、ボイドの成長がます
ます加速され、ついには断線に至る現象である。このA
I原子の移動は通常Alの結晶粒界を伝わる粒界拡散に
よって起こり粒界を何らかの析出物でふさいでしまえば
粒界拡散が起こり難くなリエレクI−ロマイグレーショ
ンによるボイドの発生及び成長を防止することができる
[Means to solve the problem] Electromigration is the process by which AI is produced under high current density.
Atoms obtain kinetic energy by colliding with electrons and move in the direction of electron movement, so atomic vacancies (voids) are generated in the traces of movement of A I 1M atoms, and as a result, the cross-sectional area of the wiring decreases. However, the current density increases further, causing a rise in temperature due to Joule heat, etc., which accelerates the growth of voids, eventually leading to wire breakage. This A
The movement of I atoms is normally caused by grain boundary diffusion that propagates through the crystal grain boundaries of Al, and if the grain boundaries are blocked with some kind of precipitate, grain boundary diffusion is difficult to occur. Rielec I-ROM migration prevents the generation and growth of voids. be able to.

次にヒロックは上記エレクトロマイグレーションにより
移動したAIJW子が表面へ突起するものである。これ
を防ぐにはボイドと同様、粒界を何らかの析出物でふさ
いで粒界拡散が起こり難くすることが有効である。
Next, hillocks are formed by AIJW molecules that have migrated due to the electromigration and protrude toward the surface. To prevent this, as with voids, it is effective to block the grain boundaries with some kind of precipitate to make it difficult for grain boundary diffusion to occur.

以上のようにエレクトロマイグレーションによるボイド
やヒロックを防ぐには粒界に何らかの元素を析出させて
粒界拡散を抑制することが有効と考えられる。粒界への
析出を起こす合金元素はいくつかあるが、母相への溶解
度が大きい元素はAl合金の電気抵抗を上げてしまうた
め使用できない。従って、本発明者らは合金元素につい
て鋭意研究を重ねた結果、Ti、Zr、Hf、V、Nb
、Ta、Cr、Mo及びWからなる群より選ばれた1種
類又は2種類以上の合金元素MeをB。
As described above, in order to prevent voids and hillocks due to electromigration, it is considered effective to precipitate some element at grain boundaries to suppress grain boundary diffusion. There are some alloying elements that cause precipitation at grain boundaries, but elements with high solubility in the matrix cannot be used because they increase the electrical resistance of the Al alloy. Therefore, as a result of extensive research into alloying elements, the inventors found that Ti, Zr, Hf, V, Nb
, Ta, Cr, Mo, and W, and one or more alloying elements Me selected from the group consisting of B.

C及びNと一緒に添加すると粒界拡散抑止効果が大きく
、さらに従来から知られているエレクトロマイグレーシ
ョンの防止に効果のある金属元素であるCu、Co、M
n、Ni、Sn、I n、Au及びAgからなる群より
選ばれた1種類又は2種類以上の合金元素Mを少量添加
すると粒界拡散抑止効果が一層大きくなり、エレクトロ
マイグレーション防止効果が高まることを見いだし、こ
の知見に基づいて本発明をなすに至った。
When added together with C and N, the effect of suppressing grain boundary diffusion is large, and furthermore, Cu, Co, and M, which are metal elements that are known to be effective in preventing electromigration, are added.
Adding a small amount of one or more alloying elements M selected from the group consisting of n, Ni, Sn, In, Au, and Ag further increases the effect of inhibiting grain boundary diffusion and increases the electromigration prevention effect. The present invention was made based on this finding.

[発明の構成] すなわち1本発明は。[Structure of the invention] In other words, one aspect of the present invention is.

(1)Cu、Co、Mn、Ni、Sn、In、A−静 U及びAgからなる群より選ばれた1種類又は2種類以
上の合金元素を0.0001〜0.02wt%、Ti、
Zr、Hf# V、Nb、Ta、Cr+Mo及びWから
なる群より選ばれた1種類又は2種類以上の合金元素を
0.002〜0.7wt%。
(1) 0.0001 to 0.02 wt% of one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, A-static U, and Ag, Ti,
Zr, Hf# 0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of V, Nb, Ta, Cr+Mo, and W.

B  0.002〜0.5wt%、G  0.002〜
0.5wt%、N  0.002〜0.5wt%、残部
Al及び不可避的不純物からなる半導体配線材料用B、
C,N含有アルミニウム合金及び (2)Cu、Co、Mn、Ni、Sn、In、Au及び
Agからなる群より選ばれた1種類又は2種類以上の合
2金元素を0.0001〜0.02wt%、Ti、Zr
、Hf、V、Nb、Ta、Cr。
B 0.002~0.5wt%, G 0.002~
0.5 wt%, N 0.002 to 0.5 wt%, balance B for semiconductor wiring material consisting of Al and unavoidable impurities;
C, N-containing aluminum alloy and (2) one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au and Ag in an amount of 0.0001 to 0. 02wt%, Ti, Zr
, Hf, V, Nb, Ta, Cr.

Mo及びWからなる群より選ばれた1種類又は2種類以
上の合金元素を0.002〜0.7wt%t8 0.0
02〜0.5wt%、G  0.002〜0.5wt%
、N  0.002〜0.5wt%。
0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of Mo and W.
02-0.5wt%, G 0.002-0.5wt%
, N 0.002-0.5 wt%.

Si  0.5〜1.5wt% 、残部AI及び不可避
的不純物からなる半導体配線材料用B、C。
B and C for semiconductor wiring materials consisting of 0.5 to 1.5 wt% Si, the remainder AI and unavoidable impurities.

N含有アルミニウム合金を提供する。Provided is an N-containing aluminum alloy.

[発明の効果] 本発明のB、C,N含有アルミニウム合金はエレクトロ
マイグレーションの防止、ヒロックの形成の防止に有効
であり、半導体集積回路の配線材料として極めて優れた
材料である。
[Effects of the Invention] The B, C, and N-containing aluminum alloy of the present invention is effective in preventing electromigration and hillock formation, and is an extremely excellent material as a wiring material for semiconductor integrated circuits.

[発明の詳細な説明] 本発明の合金はスパッタリング又は真空蒸着により半導
体装置の配線材料として用いられる。
[Detailed Description of the Invention] The alloy of the present invention is used as a wiring material for semiconductor devices by sputtering or vacuum deposition.

本発明の合金組成のB、C及びNの各添加量が0.00
2wt%未滴の場合は前記配線材料であるAI又はAl
−Si合金に完全に固溶してしまいMeBx、M’eC
x及びM e N xが析出せず、また0、5wt%を
超えると配線の電気抵抗が大きくなり好ましくないので
B、C及びNの各添加量をそれぞれ0.002〜0.5
wt%とする。
The amount of each of B, C and N added in the alloy composition of the present invention is 0.00
In the case of 2 wt% undropped, the wiring material AI or Al
-MeBx, M'eC are completely dissolved in Si alloy.
x and M e N x do not precipitate, and if it exceeds 0.5 wt%, the electrical resistance of the wiring increases, which is not preferable.
Let it be wt%.

Ti、Zr、Hf、V、Nb、Ta、Cr、M。Ti, Zr, Hf, V, Nb, Ta, Cr, M.

及びWからなる群より選ばれた1種類又は2種類以上の
合金元素Meの添加量が0.002wt%未謂の場合は
前記配線材料であるAl又はAl−Si合金に完全に固
溶してしまいMeBx、MeCx又はM e N xが
析出せず、また0、7wt%を超えると配線の電気抵抗
が大きくなり好ましくないので添加量を0.002〜0
.7wt%とする。また、Cu、Co、Mn、Ni、S
n、In。
If the addition amount of one or more alloying elements Me selected from the group consisting of However, MeBx, MeCx or M e N x will not precipitate, and if it exceeds 0.7 wt%, the electrical resistance of the wiring will increase, which is undesirable, so the amount added should be 0.002 to 0.
.. It is set to 7wt%. Also, Cu, Co, Mn, Ni, S
n, In.

Au及びAgからなる群より選ばれた1種類又は2種類
以上の合金元素Mの添加量が0.0001wt%未満の
場合は全くエレクトロマイグレーションの防止に効果が
なく、0.02wt%を超えると配線の電気抵抗が大き
くなり好ましくないので添加量を0.0OO1〜0.0
2wt%とする。
If the addition amount of one or more alloying elements M selected from the group consisting of Au and Ag is less than 0.0001wt%, it will have no effect on preventing electromigration at all, and if it exceeds 0.02wt%, the wiring will fail. Since the electrical resistance becomes large, which is undesirable, the amount added should be 0.0OO1 to 0.0.
It is set to 2wt%.

さらに好ましくは本発明のA l−Me−B−C−N−
M合金にSiを添加して半導体SiとAlの相互拡散を
抑制することができるa S xの添加量が0.5%未
満の場合はA l −S iコンタク1一部でのSiと
Alの相互拡散の防止効果が小さく。
More preferably, Al-Me-B-C-N- of the present invention
Mutual diffusion of semiconductor Si and Al can be suppressed by adding Si to M alloy.If the amount of S x added is less than 0.5%, Si and Al in a part of Al-Si contact 1 The effect of preventing mutual diffusion is small.

又、L、5wt%を超えると配線の電気抵抗が大きくな
り好ましくないので添加量を0.5〜1゜5wt%とす
る。
Moreover, if L exceeds 5 wt%, the electrical resistance of the wiring increases, which is not preferable, so the amount added is set to 0.5 to 1.5 wt%.

以上の半導体配線材料用アルミニウム合金は通常高純度
(99,999wt%)Al或いは高純度(99,99
9wt%)Siを溶解したAl−Si合金に、Ti、Z
r、Hf、V、Nb、TB、Cr、Mo及びWからなる
群より選ばれた1種類又は2種類以上の合金元素Meと
、Cu、Co p M n HN ie S n # 
I n + A u及びAgからなる群より選ばれた1
種類又は2種類以上の合金元素Mと、高純度(99,9
5wt%)の結晶Bと、Ct&AIC,SiC及びM 
e Cxなどとし、NteA I N、 S i N及
びM e N Xなどとして、大気中で溶解鋳造し1次
にこの鋳造材をそのまま機械加工して真空蒸着材又はス
パッタリング用ターゲツト板とすることができる。この
ようにして作成されたターゲツト板は上記の鋳造の際に
M e 。
The above aluminum alloys for semiconductor wiring materials are usually high purity (99,999wt%) Al or high purity (99,999wt%) Al.
Ti, Z
One or more alloying elements Me selected from the group consisting of r, Hf, V, Nb, TB, Cr, Mo and W, and Cu, Co p M n HN ie S n #
1 selected from the group consisting of I n + A u and Ag
type or two or more types of alloying element M and high purity (99,9
5wt%) of crystal B, Ct & AIC, SiC and M
e Cx, etc., and NteA IN, S i N, M e N can. The target plate made in this way is M e during the above casting.

B、C及びNの一部がMaBx、MeCx及びMeNx
となって、これらMeBx、MeCx及びM e N 
xが核効果を起こし、鋳造組織を微細化するとともに鋳
造材に残存するMe、B、C,及びNが多いためにスパ
ッタリング又は真空蒸着による薄膜の均一性に非常に優
れており、さらにまた、この薄膜において前記のMe、
B、C及びNがMaBx、MeCx及びM e N x
となって結晶粒界に析出し、エレクトロマイグレーショ
ンの防止に効果のある金属元素Mの効果と相まって、エ
レクトロマイグレーションによるボイドやヒロック形成
の防止に極めて有効に作用する。なお、鋳造材のかわり
に鋳造後所定の形状に加工しそれをさらに熱処理してス
パッタリング又は真空蒸着材とすることもできる。この
場合熱処理によって再結晶化するとMeBx、MeCx
及びM e N xが析出して核効果により結晶が微細
化し、スパッタリング又は真空蒸着材の組織の均一性が
向上するにれによって薄膜の均一性を向上させることも
でき    ゛る0次に実施例について説明する。
Parts of B, C and N are MaBx, MeCx and MeNx
Therefore, these MeBx, MeCx and M e N
x causes a nuclear effect and refines the casting structure, and since there are many Me, B, C, and N remaining in the casting material, the uniformity of the thin film by sputtering or vacuum evaporation is extremely excellent, and furthermore, In this thin film, the Me,
B, C and N are MaBx, MeCx and M e N x
Coupled with the effect of the metal element M, which precipitates at grain boundaries and is effective in preventing electromigration, it acts extremely effectively in preventing the formation of voids and hillocks due to electromigration. In addition, instead of a cast material, it is also possible to process the material into a predetermined shape after casting and further heat-treat it to make a sputtering or vacuum evaporation material. In this case, when recrystallized by heat treatment, MeBx, MeCx
and M e N x precipitate, the crystals become finer due to the nuclear effect, and the uniformity of the structure of the sputtering or vacuum evaporation material improves, thereby improving the uniformity of the thin film. I will explain about it.

[実施例] 高純度(99,999wt%)At又は高純度Al−8
i合金、高純度(99,95wt%)の納品B、高純度
(99,95wt%)のAIC。
[Example] High purity (99,999wt%) At or high purity Al-8
i alloy, delivery B with high purity (99.95 wt%), AIC with high purity (99.95 wt%).

高純度(99,95wt%)のAIN及びTi。High purity (99.95wt%) AIN and Ti.

Zr、Hf、V、Nb、Ta、Cr、Mo、Wからなる
群より選ばれた1種類又は2種類以上の高純度金属Me
及びCu、Co、Mn、Ni、Sn。
One or more types of high purity metal Me selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, and W
and Cu, Co, Mn, Ni, and Sn.

In、Au及びAgからなる群より選ばれた1種類又は
2種類以上の合金元素Mを第1表に示す組成に調整した
後、高純度アルミするつぼ内へ装入し抵抗加熱炉で大気
中で溶解した。溶解後、所定の鋳型へ鋳造した。鋳造材
はそのまま機械加工により切削、研磨して所定の形状に
しスパッタリング用ターゲツト板とした。
After adjusting the composition of one or more alloying elements M selected from the group consisting of In, Au, and Ag to the composition shown in Table 1, it is charged into a high-purity aluminum crucible and heated in the atmosphere in a resistance heating furnace. It was dissolved in After melting, it was cast into a predetermined mold. The cast material was machined as it was, cut and polished into a predetermined shape and used as a target plate for sputtering.

上記ターゲツト板を用いてシリコン基板上に幅6ミクロ
ン、長さ380ミクロンのスパッタリング蒸着膜を形成
した。この薄膜の特性を調べるために温度175℃で連
続して電流密度lX10″’A/cm”の電流を流した
。その時の平均の故障発生に至る時間(平均故障時間)
を第1表に示す。
A sputtering deposition film having a width of 6 microns and a length of 380 microns was formed on a silicon substrate using the above target plate. In order to investigate the characteristics of this thin film, a current with a current density of 1 x 10''A/cm'' was passed continuously at a temperature of 175°C. Average time to failure at that time (mean time to failure)
are shown in Table 1.

同じく第1表には比較例として純At、At−CU合金
及びA l −Cu −S i合金についての試験結果
も示す。
Table 1 also shows test results for pure At, At-CU alloy, and Al-Cu-Si alloy as comparative examples.

以上の第1表から明らかなように従来の純AL 、 A
 1−Cu合金及びAl−Cu−8i合金に比較して1
本発明のAl−Me−B−C−N−M合金及びAl−8
i−Ms−BAl−8i−合金による蒸着配線膜の高温
、連続通電下における平均故障時間は大幅に改善され、
Al−Cu−3i合金の2倍以上となっている。このよ
うに本発明のA L −M e −B −C−N −M
合金及びAI−8i−Me−BAl−8i−合金はエレ
クトロマイグレーションによるボイドやヒロックの形成
の防止に有効であり、半導体集積回路用配線材料として
極めて優れた材料であることがわかる。
As is clear from Table 1 above, conventional pure AL, A
1 compared to 1-Cu alloy and Al-Cu-8i alloy.
Al-Me-B-C-N-M alloy of the present invention and Al-8
The mean failure time of vapor-deposited wiring films made of i-Ms-BAl-8i-alloy under high temperature and continuous energization is significantly improved.
This is more than twice that of Al-Cu-3i alloy. In this way, the A L -M e -B -C-N -M of the present invention
It can be seen that the alloy and AI-8i-Me-BAl-8i-alloy are effective in preventing the formation of voids and hillocks due to electromigration, and are extremely excellent materials as wiring materials for semiconductor integrated circuits.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリコン基板上にAl配線膜を蒸着した部分の
断面図である。 1:シリコン基板 2:Al配線膜
FIG. 1 is a cross-sectional view of a portion where an Al wiring film is deposited on a silicon substrate. 1: Silicon substrate 2: Al wiring film

Claims (2)

【特許請求の範囲】[Claims] (1)Cu、Co、Mn、Ni、Sn、In、Au及び
Agからなる群より選ばれた1種類又は2種類以上の合
金元素を0.0001〜0.02wt%、Ti、Zr、
Hf、V、Nb、Ta、Cr、Mo及びWからなる群よ
り選ばれた1種類又は2種類以上の合金元素を0.00
2〜0.7wt%、B0.002〜0.5wt%、C0
.002〜0.5wt%、N0.002〜0.5wt%
、残部Al及び不可避的不純物からなる半導体配線材料
用B、C、N含有アルミニウム合金。
(1) 0.0001 to 0.02 wt% of one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au and Ag, Ti, Zr,
0.00 of one or more alloying elements selected from the group consisting of Hf, V, Nb, Ta, Cr, Mo and W.
2-0.7wt%, B0.002-0.5wt%, C0
.. 002~0.5wt%, N0.002~0.5wt%
, the remainder Al and unavoidable impurities, an aluminum alloy containing B, C, and N for semiconductor wiring materials.
(2)Cu、Co、Mn、Ni、Sn、In、Au及び
Agからなる群より選ばれた1種類又は2種類以上の合
金元素を0.0001〜0.02wt%、Ti、Zr、
Hf、V、Nb、Ta、Cr、Mo及びWからなる群よ
り選ばれた1種類又は2種類以上の合金元素を0.00
2〜0.7wt%、B0.002〜0.5wt%、C0
.002〜0.5wt%、N0.002〜0.5wt%
、Si0.5〜1.5wt%、残部Al及び不可避的不
純物からなる半導体配線材料用B、C、N含有アルミニ
ウム合金。
(2) 0.0001 to 0.02 wt% of one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au and Ag, Ti, Zr,
0.00 of one or more alloying elements selected from the group consisting of Hf, V, Nb, Ta, Cr, Mo and W.
2-0.7wt%, B0.002-0.5wt%, C0
.. 002~0.5wt%, N0.002~0.5wt%
, 0.5 to 1.5 wt% Si, the remainder Al and unavoidable impurities, an aluminum alloy containing B, C, and N for semiconductor wiring materials.
JP8218786A 1986-04-11 1986-04-11 B-, c-, and n-containing aluminum alloy for semiconductor wiring material Pending JPS62240739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218786A JPS62240739A (en) 1986-04-11 1986-04-11 B-, c-, and n-containing aluminum alloy for semiconductor wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218786A JPS62240739A (en) 1986-04-11 1986-04-11 B-, c-, and n-containing aluminum alloy for semiconductor wiring material

Publications (1)

Publication Number Publication Date
JPS62240739A true JPS62240739A (en) 1987-10-21

Family

ID=13767434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218786A Pending JPS62240739A (en) 1986-04-11 1986-04-11 B-, c-, and n-containing aluminum alloy for semiconductor wiring material

Country Status (1)

Country Link
JP (1) JPS62240739A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347561A2 (en) * 1988-06-21 1989-12-27 International Business Machines Corporation Separable electrical connection
JPH04186728A (en) * 1990-11-20 1992-07-03 Nec Corp Semiconductor integrated circuit device
US5137461A (en) * 1988-06-21 1992-08-11 International Business Machines Corporation Separable electrical connection technology
JPH04323872A (en) * 1991-04-23 1992-11-13 Kobe Steel Ltd Material for semiconductor device
JPH04323871A (en) * 1991-04-23 1992-11-13 Kobe Steel Ltd Material for semiconductor device
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
EP0606761A2 (en) * 1992-12-28 1994-07-20 Kawasaki Steel Corporation Semiconductor device and process for production thereof
US5976641A (en) * 1991-03-07 1999-11-02 Kabushiki Kaisha Kobe Seiko Sho A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
US6264813B1 (en) 1996-12-04 2001-07-24 Aluminum Pechiney Cathodic sputtering targets made of aluminum alloy
US6465376B2 (en) 1999-08-18 2002-10-15 International Business Machines Corporation Method and structure for improving electromigration of chip interconnects
CN100428367C (en) * 2004-02-16 2008-10-22 三井金属鉱业株式会社 Aluminum alloy wiring material having high resistance to heat and target material
US8350303B2 (en) 2005-02-17 2013-01-08 Kobe Steel, Ltd. Display device and sputtering target for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137461A (en) * 1988-06-21 1992-08-11 International Business Machines Corporation Separable electrical connection technology
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
EP0347561A2 (en) * 1988-06-21 1989-12-27 International Business Machines Corporation Separable electrical connection
JPH04186728A (en) * 1990-11-20 1992-07-03 Nec Corp Semiconductor integrated circuit device
US6206985B1 (en) 1991-03-07 2001-03-27 Kabushiki Kaisha Kobe Seiko Sho A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
US5976641A (en) * 1991-03-07 1999-11-02 Kabushiki Kaisha Kobe Seiko Sho A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
JPH04323872A (en) * 1991-04-23 1992-11-13 Kobe Steel Ltd Material for semiconductor device
JPH04323871A (en) * 1991-04-23 1992-11-13 Kobe Steel Ltd Material for semiconductor device
EP0606761A2 (en) * 1992-12-28 1994-07-20 Kawasaki Steel Corporation Semiconductor device and process for production thereof
US6264813B1 (en) 1996-12-04 2001-07-24 Aluminum Pechiney Cathodic sputtering targets made of aluminum alloy
US6465376B2 (en) 1999-08-18 2002-10-15 International Business Machines Corporation Method and structure for improving electromigration of chip interconnects
CN100428367C (en) * 2004-02-16 2008-10-22 三井金属鉱业株式会社 Aluminum alloy wiring material having high resistance to heat and target material
US8350303B2 (en) 2005-02-17 2013-01-08 Kobe Steel, Ltd. Display device and sputtering target for producing the same

Similar Documents

Publication Publication Date Title
US6797079B2 (en) Physical vapor deposition target
JP3296708B2 (en) Multilayer Al alloy structure for metal conductor
JPS62240739A (en) B-, c-, and n-containing aluminum alloy for semiconductor wiring material
WO2004083482A1 (en) Copper alloy sputtering target process for producing the same and semiconductor element wiring
KR20090051267A (en) Copper sputtering target with fine grain size and high electromigration resistance and methods of making the same
JPS62240738A (en) N-and c-containing aluminum alloy for semiconductor wiring material
JPS62235451A (en) Al alloy for semiconductor wiring material
JPS62240736A (en) B-and c-containing aluminum alloy for semiconductor wiring material
JPH10308363A (en) Manufacture of metalization structure
JPS62235454A (en) N-containing al alloy for semiconductor wiring material
JPS62240735A (en) N-containing aluminum alloy for semiconductor wiring material
JPS62240737A (en) B-and n-containing aluminum alloy for semiconductor wiring material
JPS62240733A (en) B-containing aluminum alloy for semiconductor wiring material
JPS62235452A (en) B-containing al alloy for semiconductor wiring material
JPS62240734A (en) C-containing aluminum alloy for semiconductor wiring material
JPH0250432A (en) Semiconductor device
JP2000349085A (en) Semiconductor device and its manufacture
JPS62235453A (en) C-containing al alloy for semiconductor wiring material
JPS62234343A (en) Al alloy containing b and c for semiconductor wiring material
JPS62228446A (en) Aluminum alloy for semiconductor wiring material
JPS62234346A (en) Al alloy containing b, c and n for semiconductor wiring material
JPS62234345A (en) Al alloy containing n and c for semiconductor wiring material
JP3276446B2 (en) Al alloy thin film, method for producing the same, and sputtering target for forming an aluminum alloy thin film
JPS62234344A (en) Al alloy containing b and n for semiconductor wiring material
JPH02165632A (en) Manufacture of semiconductor device