JPS62234346A - Al alloy containing b, c and n for semiconductor wiring material - Google Patents
Al alloy containing b, c and n for semiconductor wiring materialInfo
- Publication number
- JPS62234346A JPS62234346A JP7662086A JP7662086A JPS62234346A JP S62234346 A JPS62234346 A JP S62234346A JP 7662086 A JP7662086 A JP 7662086A JP 7662086 A JP7662086 A JP 7662086A JP S62234346 A JPS62234346 A JP S62234346A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- electromigration
- alloy containing
- high purity
- alloying elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 23
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 17
- 238000005275 alloying Methods 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 9
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- 239000002244 precipitate Substances 0.000 abstract description 7
- 239000010409 thin film Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000005266 casting Methods 0.000 abstract description 4
- 238000001771 vacuum deposition Methods 0.000 abstract description 4
- 229910021364 Al-Si alloy Inorganic materials 0.000 abstract description 2
- 230000001818 nuclear effect Effects 0.000 abstract description 2
- 235000018741 Terminalia myriocarpa Nutrition 0.000 abstract 1
- 241001284289 Terminalia myriocarpa Species 0.000 abstract 1
- 239000010408 film Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005324 grain boundary diffusion Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910017758 Cu-Si Inorganic materials 0.000 description 3
- 229910017931 Cu—Si Inorganic materials 0.000 description 3
- 229910001199 N alloy Inorganic materials 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はMO8型半導体の各電極の接続配線などに用い
る半導体配線材料用アルミニウム合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an aluminum alloy for semiconductor wiring material used for connection wiring of each electrode of an MO8 type semiconductor.
[従来の技術]
半導体集積回路は近年急速に発展し、その機能の拡大と
ともに、各構成素子間を電気的に相互接続する薄膜金属
配線はさらに微細化、高密度化の傾向にある。[Prior Art] Semiconductor integrated circuits have developed rapidly in recent years, and as their functions have expanded, thin film metal interconnections that electrically interconnect constituent elements are becoming increasingly finer and denser.
薄膜金属配線として現在Al蒸着膜が多く用いられてい
る。これはAlが
(a)シリコンとのオーミック接触が容易に得られる。Al-deposited films are currently widely used as thin-film metal interconnects. This is because Al (a) can easily make ohmic contact with silicon.
(b)真空蒸着で導電性の良い膜となる。(b) A film with good conductivity can be obtained by vacuum evaporation.
(c)シリコンの酸化膜(SiO□)との密着性が良い
。(c) Good adhesion to silicon oxide film (SiO□).
(d)化学的に安定でSin、と反応しない。(d) Chemically stable and does not react with Sin.
(e・)フォトレジストによる加工が容易である。(e.) Processing with photoresist is easy.
(f)リードボンディング性が良い。(f) Good lead bonding properties.
など総合的にみて有利であると考えられているからであ
る。蒸着用Al合金としては通常Al−1wt%Si合
金が用いられている。This is because it is considered to be advantageous overall. As the Al alloy for vapor deposition, an Al-1wt%Si alloy is usually used.
[発明が解決しようとする問題点]
一方、AI配線膜の欠点としては、
(a)エレクトロマイグレーションを起こし電流密度が
10’A/am”以上になると断線する。スパッタリン
グや真空蒸着の際に特に段差のあるところでは均一な厚
さに成膜させることは難しく。[Problems to be Solved by the Invention] On the other hand, the drawbacks of the AI wiring film are: (a) Electromigration occurs and the wire breaks when the current density exceeds 10'A/am". Especially during sputtering or vacuum evaporation. It is difficult to form a film with a uniform thickness in areas with steps.
第1図に示すように部分的に薄い所3ができるとその部
分の電流密度が高くなるために上記のエレクトロマイグ
レーションが発生し、その部分から断線することがある
。As shown in FIG. 1, when a thin portion 3 is formed in a portion, the current density in that portion becomes high, so that the above-mentioned electromigration occurs, and the wire may be disconnected from that portion.
(b)ヒロックと呼ばれる突起が発生し、近接配線間(
多層配線間の場合は層間)での短絡を起こす。(b) Protrusions called hillocks occur between adjacent wires (
In the case of multi-layer wiring, short circuits occur between the layers.
などがある。and so on.
[問題点を解決するための手段]
エレクトロマイグレーションとは、高電流密度下でAl
l子が電子と衝突することにより運動エネルギーを得て
電子の動く方向に移動するために、AI原子の移動した
跡に原子空孔(ボイド)が発生し、この結果配線の断面
積が減少し電流密度がさらに大きくなり、ジュール熱な
どによる温度上昇が生じて、ボイドの成長がますます加
速され、ついには断線に至る現象である。このAI原子
の移動は通常Alの結晶粒界を伝わる粒界拡散によって
起こり粒界を何らかの析出物でふさいでしまえば粒界拡
散が起こり難くなリエレクトロマイグレーションによる
ボイドの発生及び成長を防止することができる。[Means for solving the problem] Electromigration is the process by which Al
When the l-son collides with the electron, it gains kinetic energy and moves in the direction of the electron movement, so atomic vacancies (voids) are generated in the traces of the movement of the AI atom, and as a result, the cross-sectional area of the wiring decreases. This is a phenomenon in which the current density further increases, causing a rise in temperature due to Joule heat, etc., which further accelerates the growth of voids, eventually leading to wire breakage. This movement of AI atoms is normally caused by grain boundary diffusion that propagates through the grain boundaries of Al, and if the grain boundaries are blocked with some kind of precipitate, grain boundary diffusion is difficult to occur.To prevent the generation and growth of voids due to reelectromigration. I can do it.
次にヒロックは上記エレクトロマイグレーションにより
移動したAl原子が表面へ突起するものである。これを
防ぐにはボイドと同様1粒界を何らかの析出物でふさい
で粒界拡散が起こり難くすることが有効である。Next, hillocks are formed by Al atoms that have migrated due to the electromigration and protrude toward the surface. In order to prevent this, it is effective to block one grain boundary with some kind of precipitate to make it difficult for grain boundary diffusion to occur, similar to voids.
以上のようにエレクトロマイグレーションによるボイド
やヒロックを防ぐには粒界に何らかの元素を析出させて
粒界拡散を抑制することが有効と考えられる。粒界への
析出を起こす合金元素はいくつかあるが、母相への溶解
度が大きい元素はAl合金の電気抵抗を上げてしまうた
め使用できない、従って、本発明者らは合金元素につ、
いて鋭意研究を重ねた結果、Ti、Zr、Hf、V、N
b、、Ta、Cr、Mo及びWからなる群より選ばれた
1種類又は2種類以上の合金元素MeをB。As described above, in order to prevent voids and hillocks due to electromigration, it is considered effective to precipitate some element at grain boundaries to suppress grain boundary diffusion. There are several alloying elements that cause precipitation at grain boundaries, but elements with high solubility in the matrix cannot be used because they increase the electrical resistance of the Al alloy. Therefore, the present inventors
As a result of intensive research, we found that Ti, Zr, Hf, V, N
b. One or more alloying elements Me selected from the group consisting of Ta, Cr, Mo and W.
C及びNと一緒に添加すると粒界拡散抑止効果が大きい
ことを見いだし、この知見に基づいて本発明をなすに至
った。このことはMeとB、C及びNとの化合物である
M e B x粒子、MaCx粒子及びM e N x
粒子が粒界拡散抑止に寄与しているためであると考えら
れている。It was discovered that the effect of suppressing grain boundary diffusion is large when added together with C and N, and the present invention was completed based on this knowledge. This means that M e B x particles, MaC x particles, and M e N x particles, which are compounds of Me, B, C, and N,
This is thought to be because the particles contribute to suppressing grain boundary diffusion.
[発明の構成] すなわち、本発明は、 (1)Ti、Zr、Hf、V、Nb、Ta、Cr。[Structure of the invention] That is, the present invention (1) Ti, Zr, Hf, V, Nb, Ta, Cr.
MO及びWからなる群より選ばれた1種類又は2種類以
上の合金元素を0.002〜0.7wt%。0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of MO and W.
8 0.002〜0.5wt%、G 0.002〜0
.5wt%、N 0.002〜0.5wt%、残部A
l及び不可避的不純物からなる半導体配線材料用B、C
,N含有AI合金 及び(2)Ti、Zr、Hf、
V、Nb、Ta、Cr。8 0.002-0.5wt%, G 0.002-0
.. 5wt%, N 0.002-0.5wt%, balance A
B, C for semiconductor wiring materials consisting of l and unavoidable impurities
, N-containing AI alloy and (2) Ti, Zr, Hf,
V, Nb, Ta, Cr.
Mo及びWからなる群より選ばれた1種類又は2種類以
上の合金元素を0.002〜0.7wt%。0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of Mo and W.
B 0.002〜0.5wt%、G 0.002〜
0.5wt%、N 0.002〜0.5wt%。B 0.002~0.5wt%, G 0.002~
0.5wt%, N 0.002-0.5wt%.
Si 0.5〜1.5wt% 、残部Al及び不可避
的不純物からなる半導体配線材料用B、C。B and C for semiconductor wiring materials consisting of 0.5 to 1.5 wt% Si, balance Al and inevitable impurities.
N含有Al合金を提供する。Provided is an N-containing Al alloy.
[発明の効果コ
本発明のB、C,N含有Al合金はエレクトロマイグレ
ーションの防止、ヒロックの形成の防止に有効であり、
半導体集積回路の配線材料として極めて優れた材料であ
る。[Effects of the Invention] The B, C, and N-containing Al alloy of the present invention is effective in preventing electromigration and hillock formation;
It is an extremely excellent material as a wiring material for semiconductor integrated circuits.
[発明の詳細な説明]
本発明の合金はスパッタリング又は真空蒸着により半導
体装置の配線材料として用いられる。[Detailed Description of the Invention] The alloy of the present invention is used as a wiring material for semiconductor devices by sputtering or vacuum deposition.
本発明の合金組成のB、C及びNの各添加量が0.00
2wt%未滴の場合は前記配線材料であるAl又はA
l −S i合金に完全に固溶してしまいMeBx、M
eCx及びM e N xが析出せず、また0、5wt
%を超えると配線の電気抵抗が大きくなり好ましくない
のでB、C及びNの各添加量をともに0.002〜0.
5wt%とする。Tit Zr、Hf、V、Nb、Ta
、Cr、Mo及びWからなる群より選ばれた1種類又は
2種類以上の合金元素Meの添加量が0.002wt%
未滴の場合は前記配線材料であるAl又はAt−Si合
金に完全に固溶してしまいMeBx、MeCX又はM
e N xが析出せず、また0、7wt%を超えると配
線の電気抵抗が大きくなり好ましくないので添加量を0
.002〜0.7wt%とする。The amount of each of B, C and N added in the alloy composition of the present invention is 0.00
In the case of 2 wt% undropped, the wiring material Al or A
MeBx, M are completely dissolved in the l-Si alloy.
eCx and M e N x did not precipitate, and 0.5wt
%, the electrical resistance of the wiring increases, which is undesirable.
It is set to 5wt%. Tit Zr, Hf, V, Nb, Ta
The amount of one or more alloying elements Me selected from the group consisting of , Cr, Mo, and W is 0.002 wt%.
If it is not dropped, it will be completely dissolved in Al or At-Si alloy which is the wiring material, and MeBx, MeCX or M
e N x does not precipitate, and if it exceeds 0.7 wt%, the electrical resistance of the wiring increases, which is undesirable, so the amount added is reduced to 0.
.. 0.002 to 0.7 wt%.
さらに好ましくは本発明のA l −M e −B −
C−N合金にSiを添加して半導体SiとAlの相互拡
散を抑制することができる。Siの添加量が0゜5%未
満の場合はAl−Siコンタクト部でのSiとAlの相
互拡散の防止効果が小さく、又、1゜5wt%を超える
と配線の電気抵抗が大きくなり好ましくないので添加量
を0.5〜1.5wt%とする。More preferably, A l -M e -B - of the present invention
By adding Si to the C--N alloy, mutual diffusion between semiconductor Si and Al can be suppressed. If the amount of Si added is less than 0.5%, the effect of preventing mutual diffusion of Si and Al in the Al-Si contact portion is small, and if it exceeds 1.5 wt%, the electrical resistance of the wiring increases, which is not preferable. Therefore, the amount added is set to 0.5 to 1.5 wt%.
以上の半導体配線材料用アルミニウム合金は通常高純度
(99,999wt%)Al或いは高純度(99,99
9wt%)Siを溶解したAl−Si合金に、Ti、Z
r、Hf、V、Nb、Ta、Cr、Mo及びWからなる
群より選ばれた1種類又は2種類以上の合金元素Meと
、高純度(99,95wt%)の結晶Bと、CをAIC
。The above aluminum alloys for semiconductor wiring materials are usually high purity (99,999wt%) Al or high purity (99,999wt%) Al.
Ti, Z
One or more alloying elements Me selected from the group consisting of r, Hf, V, Nb, Ta, Cr, Mo, and W, high purity (99.95 wt%) crystal B, and C are AIC.
.
SiC及びM e Cxなどとし、N5AIN、SiN
及びM e N xなどとして、大気中で溶解鋳造し、
次にこの鋳造材をそのまま機械加工して真空蒸着材又は
スパッタリング用ターゲツト板とすることができる。こ
のようにして作成されたターゲツト板は上記の鋳造の際
にMe、B、C及びNの一部がMeBx、MeCx及び
M e N xとなって、これらMeBx、MeCx及
びM e N xが核効果を起こし、鋳造組織を微細化
するとともに鋳造材に残存するMe、B、C及びNが多
いためにスパッタリング又は真空蒸着による薄膜の均一
性に非常に優れており、さらにまた、この薄膜において
前記のMe、B、C及びNがMeBx、MeCx及びM
e N xとなって結晶粒界に析出しエレクトロマイ
グレーションによるボイドやヒロック形成の防止に極め
て有効に作用する。なお、鋳造材のかわりに鋳造機所定
の形状に加工しそれをさらに熱処理してスパッタリング
又は真空蒸着材とすることもできる。この場合熱処理に
よって再結晶化するとMeBx、MeCx及びM a
N xが析出して核効果により結晶が微細化し、スパッ
タリング又は真空蒸着材の組織の均一性が向上する。こ
れによって薄膜の均一性を向上させることもできる。SiC and M e Cx, etc., N5AIN, SiN
and M e N x etc., by melting and casting in the atmosphere,
This cast material can then be machined as is into a vacuum evaporation material or a target plate for sputtering. In the target plate created in this way, during the above casting, part of Me, B, C, and N becomes MeBx, MeCx, and M e N x, and these MeBx, MeCx, and M e N x become nuclei. Because of the large amount of Me, B, C, and N remaining in the cast material, the thin film formed by sputtering or vacuum deposition has excellent uniformity. Me, B, C and N of MeBx, MeCx and M
eNx, which precipitates at grain boundaries and acts extremely effectively to prevent the formation of voids and hillocks due to electromigration. Note that instead of a cast material, it is also possible to process the material into a predetermined shape using a casting machine and further heat treat it to make a sputtering or vacuum deposition material. In this case, when recrystallized by heat treatment, MeBx, MeCx and Ma
N x precipitates and the crystals become finer due to the nuclear effect, improving the uniformity of the structure of the sputtered or vacuum evaporated material. This can also improve the uniformity of the thin film.
次に実施例について説明する。Next, an example will be described.
[実施例]
高純度(99,999wt%)Al又は高純度A l
−S i合金、高純度(99,95wt%)の結晶B、
高純度(99,95wt%)のAIC。[Example] High purity (99,999wt%) Al or high purity Al
-Si alloy, high purity (99.95 wt%) crystal B,
High purity (99.95wt%) AIC.
高純度(99,95wt%)のAIN及びTi。High purity (99.95wt%) AIN and Ti.
Zr、Hf、V、Nb、Ta、Cr、Mo、Wからなる
群より選ばれた1種類又は2種類以上の高純度金属Me
を第1表に示す組成に調整した後、高純度アルミするつ
ぼ内へ装入し抵抗加熱炉で大気中で溶解した。溶解後、
所定の鋳型へ鋳造した。One or more types of high purity metal Me selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, and W
After adjusting the composition to the composition shown in Table 1, it was charged into a high-purity aluminum crucible and melted in the atmosphere in a resistance heating furnace. After dissolving,
It was cast into a specified mold.
鋳造材はそのまま機械加工により切削、研磨して所定の
形状にしスパッタリング用ターゲツト板とした。The cast material was machined as it was, cut and polished into a predetermined shape and used as a target plate for sputtering.
上記ターゲツト板を用いてシリコン基板上に幅6ミクロ
ン、長さ380ミクロンのスパッタリング蒸着膜を形成
した。この薄膜の特性を調べるために温度175℃で連
続して電流密度1x10@A/cm”の電流を流した。A sputtering deposition film having a width of 6 microns and a length of 380 microns was formed on a silicon substrate using the above target plate. In order to examine the characteristics of this thin film, a current was continuously applied at a temperature of 175° C. and a current density of 1×10@A/cm”.
その時の平均の故障発生に至る時間(平均故障時間)を
第1表に示す。Table 1 shows the average time to failure (average time to failure) at that time.
同じく第1表には比較例として純Al、At−CU金合
金びAl−Cu−Si合金についての試験結果も示す。Table 1 also shows test results for pure Al, At-CU gold alloy, and Al-Cu-Si alloy as comparative examples.
以上の第1表から明らかなように従来の純AI、Al−
Cu合金及びAL−Cu−Si合金に比較して、本発明
のA l −M e −B −C−N’金合金びA I
−S i −M e −B −C−N合金による蒸着
配線膜の高温、連続通電下における平均故障時間は大幅
に改善され、At−Cu−Si合金の2倍以上となって
いる。このように本発明のAl−M e −B −C−
N合金及びAl−8i−MeAl−8i−合金はエレク
トロマイグレーシ五ンによるボイドやヒロックの形成の
防止に有効であり。As is clear from Table 1 above, conventional pure AI, Al-
Compared to the Cu alloy and the AL-Cu-Si alloy, the Al-Me-B-C-N' gold alloy of the present invention
-S i -M e -B - The mean failure time of the vapor-deposited wiring film made of the -C-N alloy under high temperature and continuous energization is significantly improved, and is more than twice as long as that of the At-Cu-Si alloy. In this way, Al-M e -B -C- of the present invention
N alloy and Al-8i-MeAl-8i-alloy are effective in preventing the formation of voids and hillocks due to electromigration.
半導体集積回路用配線材料として極めて優れた材料であ
ることがわかる。It can be seen that this material is extremely excellent as a wiring material for semiconductor integrated circuits.
以下余白Margin below
第1図はシリコン基版上にAl配線膜を蒸着した部分の
断面図である。
1:シリコン基板
2:Al配線膜FIG. 1 is a cross-sectional view of a portion where an Al wiring film is deposited on a silicon substrate. 1: Silicon substrate 2: Al wiring film
Claims (2)
及びWからなる群より選ばれた1種類又は2種類以上の
合金元素を0.002〜0.7wt%、B0.002〜
0.5wt%、C0.002〜0.5wt%、N0.0
02〜0.5wt%、残部Al及び不可避的不純物から
なる半導体配線材料用B、C、N含有Al合金。(1) Ti, Zr, Hf, V, Nb, Ta, Cr, Mo
and 0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of W, B0.002 to
0.5wt%, C0.002-0.5wt%, N0.0
An Al alloy containing B, C, and N for semiconductor wiring material, consisting of 0.02 to 0.5 wt%, the balance being Al and unavoidable impurities.
及びWからなる群より選ばれた1種類又は2種類以上の
合金元素を0.002〜0.7wt%、B0.002〜
0.5wt%、C0.002〜0.5wt%、N0.0
02〜0.5wt%、Si0.5〜1.5wt%、残部
Al及び不可避的不純物からなる半導体配線材料用B、
C、N含有Al合金。(2) Ti, Zr, Hf, V, Nb, Ta, Cr, Mo
and 0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of W, B0.002 to
0.5wt%, C0.002-0.5wt%, N0.0
B for semiconductor wiring material consisting of 02 to 0.5 wt%, Si 0.5 to 1.5 wt%, balance Al and unavoidable impurities;
Al alloy containing C and N.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7662086A JPS62234346A (en) | 1986-04-04 | 1986-04-04 | Al alloy containing b, c and n for semiconductor wiring material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7662086A JPS62234346A (en) | 1986-04-04 | 1986-04-04 | Al alloy containing b, c and n for semiconductor wiring material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62234346A true JPS62234346A (en) | 1987-10-14 |
Family
ID=13610391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7662086A Pending JPS62234346A (en) | 1986-04-04 | 1986-04-04 | Al alloy containing b, c and n for semiconductor wiring material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62234346A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465376B2 (en) | 1999-08-18 | 2002-10-15 | International Business Machines Corporation | Method and structure for improving electromigration of chip interconnects |
-
1986
- 1986-04-04 JP JP7662086A patent/JPS62234346A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465376B2 (en) | 1999-08-18 | 2002-10-15 | International Business Machines Corporation | Method and structure for improving electromigration of chip interconnects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI245806B (en) | Thin film aluminum alloy and sputtering target to form the same | |
US6451135B1 (en) | High-purity copper sputtering targets and thin films | |
JP3096699B2 (en) | Aluminum alloy wiring layer, method for producing the same, and aluminum alloy sputtering target | |
US20010035238A1 (en) | Physical vapor deposition target | |
JP4237742B2 (en) | Manufacturing method of sputtering target | |
WO2004046415A1 (en) | Copper alloy sputtering target and semiconductor element wiring | |
JP3296708B2 (en) | Multilayer Al alloy structure for metal conductor | |
JPS62240739A (en) | B-, c-, and n-containing aluminum alloy for semiconductor wiring material | |
JPS62240738A (en) | N-and c-containing aluminum alloy for semiconductor wiring material | |
JPS62235451A (en) | Al alloy for semiconductor wiring material | |
JP2582776B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS62240736A (en) | B-and c-containing aluminum alloy for semiconductor wiring material | |
JPH0316132A (en) | Aluminum wiring and manufacture thereof | |
JP4237743B2 (en) | Method for producing ingot for sputtering target | |
JPS62235454A (en) | N-containing al alloy for semiconductor wiring material | |
JPS62235452A (en) | B-containing al alloy for semiconductor wiring material | |
JPS62240735A (en) | N-containing aluminum alloy for semiconductor wiring material | |
JPS62240737A (en) | B-and n-containing aluminum alloy for semiconductor wiring material | |
JPS62240733A (en) | B-containing aluminum alloy for semiconductor wiring material | |
JPS62240734A (en) | C-containing aluminum alloy for semiconductor wiring material | |
JP2004193553A (en) | Copper alloy sputtering target for forming semiconductor device interconnect line seed layer and seed layer formed using that target | |
JPS62234346A (en) | Al alloy containing b, c and n for semiconductor wiring material | |
JPS62234343A (en) | Al alloy containing b and c for semiconductor wiring material | |
JPS62235453A (en) | C-containing al alloy for semiconductor wiring material | |
JPS62234345A (en) | Al alloy containing n and c for semiconductor wiring material |