JP4188299B2 - Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display - Google Patents

Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display Download PDF

Info

Publication number
JP4188299B2
JP4188299B2 JP2004293187A JP2004293187A JP4188299B2 JP 4188299 B2 JP4188299 B2 JP 4188299B2 JP 2004293187 A JP2004293187 A JP 2004293187A JP 2004293187 A JP2004293187 A JP 2004293187A JP 4188299 B2 JP4188299 B2 JP 4188299B2
Authority
JP
Japan
Prior art keywords
electrode film
based alloy
wiring electrode
film
fpd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004293187A
Other languages
Japanese (ja)
Other versions
JP2005187937A (en
Inventor
勝寿 高木
淳一 中井
勝文 富久
裕基 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004293187A priority Critical patent/JP4188299B2/en
Priority to TW093136920A priority patent/TWI248978B/en
Priority to CNB2004101000202A priority patent/CN100334239C/en
Priority to US10/999,027 priority patent/US20050153162A1/en
Priority to SG200407008A priority patent/SG112937A1/en
Priority to KR1020040101098A priority patent/KR100638977B1/en
Publication of JP2005187937A publication Critical patent/JP2005187937A/en
Application granted granted Critical
Publication of JP4188299B2 publication Critical patent/JP4188299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、フラットパネルディスプレイ(FPD:Flat Panel Display)の配線膜または電極膜、それをスパッタリング法によって形成するためのスパッタリングターゲット並びにその配線膜または電極膜を備えるFPDに関する。   The present invention relates to a wiring film or an electrode film of a flat panel display (FPD), a sputtering target for forming the wiring film or an electrode film by a sputtering method, and an FPD including the wiring film or the electrode film.

液晶ディスプレイ(LCD:Liquid Crystal Display、具体例としてはアモルファスSi TFT LCDやポリSi TFT LCD)、フィールドエミッションディスプレイ(FED:Field Emission Display)、エレクトロルミネッセンスディスプレイ(ELD:Electro Luminescence Display、具体例としては有機ELDや無機ELD)、プラズマディスプレイパネル(PDP:Plasma Display Panel)等の平面表示装置はフラットパネルディスプレイ(FPD:Flat Panel Display)と呼ばれている。このFPDの表示画素の駆動形式として、アクティブ型(薄膜トランジスタ駆動型)とパッシブ型との二種類が知られている。   Liquid crystal display (LCD: Liquid Crystal Display, specific examples are amorphous Si TFT LCD and poly-Si TFT LCD), field emission display (FED), electroluminescence display (ELD: Electro Luminescence Display, specific example is organic) Flat display devices such as ELD and inorganic ELD) and plasma display panels (PDPs) are called flat panel displays (FPDs). There are two known driving types of display pixels of the FPD, an active type (thin film transistor driving type) and a passive type.

前記アクティブ型のFPDは、図2に示すように、反射電極膜あるいは透明電極膜1を備えた多数の表示画素を有する。図2に示すように、各々の表示画素はこれを駆動させるための薄膜トランジスタ(TFT:Thin Film Transistor)2を備えている。このTFT2はゲート、ソースおよびドレインと呼ばれる電極膜を有している。一方、前記TFT2に電流を供給するための2種の配線膜3,5が各表示画素の周りに縦横に配置されており、一方の配線膜(ここではアドレス配線膜と呼ぶ。)3はゲート電極膜4を介してTFT2に接続され、他方の配線膜(ここではデータ配線膜とよぶ。)5はソース電極膜6を介してTFT2に接続され、TFT2からドレイン電極膜7を介して反射電極膜あるいは透明電極膜1に接続される。前記配線膜(アドレス配線膜及びデータ配線膜)3,5並びに前記電極膜(ゲート電極膜、ソース電極膜、ドレイン電極膜)4,6,7は、前記反射電極膜あるいは透明電極膜1とは要求される特性が異なり、本発明ではこれらをまとめて配線電極膜と呼ぶ。
他方、前記パッシブ型のFPDは、アクティブ型のFPDにあるTFTは存在せず、図3に示すように、上下一対のガラス等の透明基板21,22の表面に格子状に対向して配置された多数の透明電極からなる走査電極23,データ電極24が形成され、その間に液晶が充填された構造を備え、これらの電極に電圧を印加することによって画素を表示させる。前記走査電極やデータ電極の電極は、電極膜あるいは配線膜とも呼ばれ、アクティブ型のFPDの電極膜や配線膜と同様、本発明ではこれらをまとめて配線電極膜と呼ぶ。以下、アクティブ型あるいはパッシブ型のFPDを特に区別しない場合、両タイプのFPDを含めて単に「FPD」という。
The active FPD has a large number of display pixels provided with a reflective electrode film or transparent electrode film 1 as shown in FIG. As shown in FIG. 2, each display pixel includes a thin film transistor (TFT) 2 for driving the display pixel. The TFT 2 has electrode films called a gate, a source, and a drain. On the other hand, two types of wiring films 3 and 5 for supplying a current to the TFT 2 are arranged vertically and horizontally around each display pixel, and one wiring film (herein referred to as an address wiring film) 3 is a gate. The other wiring film (referred to as a data wiring film in this case) 5 is connected to the TFT 2 through the source electrode 6 through the electrode film 4, and the reflective electrode from the TFT 2 through the drain electrode film 7. Connected to the film or transparent electrode film 1. The wiring films (address wiring film and data wiring film) 3, 5 and the electrode films (gate electrode film, source electrode film, drain electrode film) 4, 6, 7 are different from the reflective electrode film or the transparent electrode film 1. The required characteristics are different, and in the present invention, these are collectively referred to as a wiring electrode film.
On the other hand, the TFT of the passive type FPD does not exist in the active type FPD, and as shown in FIG. Further, a scanning electrode 23 and a data electrode 24 made of a large number of transparent electrodes are formed, and a structure in which liquid crystal is filled therebetween is provided. A pixel is displayed by applying a voltage to these electrodes. The electrodes of the scanning electrode and the data electrode are also referred to as an electrode film or a wiring film. Like the electrode film or the wiring film of the active FPD, these are collectively referred to as a wiring electrode film in the present invention. Hereinafter, when the active type or passive type FPD is not particularly distinguished, both types of FPDs are simply referred to as “FPD”.

従来、前記配線電極膜は、電気伝導性と耐熱性に優れ、しかもウエットエッチングによる微細加工性に優れたAl系合金によって形成されていた。しかし、近年、FPDの大画面化、高精細化、多様化に応じて、配線電極膜にはさらなる低電気抵抗率、高耐熱性、高微細加工性が要求されている。以下、これらの要求特性について説明する。   Conventionally, the wiring electrode film has been formed of an Al-based alloy that is excellent in electrical conductivity and heat resistance and excellent in fine workability by wet etching. However, in recent years, as the FPD has a larger screen, higher definition, and diversification, the wiring electrode film is required to have further lower electrical resistivity, higher heat resistance, and higher fine workability. Hereinafter, these required characteristics will be described.

まず、低電気抵抗率について説明する。大型テレビを例とするFPDの大画面化に伴って、配線電極膜の線長が長くなる傾向にある。また、高画質型テレビを例とするFPDの高精細化に伴って、配線電極膜の線幅が狭くなる傾向にある。線長が長くなる、あるいは線幅が狭くなると、配線電極部分の電気抵抗が増加し、電気信号遅延の問題が生じる。電気信号遅延を抑制するには、電気抵抗率の低い配線電極膜材料を使用することか好ましい。低電気抵抗率の要求仕様をこれまでのものより低い値、例えば3.0μΩcm以下(300℃加熱処理後に得られる値)に設定すると、従来から使用されているAl系材料は対応不可能であり、3.0μΩcm以下に対応可能なAg系材料が注目されている。   First, the low electrical resistivity will be described. With the increase in the screen size of FPDs such as large televisions, the line length of the wiring electrode film tends to increase. In addition, the line width of the wiring electrode film tends to become narrower as the FPD with higher definition such as a high-quality television is taken as an example. When the line length becomes long or the line width becomes narrow, the electric resistance of the wiring electrode portion increases, which causes a problem of electric signal delay. In order to suppress the electrical signal delay, it is preferable to use a wiring electrode film material having a low electrical resistivity. If the required specification of low electrical resistivity is set to a lower value than the conventional one, for example, 3.0μΩcm or less (value obtained after heat treatment at 300 ° C), Al-based materials that have been used in the past cannot be handled. Therefore, attention has been focused on Ag-based materials that can handle 3.0 μΩcm or less.

次に高耐熱性について説明する。従来のアモルファスSi TFT LCDに加え、近年、低温ポリSi TFT LCDやFED等の新型FPDが登場し、FPDの多様化が進んでいる。これらの新型FPDではそれぞれ特有の製造工程において、配線電極膜は高温の加熱を受ける。例えば、低温ポリSi TFT LCDでは、ポリSiの活性化処理時に真空下で450〜500℃の加熱を一回受け、またFEDでは、ガラス封着時に大気下で450〜500℃の加熱を三回受ける。このような高温加熱に対する高耐熱性は従来のアモルファスSi TFT LCDでは要求されず、新型FPDの登場によって生じた新たな課題である。450〜500℃加熱に対する高耐熱性の要求仕様に対して、従来から使用されているAl系材料は対応困難であり、対応可能なAg系材料が注目される。   Next, high heat resistance will be described. In addition to conventional amorphous Si TFT LCDs, new FPDs such as low-temperature poly Si TFT LCDs and FEDs have recently appeared and the diversification of FPDs is progressing. In these new FPDs, the wiring electrode film is heated at a high temperature in a specific manufacturing process. For example, low-temperature poly-Si TFT LCD receives 450-500 ° C. heating once under vacuum at the time of poly-Si activation, and FED heats 450-500 ° C. three times under air at the time of glass sealing. receive. Such high heat resistance against high temperature heating is not required in the conventional amorphous Si TFT LCD, and is a new problem caused by the appearance of a new FPD. Conventionally used Al-based materials are difficult to meet the high heat resistance required specifications for heating at 450 to 500 ° C., and applicable Ag-based materials are attracting attention.

さらに高微細加工性について説明する。FPDの高精細化に伴って配線電極膜の線幅が狭くなる傾向にある。FPDの配線電極膜は、通常、ウェットエッチングによって所定の形状に微細加工されたものであるが、線幅が狭くなると形状制御が困難となるため、微細加工性に優れた配線電極膜材料を使用することが好ましい。低電気抵抗率と高耐熱性の観点から注目されるAg系材料は、一般的にウェットエッチング速度が速く、配線電極膜の両側面のエッチング量(サイドエッチング量)が大きいため、形状制御が難しく、配線電極膜の線幅が10μm 以下となるFPDに適用するには微細加工性の改善が必要である。なお、線幅が狭くなることによる微細加工の困難さは、加工サイズの大きい反射電極膜や反射膜では問題にはならず、専ら加工サイズの小さい配線電極膜で問題となる。   Further, high fine workability will be described. The line width of the wiring electrode film tends to become narrower as the FPD becomes higher in definition. The wiring electrode film of FPD is usually finely processed into a predetermined shape by wet etching, but it becomes difficult to control the shape when the line width is narrowed. Therefore, a wiring electrode film material excellent in fine workability is used. It is preferable to do. Ag-based materials attracting attention from the viewpoints of low electrical resistivity and high heat resistance generally have a high wet etching rate and a large etching amount (side etching amount) on both side surfaces of the wiring electrode film, making it difficult to control the shape. In order to apply to an FPD in which the line width of the wiring electrode film is 10 μm or less, it is necessary to improve the fine workability. Note that the difficulty of microfabrication due to the narrowing of the line width is not a problem with a reflective electrode film or a reflective film having a large processing size, but is a problem only with a wiring electrode film having a small processing size.

上記低電気抵抗率、高耐熱性に対する要求に対して、配線電極膜用のAg系材料が種々提案されている。例えば、特開2001−102325号公報(特許文献1)にはAg−(0〜25)wt%Ru−(0〜25)wt%Cu合金が、特開2001−192752号公報(特許文献2)にはAg−(0.1〜3)wt%Pd−(0.1〜3)wt%(Al,Au,Pt,Cu,Ta,Cr,Ti,Ni,Co,Si)合金が、特開2002−140929号公報(特許文献3)にはAg−(0.1〜10)wt%Au−(0.1〜5)wt%(Cu,Al,Ti,Pd,Ni,V,Ta,W,Mo,Cr,Ru,Mg)合金が、特開2003−113433号公報(特許文献4)にはAg−(0.1〜2)at%(Sc,Y,Sm,Eu,Tb,Dy,Er,Yb)−(0.1〜3)at%(Cu,Au)合金が記載されている。なお、配線電極膜に比して加工サイズの大きい反射電極膜や反射膜用として、特開2002−323611号公報(特許文献5)にはAg−(0.1〜3.0)at%希土類金属(Nd,Y)−(0.1〜2.0)at%Cu−(0.1〜1.5)at%Au合金が記載されている。   Various Ag-based materials for wiring electrode films have been proposed in response to the demands for low electrical resistivity and high heat resistance. For example, in Japanese Patent Laid-Open No. 2001-102325 (Patent Document 1), an Ag- (0-25) wt% Ru- (0-25) wt% Cu alloy is disclosed in Japanese Patent Laid-Open No. 2001-192752 (Patent Document 2). For example, an alloy of Ag- (0.1-3) wt% Pd- (0.1-3) wt% (Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si) is disclosed in JP, 2002-140929 (Patent Document 3) discloses Ag- (0.1-10) wt% Au- (0.1-5) wt% (Cu, Al, Ti, Pd, Ni, V, Ta, W). , Mo, Cr, Ru, Mg) are disclosed in Japanese Patent Application Laid-Open No. 2003-113433 (Patent Document 4) as Ag- (0.1-2) at% (Sc, Y, Sm, Eu, Tb, Dy, An Er, Yb)-(0.1-3) at% (Cu, Au) alloy is described. Incidentally, as a reflective electrode film or a reflective film having a larger processing size than the wiring electrode film, Japanese Patent Laid-Open No. 2002-323611 (Patent Document 5) discloses Ag- (0.1-3.0) at% rare earth. A metal (Nd, Y)-(0.1-2.0) at% Cu- (0.1-1.5) at% Au alloy is described.

特開2001−102325号公報JP 2001-102325 A 特開2001−192752号公報JP 2001-192752 A 特開2002−140929号公報JP 2002-140929 A 特開2003−113433号公報JP 2003-113433 A 特開2002−323611号公報JP 2002-323611 A

上記特許文献1〜4にかかるFPDのAg系合金配線電極膜は、大別すると貴金属元素(Ru,Pd,Au)を添加したAg基合金配線電極膜と、希土類金属元素(Sc,Y,Sm,Eu,Tb,Dy,Er,Yb)を添加したAg基合金配線電極膜の二種類であり、これらの配線電極膜は主成分をAgとすることによる低電気抵抗率の実現と、貴金属元素や希土類金属元素の添加による耐熱性の向上を図ったものである。なお、加熱処理時のマイグレーションの抑制と熱処理に対する安定性とは技術的意義が同じであり、耐熱性の向上とは加熱によって引き起こされるAgの凝集による表面粗さの増加が抑制されることである。   The FPD Ag-based alloy wiring electrode films according to Patent Documents 1 to 4 are roughly classified into an Ag-based alloy wiring electrode film to which a noble metal element (Ru, Pd, Au) is added, and a rare earth metal element (Sc, Y, Sm). , Eu, Tb, Dy, Er, Yb) to which two types of Ag-based alloy wiring electrode films are added. These wiring electrode films have a low electrical resistivity and a noble metal element by using Ag as a main component. And heat resistance is improved by adding rare earth metal elements. It should be noted that the suppression of migration during heat treatment and the stability to heat treatment have the same technical significance, and the improvement in heat resistance is that an increase in surface roughness due to aggregation of Ag caused by heating is suppressed. .

しかしながら、従来のAg−(Ru,Pd,Au)合金、Ag−(Sc,Y,Sm,Eu,Tb,Dy,Er,Yb)合金は、低電気抵抗率、高耐熱性はある程度満足するものの、特に高微細加工性については満足するには至っていない。なお、特許文献5には、加熱によるAgの結晶粒成長や凝集をNd添加によって抑制することを企図としたAg−Nd合金が言及されているが、この合金の用途はFPD用反射電極膜や反射膜であり、配線電極膜とは線幅等のサイズ、要求特性が異なるものであり、本発明とは用途、対象が別異である。   However, the conventional Ag- (Ru, Pd, Au) alloy and the Ag- (Sc, Y, Sm, Eu, Tb, Dy, Er, Yb) alloy satisfy a certain degree of low electrical resistivity and high heat resistance. In particular, the high fine workability is not satisfactory. Patent Document 5 mentions an Ag—Nd alloy intended to suppress Ag crystal grain growth and aggregation due to heating by addition of Nd. The reflective film is different from the wiring electrode film in size and required characteristics such as line width, and is different in use and object from the present invention.

本発明は、かかる問題に鑑みなされたもので、低電気抵抗率、高耐熱性及び高微細加工性を兼備したFPD用Ag基合金配線電極膜及びこのAg基合金配線電極膜を形成するために用いられるFPD用Ag基合金スパッタリングターゲット、並びにこのAg基合金配線電極膜を備えるFPDを提供する。   The present invention has been made in view of such problems, and in order to form an Ag-based alloy wiring electrode film for FPD having low electrical resistivity, high heat resistance, and high fine workability, and this Ag-based alloy wiring electrode film. An Ag-based alloy sputtering target for FPD to be used and an FPD provided with this Ag-based alloy wiring electrode film are provided.

本発明者はFPDの配線電極膜に必要とされる低電気抵抗率、高耐熱性及び高微細加工性を兼備したAg合金について種々の合金元素をAgに添加して調べたところ、特定量範囲のNdの添加が非常に有効であることを知見し、これを基に本発明を完成した。   The present inventor has investigated the addition of various alloy elements to Ag for Ag alloys having low electrical resistivity, high heat resistance and high fine workability required for the wiring electrode film of FPD. It was found that the addition of Nd was very effective, and the present invention was completed based on this.

すなわち、本発明のFPD用Ag基合金配線電極膜は、Ndを0.1〜1.5at%、Biを0.01〜1.5at%含有し、残部Agおよび不純物からなるAg基合金で形成されたものである。 That is, the Ag-based alloy wiring electrode film for FPD of the present invention is formed of an Ag-based alloy containing 0.1 to 1.5 at% Nd and 0.01 to 1.5 at% Bi, and the balance Ag and impurities. It has been done .

また、本発明のFPD用Ag基合金配線電極膜を形成するためのスパッタリングターゲットは、前記Ag基合金により形成されたものであり、本発明のFPDは配線電極膜が前記Ag基合金により形成されたものを備えるものである。   Moreover, the sputtering target for forming the Ag-based alloy wiring electrode film for FPD of the present invention is formed of the Ag-based alloy. In the FPD of the present invention, the wiring electrode film is formed of the Ag-based alloy. It is equipped with things.

本発明のFPD用Ag基合金配線電極膜によれば、低電気抵抗率、高耐熱性、高微細加工性を有するため、アクティブ型あるいはパッシブ型のFPDいずれについても、FPDの性能と信頼性を格段に高めることができる。また、本発明のAg基合金スパッタリングターゲットは、前記Ag基合金配線電極膜の形成に好適に使用され、これを用いて形成されたAg基合金配線電極膜は合金組成と合金元素分布と膜厚の膜面内均一性に優れ、配線電極膜としての優れた特性を発現し、高性能かつ高信頼性のあるFPDが生産可能となる。そして、本発明のFPDは、前記Ag基合金配線電極膜を備えているため、優れた性能と信頼性を備える。   Since the Ag-based alloy wiring electrode film for FPD of the present invention has low electrical resistivity, high heat resistance, and high fine workability, the performance and reliability of FPD can be achieved for both active type and passive type FPDs. It can be significantly improved. The Ag-based alloy sputtering target of the present invention is preferably used for forming the Ag-based alloy wiring electrode film, and the Ag-based alloy wiring electrode film formed using the Ag-based alloy wiring electrode film has an alloy composition, alloy element distribution, and film thickness. Therefore, it is possible to produce a high-performance and highly-reliable FPD that exhibits excellent in-plane uniformity and exhibits excellent characteristics as a wiring electrode film. And since the FPD of this invention is equipped with the said Ag base alloy wiring electrode film, it is equipped with the outstanding performance and reliability.

本発明の実施形態にかかるAg基合金配線電極膜は、Ndを0.1〜1.5at%、Biを0.01〜1.5at%含有し、残部Agおよび不純物からなるAg基合金で形成されたものである。以下、これらの成分の作用、限定理由について説明する。 An Ag-based alloy wiring electrode film according to an embodiment of the present invention is formed of an Ag-based alloy containing 0.1 to 1.5 at% Nd, 0.01 to 1.5 at% Bi, and the balance Ag and impurities. It has been done . Hereinafter, the effect | action of these components and the reason for limitation are demonstrated.

NdをAgに添加することによって、ウェットエッチング速度が低下し、サイドエッチング量が低減することから、微細加工性を改善する作用を有する。そして、真空下および大気下の高温加熱を受けてもAgの凝集による表面粗さの増加が抑制され、耐熱性を向上させる効果を有する。さらに、微細加工性改善効果と耐熱性向上効果が同時に得られつつも、低電気抵抗率を示す。これらのNd添加効果によってAg−Nd合金はFPD用配線電極膜に要求される低電気抵抗率、高耐熱性、高微細加工性を全て満足させることができる。したがって、このAg基合金により配線電極膜を形成することによって、FPDの性能と信頼性を格段に高めることが可能となる。   By adding Nd to Ag, the wet etching rate is reduced and the amount of side etching is reduced, so that the fine workability is improved. And even if it receives high-temperature heating under a vacuum and air | atmosphere, the increase in the surface roughness by aggregation of Ag is suppressed and it has the effect of improving heat resistance. Furthermore, the low electrical resistivity is exhibited while the effect of improving the fine workability and the effect of improving the heat resistance are obtained at the same time. Due to these Nd addition effects, the Ag—Nd alloy can satisfy all of the low electrical resistivity, high heat resistance, and high fine workability required for the wiring electrode film for FPD. Therefore, the performance and reliability of the FPD can be remarkably improved by forming the wiring electrode film from this Ag-based alloy.

もっとも、Nd含有量が0.1at%未満では、微細加工性改善(ウェットエッチング速度の低下、サイドエッチング量の低減)効果と耐熱性向上(Agの凝集による表面粗さの増加の抑制)効果が過小である。また、1.5at%を超過すると、Al系合金の限界電気抵抗率である3.0μΩcm(300℃加熱処理後に得られる値。以下、特に測定条件を指示しない限り、電気抵抗率は前記加熱処理後の値である。)より低い電気抵抗率が得られないようになる。このため、Nd含有量の下限を0.1at%、好ましくは0.2at%とし、その上限を1.5at%、好ましくは1.0at%とする。より好ましいNd含有量の範囲は、0.3〜0.7at%である。   However, when the Nd content is less than 0.1 at%, the effect of improving the fine workability (decreasing the wet etching rate, reducing the side etching amount) and improving the heat resistance (suppressing the increase in surface roughness due to Ag aggregation) are obtained. It is too small. Further, if it exceeds 1.5 at%, the limit electrical resistivity of the Al-based alloy is 3.0 μΩcm (value obtained after heat treatment at 300 ° C. Hereinafter, unless otherwise specified, the electrical resistivity is determined by the above heat treatment. It is a later value.) Lower electrical resistivity cannot be obtained. Therefore, the lower limit of the Nd content is 0.1 at%, preferably 0.2 at%, and the upper limit is 1.5 at%, preferably 1.0 at%. A more preferable range of Nd content is 0.3 to 0.7 at%.

前記Biは、前記Ag−Nd合金に耐食性(化学的安定性)をさらに向上させる作用を有する。また、塩素イオン等のハロゲンイオンを含む環境下において、Agのハロゲン化反応と、反応を起点とするAgの凝集をより一層抑制する効果を備える。 The Bi has the effect of further improving the corrosion resistance (chemical stability) of the Ag—Nd alloy. In addition, it has an effect of further suppressing Ag halogenation reaction and Ag aggregation starting from the reaction in an environment containing halogen ions such as chlorine ions.

もっとも、Bi量が0.01at%未満ではこれらの向上効果が過小であり、一方1.5at%を超過すると3.0μΩcm以下という低電気抵抗率が得られないようになる。このため、Bi量を0.01〜1.5at%、好ましくは0.05〜1.2at%、より好ましくは0.1〜1.0at%とする。 However, if the amount of Bi is less than 0.01 at%, these improvement effects are too small. On the other hand, if it exceeds 1.5 at%, a low electrical resistivity of 3.0 μΩcm or less cannot be obtained. Therefore, the Bi amount is set to 0.01 to 1.5 at%, preferably 0.05 to 1.2 at%, more preferably 0.1 to 1.0 at%.

ここで、Ndなどの添加元素の含有量と電気抵抗率との関係について説明する。後述の実施例と同様にして、DCマグネトロンスパッタリング法によりガラス基板の上に目標膜厚300nmの純Ag膜、Ag−2.2at%Nd合金膜、Ag−2.5at%Y合金膜、Ag−3.1at%Ru合金膜、Ag−3.0at%Pd合金膜、Ag−2.9at%Au合金膜を形成した。   Here, the relationship between the content of additive elements such as Nd and the electrical resistivity will be described. In the same manner as in the examples described later, a pure Ag film having a target film thickness of 300 nm, an Ag-2.2 at% Nd alloy film, an Ag-2.5 at% Y alloy film, and an Ag— film on a glass substrate by DC magnetron sputtering. A 3.1 at% Ru alloy film, an Ag-3.0 at% Pd alloy film, and an Ag-2.9 at% Au alloy film were formed.

得られた評価用薄膜に対し、成瀬科学器械(株)製の回転磁場中熱処理装置を用い、真空下(真空度:0.27×10-3Pa以下)において300℃−0.5hの加熱処理を行い、加熱処理後の電気抵抗率を以下の方法で求めた。日置電機(株)製の3226mΩ Hi TESTERを用いて直流四探針法によりシート抵抗Rsを、そしてTENCOR INSTRUMENTS社製のalpha−step250を用いて膜厚tを測定し、電気抵抗率ρを(シート抵抗Rs×膜厚t)から求めた。 The obtained thin film for evaluation was heated at 300 ° C. to 0.5 h under vacuum (degree of vacuum: 0.27 × 10 −3 Pa or less) using a heat treatment apparatus in a rotating magnetic field manufactured by Naruse Scientific Instruments Co., Ltd. The electrical resistivity after heat processing was calculated | required with the following method. The sheet resistance Rs was measured by a direct current four-probe method using a 3226 mΩ Hi TESTER manufactured by Hioki Electric Co., Ltd., and the film thickness t was measured using an alpha-step 250 manufactured by TENCOR INSTRUMENTS. It was determined from resistance Rs × film thickness t).

図1は上記電気抵抗率の測定結果を基にして作製した、各種Ag合金における電気抵抗率(300℃−0.5h真空下加熱処理後)と合金元素量の関係を示すグラフである。電気抵抗率は合金元素量に対して直線的関係を示すことから、各種Ag合金について、電気抵抗率が3.0μΩcm以下を示す合金元素量の上限は下記の通りであり、本発明にかかるAg−Nd合金は比較的少ない合金添加量(1.5at%以下)で3.0μΩcm以下という低電気抵抗率が達成されることが確認された。
Ag−Nd合金:1.5at%、Ag−Y合金:1.0at%、Ag−Ru合金:1.8at%、Ag−Pd合金:2.0at%、Ag−Au合金:3.0at%
FIG. 1 is a graph showing the relationship between the electrical resistivity (after heat treatment under vacuum of 300 ° C.-0.5 h) and the amount of alloy elements in various Ag alloys prepared based on the measurement results of the electrical resistivity. Since electrical resistivity shows a linear relationship with the amount of alloying elements, the upper limit of the amount of alloying elements with electrical resistivity of 3.0 μΩcm or less is as follows for various Ag alloys. It was confirmed that the -Nd alloy achieves a low electrical resistivity of 3.0 μΩcm or less with a relatively small alloy addition amount (1.5 at% or less).
Ag—Nd alloy: 1.5 at%, Ag—Y alloy: 1.0 at%, Ag—Ru alloy: 1.8 at%, Ag—Pd alloy: 2.0 at%, Ag—Au alloy: 3.0 at%

前記FPD用Ag基合金配線電極膜は、真空蒸着法やイオンプレーティング法やスパッタリング法などによって基板上に形成することができるが、これらの薄膜形成方法の中でもスパッタリング法によって形成されたものが推奨される。スパッタリング法により形成されたAg基合金配線電極膜は、他の薄膜形成方法により形成された薄膜に比較して、合金組成と合金元素分布と膜厚の膜面内均一性に優れており、配線電極膜として優れた特性(低電気抵抗率、高耐熱性、高微細加工性)が良好に引き出され、高性能ならびに高信頼性のFPDの生産が可能となるからである。   The Ag-based alloy wiring electrode film for FPD can be formed on a substrate by a vacuum deposition method, an ion plating method, a sputtering method, etc., but among these thin film formation methods, those formed by a sputtering method are recommended. Is done. The Ag-based alloy wiring electrode film formed by sputtering is superior in in-plane uniformity of the alloy composition, alloy element distribution, and film thickness compared to thin films formed by other thin film forming methods. This is because excellent characteristics (low electrical resistivity, high heat resistance, and high fine workability) can be satisfactorily extracted as an electrode film, and high-performance and highly reliable FPD can be produced.

また、前記FPD用Ag基合金配線電極膜を形成するために用いられるAg基合金スパッタリングターゲットは、溶解・鋳造法や粉末焼結法やスプレイフォーミン法などのいずれの方法でも製造できるが、これらの製造方法の中でも特に真空溶解・鋳造法による製造が推奨される。この方法によって製造されたスパッタリングターゲットは、他の方法により製造されたものに比較して窒素や酸素などの不純物成分の含有量が少なく、このスパッタリングターゲットを用いて形成された配線電極膜において優れた特性(低電気抵抗率、高耐熱性、高微細加工性)が効果的に引き出され、高性能ならびに高信頼性のFPDの生産が可能となるからである。   In addition, the Ag-based alloy sputtering target used to form the Ag-based alloy wiring electrode film for FPD can be manufactured by any method such as a melting / casting method, a powder sintering method, or a spray forming method. Among these production methods, the production by the vacuum melting / casting method is particularly recommended. The sputtering target manufactured by this method has a lower content of impurity components such as nitrogen and oxygen than those manufactured by other methods, and is excellent in wiring electrode films formed using this sputtering target. This is because the characteristics (low electrical resistivity, high heat resistance, high fine workability) are effectively extracted, and high-performance and highly reliable FPD can be produced.

上記FPD用Ag基合金配線電極膜を備えるFPDは、前記Ag基合金配線電極膜により格段に優れた性能と信頼性を実現することができる。なお、本発明のFPDは、本発明のFPD用Ag基合金配線電極膜を備えていればよく、その他の構成は特に限定されず、FPD分野において公知の構成を採用することができる。   An FPD including the above Ag-based alloy wiring electrode film for FPD can achieve remarkably superior performance and reliability by the Ag-based alloy wiring electrode film. The FPD of the present invention only needs to include the FPD Ag-based alloy wiring electrode film of the present invention, and other configurations are not particularly limited, and configurations known in the FPD field can be employed.

以下、実施例により本発明をより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not interpreted limitedly by this Example.

以下の要領により評価用薄膜を作製した。純Agスパッタリングターゲット(サイズφ101.6mm×t5mm)、または純Agスパッタリングターゲット上に合金元素のチップ(サイズ5mm×5mm×t1mm)所定数を配置した複合スパッタリングターゲットと、スパッタリング装置((株)島津製作所製HSR−552)を使用し、DCマグネトロンスパッタリング法(背圧:0.27×10-3Pa以下、Arガス圧:0.27Pa、Arガス流量:30sccm、スパッタパワー:DC200W、極間距離:52mm、基板温度:室温)によって、ガラス基板(コーニング社製♯1737、直径:50.8mm、厚さ:0.7mm)上に表1または表2に示す目標膜厚300nmの純AgあるいはAg基合金の薄膜を形成した。これらの評価用薄膜のうち、純Ag膜(試料No. 1)を除き、その組成はICP(Inductively Coupled Plasma)発光分析法またはICP質量分析法によって調べた値である。上記評価用薄膜を用いて耐熱性、微細加工性を下記の要領にて評価した。 An evaluation thin film was prepared according to the following procedure. Pure Ag sputtering target (size φ101.6 mm × t5 mm), or a composite sputtering target in which a predetermined number of alloy element chips (size 5 mm × 5 mm × t1 mm) are arranged on the pure Ag sputtering target, and a sputtering apparatus (Shimadzu Corporation) HSR-552), DC magnetron sputtering method (back pressure: 0.27 × 10 −3 Pa or less, Ar gas pressure: 0.27 Pa, Ar gas flow rate: 30 sccm, sputtering power: DC 200 W, distance between electrodes: 52 mm, substrate temperature: room temperature) on a glass substrate (Corning # 1737, diameter: 50.8 mm, thickness: 0.7 mm) on a pure Ag or Ag base having a target film thickness of 300 nm shown in Table 1 or Table 2 An alloy thin film was formed. Among these thin films for evaluation, the composition was a value determined by ICP (Inductively Coupled Plasma) emission analysis or ICP mass spectrometry except for a pure Ag film (sample No. 1). The heat resistance and fine workability were evaluated in the following manner using the thin film for evaluation.

耐熱性は加熱処理による表面粗さ(平均粗さRa)の増加量により評価した。表面粗さは、走査型プローブ顕微鏡(Digital Instruments社製Nanoscope IIIa)を用いて、AFM(Atomic Force Microscope)観察モードにより測定した。前記評価用薄膜に対し、加熱処理前、加熱処理後の表面粗さ(平均粗さRa)を測定し、加熱処理による表面粗さの増加量(=(加熱処理後の表面粗さ)−(加熱処理前の表面粗さ))を算出した。加熱処理は、加熱雰囲気を2条件(真空下、大気中)とし、加熱時間0.5hの下で加熱温度を3条件(350、450、500℃)とし、繰り返し回数を3条件(1、2、3回)とする18通りの加熱条件を設定した。耐熱性は、表面粗さの増加量が1.0nm以下のものを優(○)とし、1.0nmを超えるものを劣(×)と判定し、評価結果を表1(真空下加熱処理に対する耐熱性評価結果)、表2(大気中加熱処理に対する耐熱性評価結果)に示す。   The heat resistance was evaluated by the amount of increase in surface roughness (average roughness Ra) by heat treatment. The surface roughness was measured in an AFM (Atomic Force Microscope) observation mode using a scanning probe microscope (Nanoscope IIIa manufactured by Digital Instruments). For the evaluation thin film, the surface roughness (average roughness Ra) before and after heat treatment was measured, and the amount of increase in surface roughness by heat treatment (= (surface roughness after heat treatment) − ( The surface roughness before heat treatment)) was calculated. In the heat treatment, the heating atmosphere is 2 conditions (in a vacuum and in the air), the heating temperature is 3 conditions (350, 450, 500 ° C.) under a heating time of 0.5 h, and the number of repetitions is 3 conditions (1, 2). 18 heating conditions were set (3 times). As for heat resistance, those having an increase in surface roughness of 1.0 nm or less were judged as excellent (◯), those exceeding 1.0 nm were judged as inferior (x), and the evaluation results are shown in Table 1 (for heat treatment under vacuum) Heat resistance evaluation results) and Table 2 (heat resistance evaluation results for heat treatment in air).

Figure 0004188299
Figure 0004188299

Figure 0004188299
Figure 0004188299

表1および表2より、本発明に係るAg基合金のNd量を有する試料No. 3,4,5および6は、Nd添加による耐熱性向上効果より、全条件の加熱処理に対して優れた耐熱性を示している。もっとも、試料No. 6はNd量が3.0at%であるため低電気抵抗率を示さない問題がある。また、Nd量が:0.04at%の試料No. 2はNd量が少ないために、耐熱性向上効果が過小である。本発明に係るAg基合金のNd量およびBi量を有する発明例の試料No. 11は、全ての条件の加熱処理に対して高耐熱性を示している。
これらに対して、低電気抵抗率の要求仕様を満足する他のAg合金である比較例の試料No. 7,8,9,10は、いずれの合金元素の添加によっても耐熱性向上効果が小さく、全条件の加熱処理に対して優れた高耐熱性を示していない。
From Tables 1 and 2, Sample Nos. 3, 4, 5 and 6 having the Nd amount of the Ag-based alloy according to the present invention were superior to the heat treatment under all conditions from the heat resistance improvement effect by adding Nd. It shows heat resistance. However, sample No. 6 has a problem that the Nd content is 3.0 at% and thus does not exhibit low electrical resistivity. Sample No. 2 having an Nd content of 0.04 at% has an insufficient heat resistance improvement effect because of the small amount of Nd. Sample No. 11 of the invention example having the Nd content and Bi content of the Ag-based alloy according to the present invention exhibits high heat resistance against heat treatment under all conditions.
On the other hand, Comparative Sample Nos. 7, 8, 9, and 10 which are other Ag alloys satisfying the required specification of low electrical resistivity have a small effect of improving heat resistance by adding any alloy element. It does not show excellent high heat resistance for heat treatment under all conditions.

また、微細加工性を以下の方法で評価した。フォトレジストとしてクラリアントジャパン(株)製AZP4110と、フォトレジスト現像液としてクラリアントジャパン(株)製AZデベロッパーを用い、フォトリソグラフィー(工程:フォトレジスト塗布→プリべ−キング→露光→フォトレジスト現像→水洗→乾燥)により評価用薄膜上に線幅/線間隔=10μm /10μm のストライプ形状のレジストパターンを形成した。この後、リン酸:硝酸:水=800:3:20の混酸からなるウェットエッチャントを用いたウェットエッチング(工程:ウェットエッチング→水洗→乾燥→フォトレジスト剥離→乾燥)を行った。   Moreover, the fine workability was evaluated by the following method. Using AZP4110 manufactured by Clariant Japan Co., Ltd. as a photoresist and AZ developer manufactured by Clariant Japan Co., Ltd. as a photoresist developer, photolithography (process: photoresist coating → pre-baking → exposure → photoresist development → water washing → By drying), a stripe-shaped resist pattern having a line width / line interval = 10 μm / 10 μm was formed on the evaluation thin film. Thereafter, wet etching using a wet etchant composed of a mixed acid of phosphoric acid: nitric acid: water = 800: 3: 20 (step: wet etching → washing → drying → photoresist peeling → drying) was performed.

ウエットエッチングの際に、薄膜のウェットエッチングが完了するまでの時間を測定し、ウェットエッチング速度(=薄膜の膜厚/薄膜のウェットエッチングが完了するまでの時間)を算出した。また、ウェットエッチング後の薄膜のSEM写真を撮影し、その写真から線幅を測定し、サイドエッチング量(=(線幅10μm −ウェットエッチング後の線幅)/線幅10μm ×l00%)を算出した。これらウェットエッチング速度とサイドエッチング量を基に微細加工性を評価し、ウェットエッチング速度が3nm/s以下(純Alのウェットエッチング速度1.5nm/sに対して2倍以下)と、サイドエッチング量が10%以下(線幅10μm 狙いに対して線幅9〜10μm の形状に加工できたもの)の両条件を満足するものを微細加工性が優(○)、両条件を満足しないものを劣(×)と判定した。測定結果、判定結果を表3に示す。   During the wet etching, the time until the wet etching of the thin film was completed was measured, and the wet etching rate (= thickness of the thin film / time until the wet etching of the thin film was completed) was calculated. Also, an SEM photograph of the thin film after wet etching was taken, the line width was measured from the photograph, and the side etching amount (= (line width 10 μm−line width after wet etching) / line width 10 μm × 100%) was calculated. did. The fine workability is evaluated based on these wet etching rates and side etching amounts, and the wet etching rate is 3 nm / s or less (twice or less than the pure Al wet etching rate of 1.5 nm / s), and the side etching amount. Of 10% or less (line width of 10μm can be processed into a shape with a line width of 9 to 10μm with respect to the target) is excellent in fine workability (○), and inferior in that it does not satisfy both conditions (X) was determined. Table 3 shows the measurement results and the determination results.

Figure 0004188299
Figure 0004188299

表3より、試料No. 3、4,5および6はNd添加による微細加工性改善効果より、優れた微細加工性を示す。もっとも、試料No. 6はNd量が過多であり、電気抵抗率が高くなる。また、試料No. 2は、Nd量が0.04at%と過少であるため、微細加工性の改善効果が少ない。発明例の試料No. 11は、高微細加工性を示している。
これらに対して、低電気抵抗率の要求仕様を満足する比較例の試料No. 7,8,9,10は、微細加工性改善効果が比較的良好なもの(試料No. 7)でさえも優れた微細加工性を示していない。
From Table 3 , Sample Nos. 3, 4, 5 and 6 show superior fine workability than the effect of improving fine workability by adding Nd. However, sample No. 6 has an excessive amount of Nd, and the electrical resistivity is high. Sample No. 2 has a small Nd content of 0.04 at%, so that the effect of improving the fine workability is small. Sample No. 11 of the inventive example shows high fine workability.
On the other hand, comparative sample Nos. 7, 8, 9, and 10 that satisfy the required specification of low electrical resistivity are comparatively good in micromachining improvement effect (sample No. 7). It does not show excellent fine workability.

各種Ag合金における電気抵抗率と合金元素量との関係を示すグラフである。It is a graph which shows the relationship between the electrical resistivity in various Ag alloys, and the amount of alloy elements. アクティブ型のFPDの表示画素の構造を示す平面説明図である。It is a plane explanatory view showing the structure of a display pixel of an active type FPD. パッシブ型のFPDの表示画素の構造を示す斜視説明図である。It is a perspective explanatory view showing the structure of a display pixel of a passive FPD.

Claims (3)

フラットパネルディスプレイの配線電極膜であって、
前記配線電極膜はNdを0.1〜1.5at%、Biを0.01〜1.5at%含有し、残部Agおよび不純物からなるAg基合金で形成されたフラットパネルディスプレイ用Ag基合金配線電極膜。
A wiring electrode film for a flat panel display,
The wiring electrode film contains 0.1 to 1.5 at% of Nd and 0.01 to 1.5 at% of Bi, and is formed of an Ag-based alloy composed of the remaining Ag and impurities. Electrode film.
フラットパネルディスプレイ用Ag基合金配線電極膜を形成するためのスパッタリングターゲットであって、A sputtering target for forming an Ag-based alloy wiring electrode film for a flat panel display,
請求項1に記載したAg基合金からなるAg基合金スパッタリングターゲット。  An Ag-based alloy sputtering target comprising the Ag-based alloy according to claim 1.
配線電極膜を備えるフラットパネルディスプレイであって、前記配線電極膜が請求項1に記載したAg基合金配線電極膜からなるフラットパネルディスプレイ。A flat panel display comprising a wiring electrode film, wherein the wiring electrode film comprises the Ag-based alloy wiring electrode film according to claim 1.
JP2004293187A 2003-12-04 2004-10-06 Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display Expired - Fee Related JP4188299B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004293187A JP4188299B2 (en) 2003-12-04 2004-10-06 Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
TW093136920A TWI248978B (en) 2003-12-04 2004-11-30 Ag-based interconnecting film for flat panel display, Ag-base sputtering target and flat panel display
CNB2004101000202A CN100334239C (en) 2003-12-04 2004-11-30 Ag-base alloy distribution electrode film, Ag-base alloy sputtering target for panel display
US10/999,027 US20050153162A1 (en) 2003-12-04 2004-11-30 Ag-base interconnecting film for flat panel display, Ag-base sputtering target and flat panel display
SG200407008A SG112937A1 (en) 2003-12-04 2004-12-02 Ag-base interconnecting film for flat panel display, ag-base sputtering target and flat panel display
KR1020040101098A KR100638977B1 (en) 2003-12-04 2004-12-03 Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003405476 2003-12-04
JP2004293187A JP4188299B2 (en) 2003-12-04 2004-10-06 Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display

Publications (2)

Publication Number Publication Date
JP2005187937A JP2005187937A (en) 2005-07-14
JP4188299B2 true JP4188299B2 (en) 2008-11-26

Family

ID=34797575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293187A Expired - Fee Related JP4188299B2 (en) 2003-12-04 2004-10-06 Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display

Country Status (1)

Country Link
JP (1) JP4188299B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132412A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132416A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy excellent in reflectance/transmittance maintaining characteristics
JP2010225572A (en) * 2008-11-10 2010-10-07 Kobe Steel Ltd Reflective anode and wiring film for organic el display device
JP2010225586A (en) * 2008-11-10 2010-10-07 Kobe Steel Ltd Reflective anode and wiring film for organic el display device
JP2013177667A (en) * 2012-02-02 2013-09-09 Kobe Steel Ltd Ag ALLOY FILM USED FOR REFLECTIVE FILM AND/OR PENETRATION FILM, OR ELECTRICAL WIRING AND/OR ELECTRODE, AND AG ALLOY SPUTTERING TARGET AND AG ALLOY FILLER
WO2014080933A1 (en) * 2012-11-21 2014-05-30 株式会社コベルコ科研 Electrode used in display device or input device, and sputtering target for use in electrode formation

Also Published As

Publication number Publication date
JP2005187937A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
KR100638977B1 (en) Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY
TWI618818B (en) Etching solution composition for silver-containing layer and manufacturing method of an array substrate for display device using the same
KR101674680B1 (en) Manufacturing method of an array substrate for liquid crystal display
TWI432589B (en) Aluminum alloy film for display device
JP2016167581A5 (en)
WO2010053135A1 (en) Al alloy film for display device, display device and sputtering target
KR102546803B1 (en) Etching solution composition for silver-containing layer and an display substrate using the same
JP2004140319A (en) Thin film wiring
JP4022891B2 (en) Al alloy film for wiring film and sputtering target material for forming wiring film
JP4655281B2 (en) Thin film wiring layer
JP4188299B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
TWI247812B (en) Aluminum alloy film for wiring and sputter target material for forming the film
TWI675939B (en) Etching solution composition for silver-containing film and manufacturing method for an array substrate for display device using the same
JP5547574B2 (en) Al-based alloy sputtering target
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2011017944A (en) Aluminum alloy film for display device, display device, and aluminum alloy sputtering target
JP4009165B2 (en) Al alloy thin film for flat panel display and sputtering target for forming Al alloy thin film
CN110359050B (en) Silver-containing thin film etching solution composition, array substrate for display device manufactured by using same, and manufacturing method thereof
JP2010165865A (en) Al-ALLOY FILM FOR DISPLAY DEVICE, DISPLAY DEVICE, AND Al-ALLOY SPUTTERING TARGET
JP6574714B2 (en) Wiring structure and sputtering target
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
KR20230118059A (en) Etching solution composition for silver-containing layer and manufacturing method for an array substrate for display device using the same
KR20200054871A (en) Etchant composition for silver thin layer and etching method and method for fabrication metal pattern using the same
JP2009282504A (en) Display device
KR20190076496A (en) Etching solution composition for silver-containing layer and manufacturing method for an array substrate for display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Ref document number: 4188299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees