JPH04323872A - Material for semiconductor device - Google Patents

Material for semiconductor device

Info

Publication number
JPH04323872A
JPH04323872A JP9225191A JP9225191A JPH04323872A JP H04323872 A JPH04323872 A JP H04323872A JP 9225191 A JP9225191 A JP 9225191A JP 9225191 A JP9225191 A JP 9225191A JP H04323872 A JPH04323872 A JP H04323872A
Authority
JP
Japan
Prior art keywords
resistance
wiring
alloy
increase
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9225191A
Other languages
Japanese (ja)
Other versions
JP3061654B2 (en
Inventor
Takashi Onishi
隆 大西
Masatake Yamamoto
山本 正剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3092251A priority Critical patent/JP3061654B2/en
Publication of JPH04323872A publication Critical patent/JPH04323872A/en
Priority to US08/273,961 priority patent/US5500301A/en
Priority to US08/888,784 priority patent/US5976641A/en
Priority to US09/385,889 priority patent/US6206985B1/en
Application granted granted Critical
Publication of JP3061654B2 publication Critical patent/JP3061654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To cope with an increase in an address wiring of a thin film transistor(TFT) by forming of an Al-based alloy containing a specific amount of one or more types of Mn, Cr, Zr as alloy components. CONSTITUTION:A material for a semiconductor device is formed of an Al-based alloy containing total amount of 0.05-1.0 atomic % of one or more types of Mn, Cr, Zr as alloy components. The material formed of the Al-based alloy can be formed by a sputtering method, and as a sputtering gate of the case, it is desirable to use an Al-based alloy manufactured by a melting and casting method or a powder baking method. This melted Al alloy target is homogeneous in composition, and uniform in its sputtering rate and its emitting angle. Thus, the material can cope with narrowing of a wiring width upon high integration of the device, or an increase in a wiring length of a TFT upon increase in a screen and size of a liquid crystal display.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置材料に関し
、詳細には、半導体装置における薄膜状のAl系配線又
は電極材料であり、特には液晶ディスプレイ等に使用さ
れる薄膜トランジスター:Thin Film Tra
nsister(以降 TFTという)に用いて好適な
半導体装置材料に関する。
[Industrial Application Field] The present invention relates to semiconductor device materials, and more particularly to thin film Al-based wiring or electrode materials for semiconductor devices, particularly thin film transistors used in liquid crystal displays and the like.
The present invention relates to a semiconductor device material suitable for use in nsister (hereinafter referred to as TFT).

【0002】0002

【従来の技術】一般の半導体装置(即ちSiウェハー上
に素子を形成する半導体装置)の集積回路の電極・配線
材料としては、薄膜状のAl系金属材料が使用され、こ
れらには大別して純Alと、Si、Cu又はMgを含有
するAl基合金とがある。
[Prior Art] Thin film Al-based metal materials are used as electrodes and wiring materials for integrated circuits in general semiconductor devices (that is, semiconductor devices in which elements are formed on a Si wafer). There are Al and Al-based alloys containing Si, Cu, or Mg.

【0003】純Alは、電気抵抗が小さく且つ密着性が
良好であるという点では最も優れているが、融点が低く
、耐熱性に劣り、ストレスマイグレーション(以降SM
という)やエレクトロマイグレーション(以降EMとい
う)が生じるという問題点がある。ここで、SMとは応
力に起因する薄膜状配線のふくれ(ヒロック)及び断線
(通電不良)であって主に加熱により発生する。EMと
は電気泳動に起因する薄膜状配線の断線であって主に通
電により発生する。
Pure Al is the best in terms of low electrical resistance and good adhesion, but it has a low melting point, poor heat resistance, and stress migration (hereinafter referred to as SM).
There are problems such as electromigration (hereinafter referred to as EM) and electromigration (hereinafter referred to as EM). Here, SM refers to bulges (hillocks) and disconnections (defective conduction) of thin film wiring caused by stress, and is mainly caused by heating. EM is a disconnection of thin film wiring caused by electrophoresis, and is mainly caused by energization.

【0004】Si、Cu又はMgを含有するAl基合金
は、上記問題点を改善すべく開発されたものであるが、
比抵抗の増大を抑えるという観点から合金元素添加量は
2at%以下にして使用されており、耐SM性及び耐E
M性が未だ充分でない。又、耐食性は純Alよりも優れ
るが、長期信頼性の点でまだまだ不充分である。従って
、より信頼性の高い新規半導体装置材料の開発が要望さ
れている。
[0004]Al-based alloys containing Si, Cu or Mg were developed to improve the above problems, but
From the perspective of suppressing the increase in specific resistance, the amount of alloying elements added is 2 at% or less, which improves SM resistance and E resistance.
M property is still not sufficient. Also, although its corrosion resistance is superior to pure Al, it is still insufficient in terms of long-term reliability. Therefore, there is a demand for the development of new semiconductor device materials with higher reliability.

【0005】尚、更に合金化することが考えられるが、
金属は一般的に合金化により抵抗値が増大する傾向にあ
り、一方では近年の半導体装置の高集積化に伴う配線の
微細化(配線巾狭化)により、電気抵抗値の許容上限値
が低くなってきているので、単純に合金化するだけでは
該上限値を超えてしまい、従って新規半導体装置材料の
開発は容易でない現状にある。
[0005]Although further alloying may be considered,
The resistance value of metals generally tends to increase due to alloying, but on the other hand, due to the miniaturization of interconnects (narrower interconnect widths) associated with the high integration of semiconductor devices in recent years, the allowable upper limit of electrical resistance value has become lower. Therefore, simply alloying exceeds the upper limit, and it is therefore not easy to develop new semiconductor device materials.

【0006】TFT の電極・配線材料としては、前記
一般の半導体装置の場合と異なり、TFT製造プロセス
中に比較的高温( 400℃程度もしくはそれ以下の温
度)に加熱されるため、Al系金属材料ではSMを生じ
て耐熱性に欠けるので、Ti、Cr、Mo、Ta等の高
融点金属材料が多用されている。しかし、これらは電気
抵抗値が大きいという問題点を有しており、その改善が
望まれている。
[0006] Unlike the general semiconductor devices mentioned above, the electrode and wiring materials for TFTs are heated to a relatively high temperature (about 400°C or lower) during the TFT manufacturing process, so Al-based metal materials are used. However, metal materials with high melting points such as Ti, Cr, Mo, and Ta are often used because they produce SM and lack heat resistance. However, these have the problem of high electrical resistance, and an improvement is desired.

【0007】更には、近年液晶ディスプレイは大画面化
・大型化して、各TFT 素子を結ぶ配線(アドレス配
線)も増長化する傾向にあり、それに伴って抵抗及び容
量が増大してアドレスパルスの遅延を引き起こし易くて
、上記高融点金属材料は使用し難くなり、従って、配線
抵抗の小さい新規耐熱性金属材料の開発が望まれている
Furthermore, in recent years, liquid crystal displays have become larger and have larger screens, and the wiring (address wiring) connecting each TFT element has also tended to increase in length.As a result, resistance and capacitance increase, resulting in a delay in the address pulse. This makes it difficult to use the above-mentioned high-melting-point metal materials.Therefore, it is desired to develop a new heat-resistant metal material with low wiring resistance.

【0008】かかるTFT 用配線として必要な電気抵
抗は略30μΩcm以下であり、更に用途拡大のために
は従来のAl基合金と同水準(10μΩcm以下)であ
ることが望まれる。これを充たす金属種としてAu、C
u、Alがあるが、Auは高価なため採用困難であり、
Cuは密着性及び耐酸性の点で問題があり、Alは低融
点金属であって耐熱性に欠けSMにより層間(線間)シ
ョートを生じる恐れがあり、いづれも実用し得ない。
The electrical resistance required for such TFT wiring is approximately 30 μΩcm or less, and in order to further expand its use, it is desired that it be at the same level as conventional Al-based alloys (10 μΩcm or less). Metal species that meet this requirement include Au and C.
There is u, Al, but it is difficult to use Au because it is expensive.
Cu has problems in terms of adhesion and acid resistance, and Al is a low melting point metal and lacks heat resistance and may cause interlayer (line) short circuits due to SM, so neither of them can be put to practical use.

【0009】そこで、多層配線(複合配線)や、イオン
注入による配線表面部の合金化(表面合金化配線)等が
提案されている。この多層配線は下層を低抵抗材料、上
層を高耐熱材料とし、下層(低抵抗)及び上層(耐SM
性)の複合機能を発揮させるものである。表面合金化配
線は低抵抗材料に異種元素をイオン注入して表面部に耐
熱性合金層を設けたものであって、上記と同様の機能を
発揮させるものである。
[0009] Therefore, multilayer wiring (composite wiring), alloying of the wiring surface portion by ion implantation (surface alloyed wiring), etc. have been proposed. In this multilayer wiring, the lower layer is made of a low resistance material and the upper layer is made of a high heat resistant material.
It is designed to demonstrate the multiple functions of The surface alloyed wiring is made by ion-implanting a different element into a low-resistance material to provide a heat-resistant alloy layer on the surface, and exhibits the same function as described above.

【0010】しかし、多層配線では、その製造に際し成
膜を2回行う必要があり、又、下層上層の組合わせによ
っては配線パターン形成のためのエッチングを別工程で
行う必要があるので、プロセス増加及び生産性低下を招
き、表面合金化配線では、イオン注入という複雑なプロ
セスを要し、又、表面合金層の制御が難しいので、プロ
セス増加及び生産歩留低下を招くという難点がある。従
って、かかる問題点を有さず、配線抵抗が小さく且つ耐
熱性に優れたTFT 用新規金属材料の開発が望まれて
いる現状にある。
However, in manufacturing multilayer wiring, it is necessary to perform film formation twice, and depending on the combination of lower and upper layers, etching for forming the wiring pattern must be performed in a separate process, which increases the number of processes. Surface alloyed wiring requires a complicated process of ion implantation, and it is difficult to control the surface alloy layer, resulting in an increase in processes and a decrease in production yield. Therefore, there is a current demand for the development of a new metal material for TFTs that does not have such problems, has low wiring resistance, and has excellent heat resistance.

【0011】[0011]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は従来のも
のがもつ以上のような問題点を解消し、耐熱性(耐SM
性等)、耐EM性及び耐食性に優れると共に電気抵抗が
10μΩcm以下と低くて、一般半導体装置用及びTF
T 用として生産性低下等を招くことなく好適に使用し
得、しかも近年の半導体装置の高集積化に伴う配線巾狭
化や、液晶ディスプレイの大画面化・大型化に伴うTF
Tのアドレス配線増長化に対応し得る半導体装置材料(
電極・配線材料)を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to solve the above-mentioned problems of the conventional products, and to improve heat resistance (SM resistance).
It has excellent EM resistance and corrosion resistance, and has a low electrical resistance of 10 μΩcm or less, making it suitable for general semiconductor devices and TF.
It can be suitably used for T without causing a decrease in productivity, and it can also be used as a TF due to the narrowing of wiring width due to the high integration of semiconductor devices in recent years and the increase in the screen size and size of liquid crystal displays.
Semiconductor device material (
The aim is to provide electrode/wiring materials).

【0012】0012

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は次のような構成の半導体装置材料として
いる。即ち、本発明に係る半導体装置材料は、合金成分
としてMn、Cr、Zrの中の1種又は2種以上を総量
で0.05〜1.0 at%含有するAl基合金よりな
ることを特徴とする半導体装置材料である。
Means for Solving the Problems In order to achieve the above object, the present invention provides a semiconductor device material having the following configuration. That is, the semiconductor device material according to the present invention is characterized by being made of an Al-based alloy containing one or more of Mn, Cr, and Zr as alloy components in a total amount of 0.05 to 1.0 at%. It is a material for semiconductor devices.

【0013】[0013]

【作用】本発明は、種々の組成のAl基合金よりなるタ
ーゲットを製作し、スパッタリング法により半導体装置
配線用のAl基合金薄膜を形成し、それらAl基合金薄
膜の組成、耐熱性(耐SM性等)、耐EM性、耐食性及
び電気抵抗を調べ、その結果得られた下記知見に基づく
ものである。
[Operation] The present invention manufactures targets made of Al-based alloys with various compositions, forms Al-based alloy thin films for semiconductor device wiring by sputtering, and adjusts the composition, heat resistance (SM resistance) of these Al-based alloy thin films. This is based on the following knowledge obtained as a result of investigation of EM resistance, corrosion resistance, and electrical resistance.

【0014】即ち、合金成分としてMn、Cr、Zrの
1種又は2種以上(以降、Mn等という)を含有するA
l基合金薄膜は、最も耐熱性(耐SM性等)に優れ、極
めて少量の合金成分添加によりその有効性を発揮し、又
、耐EM性及び耐食性に優れると共に電気抵抗が低いと
いう知見が得られた。詳細には、耐熱性及び耐EM性は
、従来のAl基合金に比して優れ、Ti、Cr、Mo、
Ta等の高融点金属材料と同水準もしくはそれ以上にし
得、又、耐食性は従来のAl基合金よりも向上し得、更
に電気抵抗は10μΩcm以下にし得ることを見出した
That is, A containing one or more of Mn, Cr, and Zr (hereinafter referred to as Mn, etc.) as an alloy component.
It has been found that l-based alloy thin films have the best heat resistance (SM resistance, etc.) and are effective with the addition of very small amounts of alloy components, and also have excellent EM resistance and corrosion resistance, as well as low electrical resistance. It was done. In detail, heat resistance and EM resistance are superior to conventional Al-based alloys, and Ti, Cr, Mo,
It has been found that it can be made to the same level as or higher than high melting point metal materials such as Ta, corrosion resistance can be improved compared to conventional Al-based alloys, and electrical resistance can be made to be 10 μΩcm or less.

【0015】このとき、Mn等の含有量は総量で0.0
5at%以上にすることが必要であり、0.05at%
未満では耐熱性及び耐食性が不充分になって良くない。 この含有量の増加に伴って耐熱性が向上するが、1.0
 at%を超えると、電気抵抗が10μΩcmよりも大
きくなって本発明に係る電気抵抗の目標値を満足しない
。従って、Mn等(Mn、Cr、Zrの1種又は2種以
上)の含有量は0.05〜1.0 at%にすることが
必要である。
[0015] At this time, the total content of Mn etc. is 0.0
It is necessary to make it 5 at% or more, and 0.05 at%
If it is less than that, the heat resistance and corrosion resistance will be insufficient, which is not good. Heat resistance improves as this content increases, but 1.0
If it exceeds at%, the electrical resistance becomes larger than 10 μΩcm and does not satisfy the target value of electrical resistance according to the present invention. Therefore, the content of Mn and the like (one or more of Mn, Cr, and Zr) needs to be 0.05 to 1.0 at%.

【0016】上記Al基合金薄膜は、従来のAl系金属
合金薄膜と同様の方法により生産し得るので、複合配線
やイオン注入による表面合金化配線の如き生産性低下等
を招くものではない。
Since the Al-based alloy thin film described above can be produced by the same method as conventional Al-based metal alloy thin films, it does not cause a decrease in productivity as in composite wiring or surface alloyed wiring by ion implantation.

【0017】そこで、本発明に係る半導体装置材料は、
前述の如く、合金成分としてMn、Cr、Zrの中の1
種又は2種以上を総量で0.05〜1.0 at%含有
するAl基合金よりなるようにしており、従って、前記
知見よりして、耐熱性(耐SM性等)、耐EM性及び耐
食性に優れると共に電気抵抗が10μΩcm以下と低く
て、一般半導体装置用及びTFT 用として生産性低下
等を招くことなく好適に使用し得、しかも近年の半導体
装置の高集積化に伴う配線巾狭化や、液晶ディスプレイ
の大画面化・大型化に伴うTFT のアドレス配線増長
化に対応し得るものになり得る。
Therefore, the semiconductor device material according to the present invention is
As mentioned above, one of Mn, Cr, and Zr is used as an alloy component.
It is made of an Al-based alloy containing a total of 0.05 to 1.0 at% of two or more species, and therefore, based on the above knowledge, it has excellent heat resistance (SM resistance, etc.), EM resistance, and It has excellent corrosion resistance and has a low electrical resistance of 10 μΩcm or less, so it can be used suitably for general semiconductor devices and TFTs without causing a decrease in productivity, and moreover, it can be used for wiring widths that have become narrower due to the recent increase in the degree of integration of semiconductor devices. In addition, it may be possible to cope with the increase in the number of TFT address wirings accompanying the increase in screen size and size of liquid crystal displays.

【0018】上記本発明に係るAl基合金よりなる半導
体装置材料はスパッタリング法により形成し得、その際
のスパッタリングターゲットとしては溶解・鋳造法又は
粉末焼結法で製作したAl基合金(以降、溶製Al合金
ターゲットという)を使用することが望ましい。かかる
溶製Al合金ターゲットは組成的に均一であり、又、ス
パッタ率及び出射角度が均一であるので、Al基合金膜
(即ち配線・電極材料)が得られ、従って、より信頼性
に優れた半導体装置を製作し得るようになる。中でも、
溶解・鋳造法で製作したターゲットは酸素含有量を10
0ppm以下にし得、そのため膜形成速度を一定に保持
し易くなると共に、Al基合金膜の酸素量を低くし得、
従って、Al基合金膜の電気抵抗の低下及び耐食性の向
上がより図り易くなる。
The semiconductor device material made of the Al-based alloy according to the present invention can be formed by a sputtering method, and the sputtering target used in this case is an Al-based alloy (hereinafter, an Al-based alloy manufactured by a melting/casting method or a powder sintering method). It is preferable to use an aluminum alloy target. Since such a melted Al alloy target is uniform in composition, and has a uniform sputtering rate and emission angle, an Al-based alloy film (i.e., wiring/electrode material) can be obtained, and therefore, it can be used with higher reliability. It becomes possible to manufacture semiconductor devices. Among them,
The target manufactured by the melting/casting method has an oxygen content of 10
0 ppm or less, which makes it easier to maintain a constant film formation rate and lowers the amount of oxygen in the Al-based alloy film.
Therefore, it becomes easier to reduce the electrical resistance and improve the corrosion resistance of the Al-based alloy film.

【0019】[0019]

【実施例】【Example】

(実施例1)DCマグネトロンスパッタリング法により
、ソーダライムガラス基板上に厚さ:5000ÅのTa
2O5 膜を形成した後、Mn、Cr、Zrの含有量が
種々異なる溶製Al合金ターゲットを用いて上記と同様
法により上記Ta2O5 膜の上に厚さ:3000Åの
Al合金膜を形成した。該Al合金膜をホトリソグラフ
ィー及びウェットエッチングにより10μm 巾のスト
ライプパターン状に加工し、試料とした。 又、比較例として上記Mn、Cr、Zrに代えてTi膜
を形成したものを上記と同様に加工し、試料とした。
(Example 1) Ta was deposited on a soda lime glass substrate to a thickness of 5000 Å by DC magnetron sputtering.
After forming the 2O5 film, an Al alloy film with a thickness of 3000 Å was formed on the Ta2O5 film by the same method as above using melted Al alloy targets having various contents of Mn, Cr, and Zr. The Al alloy film was processed into a 10 μm wide stripe pattern by photolithography and wet etching, and used as a sample. Further, as a comparative example, a sample in which a Ti film was formed in place of the Mn, Cr, and Zr was processed in the same manner as above and used as a sample.

【0020】上記試料について、400 ℃で1時間保
持する真空熱処理をした後、ストライプパターン表面に
発生するヒロック数を測定し、ヒロック密度を求めた。 その結果を図1に示す。Ti、Mn、Cr、Zrの添加
によりヒロック密度が減少するが、その減少の程度はT
iの場合よりもMn、Cr、Zr添加の場合に著しいこ
とが判る。又、Mn、Cr、Zrの添加はTi添加の場
合に比して少量の添加でヒロック密度が大幅に減少して
耐SM性が向上することが判る。Mn、Cr、Zr添加
効果は独立しており、ヒロック密度減少に対して加成性
が成立し、従って、かかる効果はTi、Taを同時に添
加した場合でも成り立つ。
The above sample was subjected to vacuum heat treatment at 400° C. for 1 hour, and then the number of hillocks generated on the surface of the stripe pattern was measured to determine the hillock density. The results are shown in Figure 1. Hillock density decreases with the addition of Ti, Mn, Cr, and Zr, but the degree of decrease is dependent on T.
It can be seen that this is more remarkable in the case of addition of Mn, Cr, and Zr than in the case of i. Furthermore, it can be seen that the addition of Mn, Cr, and Zr significantly reduces the hillock density and improves the SM resistance even when added in small amounts compared to the case of adding Ti. The effects of adding Mn, Cr, and Zr are independent, and additivity holds for the decrease in hillock density. Therefore, this effect holds even when Ti and Ta are added simultaneously.

【0021】(実施例2)実施例1の場合と同様のター
ゲットを用いて同様のスパッタリング法により、ソーダ
ライムガラス基板上に厚さ:2000ÅのAl合金膜を
形成した後、同様の方法により該膜を巾:100μm,
 長さ:10mm のストライプ試料に加工した。次に
、該試料について4探針法により比抵抗を測定した。そ
の結果を図2に示す。Mn、Cr、Zr量の増大に伴っ
て比抵抗が増大する。比抵抗は可能な限り低いことが望
ましく、比抵抗の上限は半導体装置の適用品種によって
異なるが、液晶ディスプレイ用TFTの電極・配線材料
としては、従来のAl基合金と同水準(略10μΩcm
)と考えられ、この値を確保するにはMn、Cr、Zr
量は1at%以下にすればよいことが判る。上記10μ
Ωcmは、従来のTi等の高融点金属材料の比抵抗(5
0μΩcm以上)に比して小さく、その約 1/5に相
当し、従って、本発明の半導体装置材料によれば液晶デ
ィスプレイの大画面化・大型化に伴うTFT のアドレ
ス配線増長化に充分に対応し得、好適に使用し得ること
が明白である。
(Example 2) After forming an Al alloy film with a thickness of 2000 Å on a soda lime glass substrate by the same sputtering method using the same target as in Example 1, the aluminum alloy film was formed by the same method. Membrane width: 100μm,
A striped sample with a length of 10 mm was processed. Next, the specific resistance of the sample was measured by the four-probe method. The results are shown in FIG. The specific resistance increases as the amounts of Mn, Cr, and Zr increase. It is desirable that the specific resistance is as low as possible, and the upper limit of the specific resistance varies depending on the type of semiconductor device to which it is applied, but as an electrode/wiring material for TFTs for liquid crystal displays, it is at the same level as conventional Al-based alloys (approximately 10 μΩcm).
), and in order to secure this value, Mn, Cr, Zr
It can be seen that the amount should be 1 at% or less. Above 10μ
Ωcm is the specific resistance (5
0 μΩcm or more), and corresponds to about 1/5 of that. Therefore, the semiconductor device material of the present invention can sufficiently cope with the increase in the number of TFT address wirings accompanying the increase in screen size and size of liquid crystal displays. It is clear that it can be used with advantage.

【0022】[0022]

【発明の効果】本発明に係る半導体装置材料は、前述の
如き構成を有し作用をなすものであって、耐熱性(耐S
M性等)、耐EM性及び耐食性に優れると共に電気抵抗
が低くて10μΩcm以下であり、一般の半導体装置用
及びTFT 用として生産性低下等を招くことなく好適
に使用し得、しかも近年の半導体装置の高集積化に伴う
配線巾狭化や、液晶ディスプレイの大画面化・大型化に
伴うTFT のアドレス配線増長化に充分に対応し得る
ようになるという効果を奏するものである。
Effects of the Invention The semiconductor device material according to the present invention has the structure and function as described above, and has excellent heat resistance (S resistance).
It has excellent EM resistance and corrosion resistance, and has a low electrical resistance of 10 μΩcm or less, so it can be suitably used for general semiconductor devices and TFTs without causing a decrease in productivity. This has the effect of being able to sufficiently cope with the narrowing of wiring widths accompanying higher integration of devices and the increase in the number of TFT address wirings accompanying larger screens and larger liquid crystal displays.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1に係るAl合金膜についての各元素(
Mn、Cr、Zr又はTi)の含有率とヒロック密度と
の関係を示す図である。
FIG. 1: Each element (
FIG. 3 is a diagram showing the relationship between the content (Mn, Cr, Zr, or Ti) and hillock density.

【図2】実施例2に係るAl合金薄膜についての各元素
(Mn、Cr、Zr)の含有率と比抵抗との関係を示す
図である。
FIG. 2 is a diagram showing the relationship between the content of each element (Mn, Cr, Zr) and specific resistance for the Al alloy thin film according to Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  合金成分としてMn、Cr、Zrの中
の1種又は2種以上を総量で0.05〜1.0 at%
含有するAl基合金よりなることを特徴とする半導体装
置材料。
Claim 1: One or more of Mn, Cr, and Zr as alloy components in a total amount of 0.05 to 1.0 at%.
A semiconductor device material comprising an Al-based alloy containing Al.
JP3092251A 1991-03-07 1991-04-23 Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display Expired - Lifetime JP3061654B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3092251A JP3061654B2 (en) 1991-04-23 1991-04-23 Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display
US08/273,961 US5500301A (en) 1991-03-07 1994-07-12 A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
US08/888,784 US5976641A (en) 1991-03-07 1997-07-07 A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
US09/385,889 US6206985B1 (en) 1991-03-07 1999-08-30 A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092251A JP3061654B2 (en) 1991-04-23 1991-04-23 Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display

Publications (2)

Publication Number Publication Date
JPH04323872A true JPH04323872A (en) 1992-11-13
JP3061654B2 JP3061654B2 (en) 2000-07-10

Family

ID=14049209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092251A Expired - Lifetime JP3061654B2 (en) 1991-03-07 1991-04-23 Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display

Country Status (1)

Country Link
JP (1) JP3061654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156775A (en) * 2000-11-21 2002-05-31 Fujitsu Ltd Color toner for flash fixing
USRE41975E1 (en) 1995-10-12 2010-11-30 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
USRE45481E1 (en) 1995-10-12 2015-04-21 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
JP2017157842A (en) * 2013-09-30 2017-09-07 日本軽金属株式会社 Semiconductor element, sputtering target material, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203369A (en) * 1986-03-03 1987-09-08 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62235451A (en) * 1986-04-03 1987-10-15 Nippon Mining Co Ltd Al alloy for semiconductor wiring material
JPS62235452A (en) * 1986-04-03 1987-10-15 Nippon Mining Co Ltd B-containing al alloy for semiconductor wiring material
JPS62240739A (en) * 1986-04-11 1987-10-21 Nippon Mining Co Ltd B-, c-, and n-containing aluminum alloy for semiconductor wiring material
JPH01134426A (en) * 1987-11-20 1989-05-26 Hitachi Ltd Thin film transistor for driving liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203369A (en) * 1986-03-03 1987-09-08 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62235451A (en) * 1986-04-03 1987-10-15 Nippon Mining Co Ltd Al alloy for semiconductor wiring material
JPS62235452A (en) * 1986-04-03 1987-10-15 Nippon Mining Co Ltd B-containing al alloy for semiconductor wiring material
JPS62240739A (en) * 1986-04-11 1987-10-21 Nippon Mining Co Ltd B-, c-, and n-containing aluminum alloy for semiconductor wiring material
JPH01134426A (en) * 1987-11-20 1989-05-26 Hitachi Ltd Thin film transistor for driving liquid crystal display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41975E1 (en) 1995-10-12 2010-11-30 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
USRE45481E1 (en) 1995-10-12 2015-04-21 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
JP2002156775A (en) * 2000-11-21 2002-05-31 Fujitsu Ltd Color toner for flash fixing
JP2017157842A (en) * 2013-09-30 2017-09-07 日本軽金属株式会社 Semiconductor element, sputtering target material, and semiconductor device

Also Published As

Publication number Publication date
JP3061654B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP2733006B2 (en) Electrode for semiconductor, method for manufacturing the same, and sputtering target for forming electrode film for semiconductor
JP3365954B2 (en) Al-Ni-Y alloy thin film for semiconductor electrode and sputtering target for forming Al-Ni-Y alloy thin film for semiconductor electrode
JP5044509B2 (en) Method for manufacturing Al wiring film
TWI232240B (en) Aluminum alloy thin film
US20060091792A1 (en) Copper alloy thin films, copper alloy sputtering targets and flat panel displays
US20050153162A1 (en) Ag-base interconnecting film for flat panel display, Ag-base sputtering target and flat panel display
US20080253925A1 (en) Target material for electrode film, methods of manufacturing the target material and electrode film
JPH0235475B2 (en)
JP3438945B2 (en) Al alloy thin film
JP2000294556A (en) Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation
JP3859119B2 (en) Thin film wiring for electronic parts
JPH04323872A (en) Material for semiconductor device
JP3619192B2 (en) Aluminum alloy thin film, target material, and thin film forming method using the same
JP3276446B2 (en) Al alloy thin film, method for producing the same, and sputtering target for forming an aluminum alloy thin film
JP4188299B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JPH04323871A (en) Material for semiconductor device
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2866228B2 (en) Method of manufacturing semiconductor device for liquid crystal display
JP2001053024A (en) Al alloy electrode film and sputtering target
JP3684354B2 (en) Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film
JP4213699B2 (en) Manufacturing method of liquid crystal display device
JPH10270446A (en) Method of forming multilayer wiring layer and metal wiring layer
JP2001125123A (en) Electrode, wiring material and sputtering target for liquid crystal display
JPH04333566A (en) Formation of thin film
JP2006196521A (en) Multilayer wiring film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

EXPY Cancellation because of completion of term