JP6574714B2 - Wiring structure and sputtering target - Google Patents

Wiring structure and sputtering target Download PDF

Info

Publication number
JP6574714B2
JP6574714B2 JP2016011521A JP2016011521A JP6574714B2 JP 6574714 B2 JP6574714 B2 JP 6574714B2 JP 2016011521 A JP2016011521 A JP 2016011521A JP 2016011521 A JP2016011521 A JP 2016011521A JP 6574714 B2 JP6574714 B2 JP 6574714B2
Authority
JP
Japan
Prior art keywords
wiring structure
atomic
thin film
film
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016011521A
Other languages
Japanese (ja)
Other versions
JP2017135149A (en
Inventor
博行 奥野
博行 奥野
中井 淳一
淳一 中井
慎太郎 ▲吉▼田
慎太郎 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2016011521A priority Critical patent/JP6574714B2/en
Priority to PCT/JP2016/081280 priority patent/WO2017130484A1/en
Priority to KR1020187021159A priority patent/KR102107158B1/en
Priority to CN201680079797.6A priority patent/CN108496241A/en
Priority to TW105135479A priority patent/TWI641050B/en
Publication of JP2017135149A publication Critical patent/JP2017135149A/en
Application granted granted Critical
Publication of JP6574714B2 publication Critical patent/JP6574714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Description

本発明は、配線構造及び前記配線構造におけるAl合金薄膜を成膜するためのスパッタリングターゲットに関し、特に塩化物イオン耐性に優れた配線構造に関する。また、本発明は、前記配線構造を有する表示装置、入力装置、及びタッチパネルにも関する。   The present invention relates to a wiring structure and a sputtering target for forming an Al alloy thin film in the wiring structure, and more particularly to a wiring structure excellent in chloride ion resistance. The present invention also relates to a display device, an input device, and a touch panel having the wiring structure.

液晶ディスプレイ、有機ELディスプレイ、タッチパネルなどの表示装置や入力装置等の電極材料に用いられる配線膜には、電気抵抗率が低く、微細加工が容易であるという特長を利用してAl薄膜やAlを母材としたAl合金薄膜を利用した配線構造が使用されている。   For wiring films used for electrode materials for display devices and input devices such as liquid crystal displays, organic EL displays, touch panels, etc., Al thin films and Al are used by taking advantage of their low electrical resistivity and easy microfabrication. A wiring structure using an Al alloy thin film as a base material is used.

例えば特許文献1にはTa、Ti、Nd、Gd、Fe、Co、Niよりなる群から選択される1種以上を含有すると共に、Arを1〜6.5原子%含有するAl基合金よりなることを特徴とする耐ヒロック性に優れた半導体装置用電極又は配線材料が開示されている。
また特許文献2には0.28〜23原子%の範囲のY、Sc、La、Ce、Nd、Sm、Gd、Tb、Dy、Er、Th、Sr、Ti、Zr、Hf、V、Nb、Ta、Mn、Re、Co、Ir、Pt、Cu、SiおよびBから選ばれる少なくとも1種の第1の元素と、前記第1の元素量に対して、1.8原子ppm〜3000原子ppmの範囲のC、10原子ppm〜1500原子ppmの範囲のO、19原子ppm〜3000原子ppmの範囲のN、および50原子ppm〜3.9原子%の範囲のHから選ばれる少なくとも1種の第2の元素とを含み、残部が実質的にAlからなることを特徴とする配線膜が開示されている。
特許文献3には、基板上に配線膜または反射膜に用いられるAl合金膜を有し、前記Al合金膜は、Taおよび/またはTi:0.01〜0.5原子%と、希土類元素:0.05〜2.0原子%と、を含有することを特徴とするAl合金膜が開示されている。
For example, Patent Document 1 includes an Al-based alloy containing one or more selected from the group consisting of Ta, Ti, Nd, Gd, Fe, Co, and Ni and containing 1 to 6.5 atomic percent of Ar. A semiconductor device electrode or wiring material having excellent hillock resistance, which is characterized by the above, is disclosed.
Patent Document 2 discloses Y, Sc, La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Th, Sr, Ti, Zr, Hf, V, Nb, in the range of 0.28 to 23 atomic%. At least one first element selected from Ta, Mn, Re, Co, Ir, Pt, Cu, Si, and B, and 1.8 atomic ppm to 3000 atomic ppm with respect to the first element amount. At least one second selected from the range C, O in the range 10 atom ppm to 1500 atom ppm, N in the range 19 atom ppm to 3000 atom ppm, and H in the range 50 atom ppm to 3.9 atom%. A wiring film including two elements and the balance being substantially made of Al is disclosed.
In Patent Document 3, an Al alloy film used as a wiring film or a reflective film is provided on a substrate, and the Al alloy film includes Ta and / or Ti: 0.01 to 0.5 atomic%, rare earth element: An Al alloy film characterized by containing 0.05 to 2.0 atomic% is disclosed.

特許第2917820号公報Japanese Patent No. 2917820 特許第4130418号公報Japanese Patent No. 4130418 特許第5032687号公報Japanese Patent No. 5032687

Al合金膜は塩化物イオンによって腐食が進行しやすい。しかしながら特許文献1及び2においては耐ヒロック性や比抵抗、エッチング性等に優れたAl合金膜を得ることを目的としており、耐食性、特に塩化物イオン耐性に関する検討は一切されていない。
また、特許文献3には塩水耐性に優れたAl−Ta−希土類合金やAl−Ti−希土類合金について示されているものの、ITOや層間絶縁膜が積層された場合を前提としたピンホールやクラックの発生を主として想定している。
The Al alloy film is easily corroded by chloride ions. However, Patent Documents 1 and 2 aim to obtain an Al alloy film excellent in hillock resistance, specific resistance, etching property, and the like, and no investigation is made on corrosion resistance, particularly chloride ion resistance.
Patent Document 3 discloses Al-Ta-rare earth alloys and Al-Ti-rare earth alloys having excellent saltwater resistance, but pinholes and cracks on the assumption that ITO or an interlayer insulating film is laminated. Is mainly assumed to occur.

そこで本発明は、表示装置や入力装置の製造工程や使用環境における塩化物イオンによる金属配線の腐食が抑制される新規配線材料である配線構造を提供することを目的とする。   Therefore, an object of the present invention is to provide a wiring structure which is a new wiring material in which corrosion of metal wiring due to chloride ions in the manufacturing process and use environment of a display device and an input device is suppressed.

本発明者らは、鋭意研究を重ねた結果、Al−Ta合金薄膜と、前記Al−Ta合金薄膜上に形成されたAl−Ta酸化膜の組成等を特定のものとすることにより、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have identified the above-mentioned problem by specifying the composition of the Al—Ta alloy thin film and the Al—Ta oxide film formed on the Al—Ta alloy thin film. As a result, the present invention has been completed.

すなわち、本発明は、以下の[1]〜[8]に係るものである。
[1] Al−Ta合金薄膜の表面及び側面の少なくともいずれか一方の面にAl−Ta酸化膜が形成された配線構造であって、
前記Al−Ta合金薄膜のTa添加量が0.3〜3.0原子%かつCu含有量が0.03原子%以下であり、
前記Al−Ta酸化膜の膜厚が3〜10nmであり、かつ、
前記Al−Ta酸化膜中のTaの原子%濃度がAl−Ta合金薄膜中のTaの原子%濃度より低いことを特徴とする配線構造。
[2] 前記Al−Ta合金薄膜が希土類元素を0.05〜3.0原子%含有することを特徴とする前記[1]に記載の配線構造。
[3] 前記Al−Ta酸化膜の表面に、カルボキシル基及びアミノ基の少なくとも一方の官能基を有する有機化合物が1分子層以上存在することを特徴とする前記[1]又は[2]に記載の配線構造。
[4] 前記有機化合物がアミノ酸であることを特徴とする前記[3]に記載の配線構造。
[5] 配線構造の下地層として、Mo、Mo合金、Ti、Ti合金及びInからなる群より選ばれる少なくとも1種を含有する透明導電膜を、少なくとも1層有する前記[1]〜[4]のいずれか1に記載の配線構造。
[6] 前記[1]〜[5]のいずれか1に記載の配線構造を有する表示装置又は入力装置。
[7] 前記[1]〜[5]のいずれか1に記載の配線構造を有するタッチパネル。
[8] 前記[1]〜[5]のいずれか1に記載の配線構造におけるAl−Ta合金薄膜を成膜するためのスパッタリングターゲット。
That is, the present invention relates to the following [1] to [8].
[1] A wiring structure in which an Al—Ta oxide film is formed on at least one of the surface and the side surface of an Al—Ta alloy thin film,
The Ta addition amount of the Al-Ta alloy thin film is 0.3 to 3.0 atomic% and the Cu content is 0.03 atomic% or less,
The Al—Ta oxide film has a thickness of 3 to 10 nm, and
A wiring structure, wherein an atomic percent concentration of Ta in the Al-Ta oxide film is lower than an atomic percent concentration of Ta in the Al-Ta alloy thin film.
[2] The wiring structure according to [1], wherein the Al—Ta alloy thin film contains 0.05 to 3.0 atomic% of a rare earth element.
[3] The above [1] or [2], wherein an organic compound having at least one functional group of a carboxyl group and an amino group is present on the surface of the Al—Ta oxide film. Wiring structure.
[4] The wiring structure according to [3], wherein the organic compound is an amino acid.
[5] The above [1] to [4] having at least one transparent conductive film containing at least one selected from the group consisting of Mo, Mo alloy, Ti, Ti alloy and In as an underlayer of the wiring structure The wiring structure according to any one of the above.
[6] A display device or input device having the wiring structure according to any one of [1] to [5].
[7] A touch panel having the wiring structure according to any one of [1] to [5].
[8] A sputtering target for forming an Al—Ta alloy thin film in the wiring structure according to any one of [1] to [5].

本発明によれば、塩化物イオンによるAl合金薄膜の腐食が抑制された、高い塩化物イオン耐性を有する配線構造を実現することができる。   According to the present invention, it is possible to realize a wiring structure having high chloride ion resistance in which corrosion of the Al alloy thin film by chloride ions is suppressed.

<配線構造>
本発明に係る配線構造は、Al−Ta合金薄膜の表面及び側面の少なくともいずれか一方の面にAl−Ta酸化膜が形成され、前記Al−Ta合金薄膜のTa添加量が0.3〜3.0原子%かつCu含有量が0.03原子%以下であり、前記Al−Ta酸化膜の膜厚が3〜10nmであり、かつ、前記Al−Ta酸化膜中のTaの原子%濃度がAl−Ta合金薄膜中のTaの原子%濃度より低いことを特徴とする。
<Wiring structure>
In the wiring structure according to the present invention, an Al-Ta oxide film is formed on at least one of the surface and the side surface of the Al-Ta alloy thin film, and the amount of Ta added to the Al-Ta alloy thin film is 0.3-3. 0.0 atomic%, Cu content is 0.03 atomic% or less, the film thickness of the Al—Ta oxide film is 3 to 10 nm, and the atomic% concentration of Ta in the Al—Ta oxide film is It is characterized by being lower than the atomic% concentration of Ta in the Al—Ta alloy thin film.

TaはAlの表面酸化被膜の安定化に寄与することで塩化物イオン耐性を高めることができる。そのため、Al−Ta合金薄膜におけるTa添加量を0.3原子%以上とする。Ta添加量は0.5原子%以上が好ましく、0.8原子%以上がより好ましい。
また、該Al−Ta合金薄膜はスパッタリングにより成膜されることが一般的であるが、該スパッタリングに用いられるスパッタリングターゲットの製造性の観点から3.0原子%以下が好ましく、2.0原子%以下がより好ましい。
Ta contributes to the stabilization of the surface oxide film of Al, thereby increasing the resistance to chloride ions. Therefore, the Ta addition amount in the Al—Ta alloy thin film is set to 0.3 atomic% or more. The amount of Ta added is preferably 0.5 atomic percent or more, and more preferably 0.8 atomic percent or more.
The Al—Ta alloy thin film is generally formed by sputtering, but is preferably 3.0 atomic percent or less from the viewpoint of manufacturability of the sputtering target used for the sputtering, and is 2.0 atomic percent. The following is more preferable.

Al−Ta合金薄膜にはさらにCuが0.03原子%以下含まれる。CuはAlのエレクトロマイグレーション耐性を向上する元素として機能することが知られているが、一方で塩化物イオン耐性を低下させる。Cu含有量はTa添加量の1/100(原子%)以下では塩化物イオン耐性に影響しないことから、Al−Ta合金薄膜におけるCu含有量は0.03原子%以下とし、0.01原子%以下がより好ましい。一方、Cu含有量の下限は0.001原子%以上が好ましい。   The Al—Ta alloy thin film further contains 0.03 atomic% or less of Cu. Cu is known to function as an element that improves the electromigration resistance of Al, but on the other hand it reduces the chloride ion resistance. Since Cu content does not affect chloride ion resistance below 1/100 (atomic%) of Ta addition, Cu content in the Al-Ta alloy thin film is set to 0.03 atomic% or less, and 0.01 atomic%. The following is more preferable. On the other hand, the lower limit of the Cu content is preferably 0.001 atomic% or more.

Al−Ta酸化膜はAl−Ta合金薄膜の表面及び側面の少なくともいずれか一方の面に形成される。本発明に係る配線構造は表示装置や入力装置に用いられることを想定していることから、Al−Ta合金薄膜の一方の表面、又は、一方の表面と露出する側面の少なくとも一部の領域とに、Al−Ta酸化膜が形成されることが好ましい。   The Al—Ta oxide film is formed on at least one of the surface and the side surface of the Al—Ta alloy thin film. Since the wiring structure according to the present invention is assumed to be used for a display device or an input device, one surface of the Al-Ta alloy thin film, or at least a partial region of one surface and the exposed side surface, In addition, an Al—Ta oxide film is preferably formed.

Al−Ta酸化膜の膜厚は3nm以上が安定性の点から好ましい。一方、良好な加工性を得るために10nm以下が好ましい。   The thickness of the Al—Ta oxide film is preferably 3 nm or more from the viewpoint of stability. On the other hand, 10 nm or less is preferable in order to obtain good processability.

Al−Ta酸化膜はAlの酸化物を中心に形成されているが、Al−Ta酸化膜中のTa原子%濃度をAl−Ta合金薄膜よりも低くすることにより、TaがAl−Ta合金薄膜とAl−Ta酸化膜との界面に濃化する。これにより、CuのAl−Ta酸化膜への拡散を抑制することができ、より高い塩化物イオン耐性を得ることができるようになる。
具体的には、Al−Ta酸化膜におけるTaの原子%濃度は、Al−Ta合金薄膜におけるTaの原子%濃度よりも30%以上低いことが好ましく、50%以上低いことがより好ましい。すなわち、例えばAl−Ta合金薄膜におけるTaの原子%濃度が1原子%であった場合には、Al−Ta酸化膜におけるTaの原子%濃度0.7原子%以下が好ましく、0.5原子%以下がより好ましい。
The Al—Ta oxide film is formed mainly with an oxide of Al. By making the Ta atomic% concentration in the Al—Ta oxide film lower than that of the Al—Ta alloy thin film, Ta becomes an Al—Ta alloy thin film. And concentrated at the interface between the Al—Ta oxide film. Thereby, diffusion of Cu into the Al—Ta oxide film can be suppressed, and higher chloride ion resistance can be obtained.
Specifically, the atomic% concentration of Ta in the Al—Ta oxide film is preferably 30% or more lower than the atomic% concentration of Ta in the Al—Ta alloy thin film, and more preferably 50% or lower. That is, for example, when the atomic percent concentration of Ta in the Al—Ta alloy thin film is 1 atomic percent, the atomic percent concentration of Ta in the Al—Ta oxide film is preferably 0.7 atomic percent or less, and 0.5 atomic percent. The following is more preferable.

Al−Ta合金薄膜は、希土類元素をさらに添加することにより、より高い塩化物イオン耐性を得ることができることから好ましい。これは、希土類元素によりAl−Ta酸化膜をより安定化できるためと推測される。
希土類元素の含有量は、0.05原子%以上が好ましく、0.1原子%以上がより好ましい。また、上限はスパッタリングターゲットの製造性の点から3.0原子%以下とすることが好ましく、2.0原子%以下がより好ましい。
希土類元素としては、スカンジウムSc、イットリウムY、ランタノイド元素が好ましく、中でもNd、La、Gdがより好ましい。希土類元素は単独で使用しても2種以上を併用してもよい。
The Al—Ta alloy thin film is preferable because it can obtain higher chloride ion resistance by further adding a rare earth element. This is presumed to be because the Al—Ta oxide film can be further stabilized by the rare earth element.
The content of rare earth elements is preferably 0.05 atomic% or more, and more preferably 0.1 atomic% or more. Further, the upper limit is preferably 3.0 atomic% or less, more preferably 2.0 atomic% or less, from the viewpoint of the productivity of the sputtering target.
As rare earth elements, scandium Sc, yttrium Y, and lanthanoid elements are preferable, and Nd, La, and Gd are more preferable. The rare earth elements may be used alone or in combination of two or more.

本発明におけるAl−Ta合金薄膜は、本発明の効果を損なわなければ、上記成分以外の他の元素を含んでいてもよく、残部はAl及び不可避不純物である。
不可避不純物としては、Fe、Si、B等が例示される。不可避不純物の含有量は合計で0.1原子%以下が好ましい。
Al−Ta合金薄膜の組成はICP発光分光法により同定することができる。
The Al—Ta alloy thin film in the present invention may contain elements other than the above components as long as the effects of the present invention are not impaired, and the balance is Al and inevitable impurities.
Examples of inevitable impurities include Fe, Si, and B. The total content of inevitable impurities is preferably 0.1 atomic% or less.
The composition of the Al—Ta alloy thin film can be identified by ICP emission spectroscopy.

Al−Ta酸化膜は、表面にカルボキシル基及びアミノ基の少なくともいずれか一方の官能基を有する有機化合物が1分子層以上存在することが好ましい。
アミノ基を有する有機化合物が存在すると、酸性及び中性領域においてアミノ基がNH にイオン化して塩化物イオンと結合することから、より塩化物イオン耐性を高めることができる。
また、カルボキシル基を有する有機化合物が存在すると、中性及びアルカリ性領域においてカルボキシル基がCOOにイオン化してAl−Ta合金薄膜表面近傍の電気的中性を維持するために、該表面近傍の塩化物イオン濃度が低下し、塩化物イオン耐性をより高めることができる。
これら有機化合物は単分子層(1分子層)があればよく、2分子以上の層があってもよい。
The Al—Ta oxide film preferably has at least one molecular layer of an organic compound having a functional group of at least one of a carboxyl group and an amino group on the surface.
In the presence of an organic compound having an amino group, the amino group ionizes to NH 3 + in an acidic and neutral region and binds to a chloride ion, whereby the chloride ion resistance can be further enhanced.
Further, when the organic compound having a carboxyl group is present, the carboxyl group in the neutral and alkaline regions COO - to be ionized to maintain electroneutrality of the Al-Ta alloy thin film near the surface, the surface vicinity chloride Chloride ion concentration can be reduced and chloride ion tolerance can be further increased.
These organic compounds may have a monomolecular layer (single molecular layer) and may have a layer of two or more molecules.

表面にアミノ基を有する有機化合物としては、例えば1−プロパンアミン、1,3−プロパンジアミン、1−プロパノールアミン等が挙げられる。表面にカルボキシル基を有する有機化合物としては、例えばプロピオン酸、フマル酸、酒石酸等が挙げられる。
また、表面にアミノ基とカルボキシル基の両方を有する有機化合物でもよく、例えば、アミノ酸等が挙げられる。
有機化合物はアミノ酸程度の比較的分子サイズの小さいものの方がより好ましい。また、2以上の有機化合物同士が結合した形態であってもよい。
Examples of the organic compound having an amino group on the surface include 1-propanamine, 1,3-propanediamine, and 1-propanolamine. Examples of the organic compound having a carboxyl group on the surface include propionic acid, fumaric acid, and tartaric acid.
Moreover, the organic compound which has both an amino group and a carboxyl group on the surface may be sufficient, for example, an amino acid etc. are mentioned.
An organic compound having a relatively small molecular size such as an amino acid is more preferable. Moreover, the form which 2 or more organic compounds couple | bonded may be sufficient.

有機化合物は、アミノ基とカルボキシル基を併せ持ち、かつその分子サイズの小ささからアミノ酸がより好ましい。アミノ酸は分子内にアミノ基とカルボキシル基を持つことで、溶液のpH変化に対する緩衝作用を有する。
すなわち、塩化物イオンとAlの反応では、水素イオンの発生により膜表面の近傍が酸性になることが知られているが、アミノ酸が存在することで、中性環境下でCOOにイオン化しているカルボキシル基に水素イオンが結合することで、膜表面近傍のpH変化を緩和することができる。
The organic compound has both an amino group and a carboxyl group, and an amino acid is more preferable because of its small molecular size. Amino acids have an amino group and a carboxyl group in the molecule, and thus have a buffering action against the pH change of the solution.
That is, in the reaction between chloride ions and Al, it is known that the vicinity of the film surface becomes acidic due to the generation of hydrogen ions, but the presence of amino acids causes ionization to COO under a neutral environment. By bonding hydrogen ions to the carboxyl group, pH change in the vicinity of the membrane surface can be mitigated.

本発明におけるAl−Ta酸化膜は、本発明の効果を損なわなければ、上記成分以外の他の元素を含んでいてもよく、残部はAl及び不可避不純物である。
不可避不純物としては、Fe、Si、B等が例示される。不可避不純物の含有量は合計で0.1原子%以下が好ましい。
Al−Ta酸化膜の組成はICP発光分光法により同定することができる。
The Al—Ta oxide film in the present invention may contain elements other than the above components as long as the effects of the present invention are not impaired, and the balance is Al and inevitable impurities.
Examples of inevitable impurities include Fe, Si, and B. The total content of inevitable impurities is preferably 0.1 atomic% or less.
The composition of the Al—Ta oxide film can be identified by ICP emission spectroscopy.

Al−Ta合金薄膜とAl−Ta酸化膜からなる配線構造において、Al−Ta合金薄膜は配線構造の下地層である透明導電膜の上に形成されることが、Al−Ta酸化膜がより緻密化して安定化し、塩化物イオン耐性がより向上することから好ましい。
下地層は、Mo、Mo合金、Ti、Ti合金及びInからなる群より選ばれる少なくとも1種を含有する透明導電膜であることが好ましく、該透明導電膜を少なくとも1層有することが好ましい。
また、下地層がAl−Ta合金薄膜と基板との間に存在しても、Al−Ta合金薄膜が下地層と基板との間に存在してもよく、その順序は任意であるが、基板上に下地層を形成し、その上にAl−Ta合金薄膜を形成することがより好ましい。
In a wiring structure composed of an Al—Ta alloy thin film and an Al—Ta oxide film, the Al—Ta alloy thin film is formed on the transparent conductive film which is the underlying layer of the wiring structure. And is stabilized, and chloride ion resistance is further improved.
The underlayer is preferably a transparent conductive film containing at least one selected from the group consisting of Mo, Mo alloy, Ti, Ti alloy and In, and preferably has at least one transparent conductive film.
In addition, the underlayer may exist between the Al—Ta alloy thin film and the substrate, or the Al—Ta alloy thin film may exist between the underlayer and the substrate, and the order is arbitrary. More preferably, an underlayer is formed thereon, and an Al—Ta alloy thin film is formed thereon.

<製造方法>
本発明に係る配線構造において、Al−Ta合金薄膜及びAl−Ta酸化膜は、スパッタリング法にてスパッタリングターゲットを用いて形成することが好ましい。この他に、蒸着法等で形成してもよい。
スパッタリングターゲットによりAl−Ta合金薄膜を形成する場合、Al−Ta合金薄膜と同じ組成、すなわち、Ta添加量が0.3〜3.0原子%かつCu含有量が0.03原子%以下であり、Al−Ta酸化膜中のTaの原子%濃度よりも高いTa原子%濃度のスパッタリングターゲットを用いることが好ましい。
スパッタリングターゲットによりAl−Ta酸化膜を形成する場合、Al−Ta合金薄膜中のTaの原子%濃度よりも低いTa原子%濃度のスパッタリングターゲットを用いることが好ましい。
<Manufacturing method>
In the wiring structure according to the present invention, the Al—Ta alloy thin film and the Al—Ta oxide film are preferably formed by a sputtering method using a sputtering target. In addition, you may form by the vapor deposition method etc.
When an Al—Ta alloy thin film is formed by a sputtering target, the same composition as the Al—Ta alloy thin film, that is, the Ta addition amount is 0.3 to 3.0 atomic% and the Cu content is 0.03 atomic% or less. It is preferable to use a sputtering target having a Ta atom% concentration higher than the Ta atom% concentration in the Al—Ta oxide film.
When the Al—Ta oxide film is formed by a sputtering target, it is preferable to use a sputtering target having a Ta atomic% concentration lower than the Ta atomic% concentration in the Al—Ta alloy thin film.

これらスパッタリングターゲットの形状は、スパッタリング装置の形状や構造に応じて任意の形状(角型プレート状、円形プレート状、ドーナツプレート状、円筒形等)に加工したものが含まれる。
スパッタリングターゲットは、溶解鋳造法や粉末焼結法、スプレーフォーミング法で、Al−Ta合金からなるインゴットを製造して得る方法や、Al−Ta合金からなるプリフォーム(最終的な緻密体を得る前の中間体)を製造した後、該プリフォームを緻密化手段により緻密化して得られる方法等が挙げられる。
The shapes of these sputtering targets include those processed into an arbitrary shape (square plate shape, circular plate shape, donut plate shape, cylindrical shape, etc.) according to the shape and structure of the sputtering apparatus.
Sputtering targets can be obtained by manufacturing an ingot made of an Al—Ta alloy by melt casting, powder sintering, or spray forming, or by a preform made of an Al—Ta alloy (before the final dense body is obtained). And the like obtained after the preform is densified by a densifying means.

Al−Ta合金薄膜の最適な膜厚は用途や仕様により選ぶことができる。例えば、ディスプレイの配線用途の場合、Al−Ta合金薄膜の膜厚は100nm以上が好ましく、150nm以上がより好ましい。また、2μm以下が好ましく、1μm以下がより好ましい。
Al−Ta合金薄膜の膜厚はスパッタリング法においては、スパッタリングの電流値や時間、圧力、ターゲットと基板間の距離等を変更することにより調整することができる。
The optimum film thickness of the Al—Ta alloy thin film can be selected according to the application and specifications. For example, in the case of display wiring use, the thickness of the Al—Ta alloy thin film is preferably 100 nm or more, and more preferably 150 nm or more. Moreover, 2 micrometers or less are preferable and 1 micrometer or less is more preferable.
In the sputtering method, the film thickness of the Al—Ta alloy thin film can be adjusted by changing the sputtering current value, time, pressure, distance between the target and the substrate, and the like.

Al−Ta酸化膜の膜厚はスパッタリング法においては、スパッタリングの電流値や時間、圧力、ターゲットと基板間の距離等を変更することにより調整することができる。また、スパッタに用いるアルゴンガスと酸素ガスの比率を変更することによっても調整することができる。   In the sputtering method, the thickness of the Al—Ta oxide film can be adjusted by changing the sputtering current value, time, pressure, distance between the target and the substrate, and the like. It can also be adjusted by changing the ratio of argon gas and oxygen gas used for sputtering.

得られたAl−Ta合金薄膜やAl−Ta酸化膜の膜厚は、断面SEM、SIMS深さ分析、断面TEM観察等により測定することができる。
また、成膜後にUVによる洗浄や、酸素プラズマ等の処理を行ってもよい。
The film thickness of the obtained Al—Ta alloy thin film or Al—Ta oxide film can be measured by cross-sectional SEM, SIMS depth analysis, cross-sectional TEM observation, or the like.
Further, after the film formation, cleaning with UV, treatment with oxygen plasma, or the like may be performed.

また、所望の有機化合物の塩の水溶液を調製し、該水溶液中にAl−Ta酸化膜を含む配線構造を浸漬することにより、Al−Ta酸化膜の表面に該有機化合物の層を形成することができる。
有機化合物の塩としては、例えばナトリウム塩、カルシウム塩等が挙げられ、中でもナトリウム塩が、水への溶解度やpHの点から好ましく用いられる。また、浸漬条件は水溶液中の塩濃度等によって異なるが、例えば1%水溶液の場合、10分〜24時間浸漬することが好ましい。
浸漬後、適宜洗浄と乾燥を行う。
Also, a layer of the organic compound is formed on the surface of the Al-Ta oxide film by preparing an aqueous solution of a salt of a desired organic compound and immersing a wiring structure including the Al-Ta oxide film in the aqueous solution. Can do.
Examples of the salt of the organic compound include a sodium salt and a calcium salt. Among them, a sodium salt is preferably used from the viewpoint of solubility in water and pH. Moreover, although immersion conditions change with salt concentrations etc. in aqueous solution, for example, in the case of 1% aqueous solution, it is preferable to immerse for 10 minutes-24 hours.
After immersion, washing and drying are performed as appropriate.

配線構造の下地層は、スパッタリング法や蒸着法によって形成することができる。スパッタリング法により形成する場合には、所望の下地層と同じ組成のスパッタリングターゲットを用いてスパッタリングにより形成することができる。例えば、Mo、Mo合金、Ti、Ti合金及びInからなる群より選ばれる少なくとも1種を含有するスパッタリングターゲットを用いて、Mo、Mo合金、Ti、Ti合金及びInからなる群より選ばれる少なくとも1種を含有する透明導電膜を成膜することができる。
透明導電膜を2層以上形成する場合には、各層の組成のスパッタリングターゲットを用いて、複数回スパッタリングすることにより形成することができる。
The underlayer of the wiring structure can be formed by a sputtering method or a vapor deposition method. In the case of forming by a sputtering method, it can be formed by sputtering using a sputtering target having the same composition as the desired underlayer. For example, using a sputtering target containing at least one selected from the group consisting of Mo, Mo alloy, Ti, Ti alloy and In, at least one selected from the group consisting of Mo, Mo alloy, Ti, Ti alloy and In A transparent conductive film containing seeds can be formed.
When two or more transparent conductive films are formed, they can be formed by sputtering a plurality of times using a sputtering target having a composition of each layer.

また、透明導電膜をスパッタリングにより成膜した後に、結晶化するための熱処理を行ってもよい。透明導電膜として例えばITO(Indium Tin Oxide)膜を形成する場合には、窒素雰囲気にて150〜250℃で10分以上の熱処理を行うことが好ましい。   Further, after the transparent conductive film is formed by sputtering, heat treatment for crystallization may be performed. For example, when forming an ITO (Indium Tin Oxide) film as the transparent conductive film, it is preferable to perform a heat treatment at 150 to 250 ° C. for 10 minutes or more in a nitrogen atmosphere.

上記で得られた本発明に係る配線構造は、表示装置や入力装置に好適に用いることができる。中でもタッチパネルにより好適に用いることができる。
本発明に係る配線構造を有する表示装置や入力装置として、該配線構造を備えた薄膜トランジスタ(TFT)、反射膜、有機EL用アノード電極、タッチパネルセンサー等を有する表示装置や入力装置等が挙げられる。
これら装置において、本発明に係る配線構造部分以外の他の構成要件は、本発明の効果を損なわない範囲において、当該技術分野で通常用いられるものを適宜選択して用いることができる。例えばTFT基板に用いられる半導体層としては多結晶シリコンやアモルファスシリコンが挙げられる。TFT基板に用いられる基板も特に限定されず、ガラス基板やシリコン基板等が挙げられる。
その他、反射アノード電極を備えた有機EL表示装置、薄膜トランジスタを備えた表示装置、反射膜を備えた表示装置、ITO膜の上にAl−Ta合金薄膜及びAl−Ta酸化膜を備えたタッチパネル等、様々な装置に適用することができる。
The wiring structure according to the present invention obtained above can be suitably used for a display device or an input device. Among these, the touch panel can be preferably used.
Examples of the display device and the input device having the wiring structure according to the present invention include a display device and an input device having a thin film transistor (TFT), a reflective film, an organic EL anode electrode, a touch panel sensor, and the like having the wiring structure.
In these devices, the constituent elements other than the wiring structure portion according to the present invention can be appropriately selected from those normally used in the technical field as long as the effects of the present invention are not impaired. For example, the semiconductor layer used for the TFT substrate includes polycrystalline silicon and amorphous silicon. The substrate used for the TFT substrate is not particularly limited, and examples thereof include a glass substrate and a silicon substrate.
In addition, an organic EL display device provided with a reflective anode electrode, a display device provided with a thin film transistor, a display device provided with a reflective film, a touch panel provided with an Al-Ta alloy thin film and an Al-Ta oxide film on an ITO film, etc. It can be applied to various devices.

<耐食性評価>
本発明に係る配線構造の耐食性は、塩水滴下試験により評価することができる。
具体的には、1%塩化ナトリウム水溶液をスポイトでサンプルに滴下し、室温環境下で168時間放置し評価を行う。168時間経過後にサンプルを水洗した上で光学顕微鏡にて観察する。腐食面積は小さいほど好ましいが、具体的には、8%以下が好ましく、5%以下がより好ましく、2%以下がさらに好ましい(1%塩水滴下試験)。
また、アミノ酸ナトリウム塩を含有する塩化ナトリウム水溶液で耐食性試験を行うことも有効である。この場合、上記1%塩水滴下試験と比べて、人体に起因する塩分付着時の耐食性を模擬した評価をすることができる。具体的には、1%アミノ酸ナトリウム塩を添加した1%の塩化ナトリウム水溶液を用いる以外は1%塩水滴下試験と同様にして腐食面積を測定する。腐食面積は小さいほど好ましいが、8%以下が好ましく、5%以下がより好ましく、2%以下がさらに好ましい。
<Corrosion resistance evaluation>
The corrosion resistance of the wiring structure according to the present invention can be evaluated by a salt water dropping test.
Specifically, a 1% sodium chloride aqueous solution is dropped onto a sample with a dropper, and the evaluation is performed by leaving it at room temperature for 168 hours. After 168 hours, the sample is washed with water and then observed with an optical microscope. The smaller the corrosion area is, the more preferable, but specifically, 8% or less is preferable, 5% or less is more preferable, and 2% or less is more preferable (1% salt water dropping test).
It is also effective to conduct a corrosion resistance test with an aqueous sodium chloride solution containing an amino acid sodium salt. In this case, as compared with the 1% salt water dropping test, it is possible to perform an evaluation simulating the corrosion resistance at the time of adhesion of salt caused by the human body. Specifically, the corrosion area is measured in the same manner as the 1% salt water dropping test except that a 1% sodium chloride aqueous solution to which 1% amino acid sodium salt is added is used. The smaller the corrosion area is, the more preferable, but 8% or less is preferable, 5% or less is more preferable, and 2% or less is more preferable.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and may be implemented with modifications within a range that can be adapted to the gist of the present invention. All of which are within the scope of the present invention.

[実施例1−1]
無アルカリガラス基板(直径4インチ、板厚0.7mm)上に、DCマグネトロンスパッタリング法により、Al−Ta合金薄膜を成膜した。該Al−Ta合金薄膜のTa添加量は0.3原子%、Cu含有量は0.03原子%、残部はAl及び不可避不純物であった。
成膜にあたっては、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10−6Torrに調整してから、Al−Ta合金薄膜と同一の成分組成を有する直径4インチの円盤型スパッタリングターゲットを用い、下記条件でスパッタリングを行った。
(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:30sccm
・スパッタパワー:500W
・基板温度:室温
・成膜温度:室温
・膜厚:300nm
なお、得られたAl−Ta合金薄膜の成分の同定はICP発光分析法により行った。
[Example 1-1]
An Al—Ta alloy thin film was formed on a non-alkali glass substrate (diameter 4 inches, plate thickness 0.7 mm) by DC magnetron sputtering. The Ta-added amount of the Al—Ta alloy thin film was 0.3 atomic%, the Cu content was 0.03 atomic%, and the balance was Al and inevitable impurities.
In film formation, the atmosphere in the chamber is once adjusted to a vacuum degree of 3 × 10 −6 Torr before film formation, and then a disk type having a diameter of 4 inches having the same composition as that of the Al—Ta alloy thin film. Sputtering was performed using the sputtering target under the following conditions.
(Sputtering conditions)
Ar gas pressure: 2 mTorr
Ar gas flow rate: 30sccm
・ Sputtering power: 500W
・ Substrate temperature: room temperature ・ Film formation temperature: room temperature ・ Film thickness: 300 nm
The components of the obtained Al-Ta alloy thin film were identified by ICP emission analysis.

次いで、Al−Ta合金薄膜表面をUV洗浄することによりAl−Ta合金薄膜の表面上にAl−Ta酸化膜の成膜を行った。得られたAl−Ta酸化膜中のTa原子濃度は0.1原子%であり、膜厚は3nmであった。
なお、得られたAl−Ta酸化膜の膜厚は配線断面のTEM観察にて確認した。
Next, the surface of the Al—Ta alloy thin film was subjected to UV cleaning to form an Al—Ta oxide film on the surface of the Al—Ta alloy thin film. The Ta atom concentration in the obtained Al—Ta oxide film was 0.1 atomic%, and the film thickness was 3 nm.
The film thickness of the obtained Al—Ta oxide film was confirmed by TEM observation of the wiring cross section.

得られたAl−Ta合金薄膜及びAl−Ta酸化膜からなる配線構造に対し、フォトリソグラフィー及びウェットエッチングによるパターニングを行い、配線幅10μm、配線間隔10μmのストライプ状の配線パターンを作成した。   The obtained wiring structure composed of the Al—Ta alloy thin film and the Al—Ta oxide film was subjected to patterning by photolithography and wet etching to form a stripe-like wiring pattern having a wiring width of 10 μm and a wiring interval of 10 μm.

[実施例1−2〜1−15及び比較例1−1〜1−4]
Al−Ta合金薄膜の組成又はAl−Ta酸化膜の組成や膜厚を表1に記載のものに変更した以外は実施例1−1と同様にして配線構造を得て、さらに配線パターンを作成した。
なお、比較例1−4については、Al−Ta酸化膜の膜厚を0nmとしたが、Al−Ta合金薄膜の表面に形成された自然酸化被膜をアルカリ溶液(水酸化テトラメチルアンモニウム:TMAH2.38%)に室温で30秒浸漬することで除去したものである。
なお、表中の「Al合金種」における数値は各元素の原子%濃度を表す。
[Examples 1-2 to 1-15 and Comparative Examples 1-1 to 1-4]
A wiring structure was obtained in the same manner as in Example 1-1 except that the composition of the Al—Ta alloy thin film or the composition and film thickness of the Al—Ta oxide film was changed to those shown in Table 1, and a wiring pattern was created. did.
In Comparative Example 1-4, the film thickness of the Al—Ta oxide film was set to 0 nm, but the natural oxide film formed on the surface of the Al—Ta alloy thin film was replaced with an alkaline solution (tetramethylammonium hydroxide: TMAH2. 38%) for 30 seconds at room temperature.
In the table, the numerical value for “Al alloy type” represents the atomic% concentration of each element.

上記で得られたパターニング後の配線構造について、耐食性評価(1%塩水滴下試験)を行った。
試験は1%の塩化ナトリウム水溶液をスポイトで滴下し、室温環境下で168時間放置し評価を行った。168時間経過後にサンプルを水洗した上で光学顕微鏡にて観察し、腐食面積を測定した。比較例1−4については、アルカリ溶液に浸漬した直後に1%塩水滴下試験を行った。この時のAl−Ta酸化膜の膜厚はTEM観察にて測定を行っていないが、アルカリ溶液への浸漬による自然参加皮膜除去直後に該滴下試験を実施したことから、Al−Ta酸化膜はない(酸化膜厚0nm)ものと判断した。
評価結果を表1に示す。表1中、腐食面積が2%以下のものを◎、2%超5%以下を〇、5%超8%以下を△、8%超を×とした。また、表中「at%」とは「原子%」と同義である。
The wiring structure after patterning obtained above was subjected to corrosion resistance evaluation (1% salt water dropping test).
In the test, a 1% sodium chloride aqueous solution was dropped with a dropper and left standing for 168 hours in a room temperature environment for evaluation. After 168 hours, the sample was washed with water and observed with an optical microscope, and the corrosion area was measured. About Comparative Example 1-4, the 1% salt water dropping test was done immediately after being immersed in an alkaline solution. The film thickness of the Al-Ta oxide film at this time was not measured by TEM observation, but since the dripping test was performed immediately after the removal of the naturally participating film by immersion in an alkaline solution, the Al-Ta oxide film was It was judged that there was no (oxide film thickness 0 nm).
The evaluation results are shown in Table 1. In Table 1, when the corrosion area is 2% or less, ◎ over 2%, 5% or less, ◯, over 5%, 8% or less, Δ, over 8%. In the table, “at%” is synonymous with “atomic%”.

Figure 0006574714
Figure 0006574714

その結果、実施例1−1〜実施例1−15は、腐食面積率が8%以下であり、良好な耐食性が得られることを見出した。比較例1−1は配線膜がAl−Ta合金薄膜ではなく純Alの薄膜であり耐食性が低いことから、腐食が発生した。比較例1−2はTaを含有するが、その含有量が0.2原子%と少ないため所望の耐食性が得られなかった。比較例1−3は、Cu含有量が多いため所望の耐食性が得られなかった。比較例1−4は、表面のAl−Ta酸化膜が薄い(存在しない)ため、所望の耐食性が得られなかった。   As a result, in Examples 1-1 to 1-15, the corrosion area ratio was 8% or less, and it was found that good corrosion resistance was obtained. In Comparative Example 1-1, the wiring film was not an Al—Ta alloy thin film but a pure Al thin film, and corrosion resistance was low. Comparative Example 1-2 contains Ta, but the desired corrosion resistance was not obtained because the content was as low as 0.2 atomic%. Since Comparative Example 1-3 had a large Cu content, the desired corrosion resistance could not be obtained. In Comparative Example 1-4, since the Al—Ta oxide film on the surface was thin (does not exist), the desired corrosion resistance was not obtained.

[実施例2−1]
実施例1−1と同様にして、Ta添加量0.3原子%、Cu含有量0.01原子%、残部がAl及び不可避不純物のAl−Ta合金薄膜(膜厚300nm)を成膜した。
次いで、実施例1−1と同様にしてAl−Ta合金薄膜の表面上にAl−Ta酸化膜の成膜を行った。得られたAl−Ta酸化膜中のTa原子濃度は0.1原子%であり、膜厚は3nmであった。
得られたAl−Ta合金薄膜及びAl−Ta酸化膜からなる配線構造に対し、フォトリソグラフィー及びウェットエッチングによるパターニングを行い、配線幅10μm、配線間隔10μmのストライプ状の配線パターンを作成した。
なお、Al−Ta合金薄膜及びAl−Ta酸化膜の同定及び膜厚の測定は実施例1−1と同様に行った。
[Example 2-1]
In the same manner as in Example 1-1, an Al—Ta alloy thin film (thickness: 300 nm) having a Ta addition amount of 0.3 atomic%, a Cu content of 0.01 atomic%, and the balance being Al and inevitable impurities was formed.
Next, an Al—Ta oxide film was formed on the surface of the Al—Ta alloy thin film in the same manner as in Example 1-1. The Ta atom concentration in the obtained Al—Ta oxide film was 0.1 atomic%, and the film thickness was 3 nm.
The obtained wiring structure composed of the Al—Ta alloy thin film and the Al—Ta oxide film was subjected to patterning by photolithography and wet etching to form a stripe-like wiring pattern having a wiring width of 10 μm and a wiring interval of 10 μm.
The identification of the Al—Ta alloy thin film and the Al—Ta oxide film and the measurement of the film thickness were performed in the same manner as in Example 1-1.

次に、カルボキシル基及びアミノ基を含む有機化合物であるアミノ酸のナトリウム塩として、L−グリシン酸ナトリウムの1%水溶液を調製した。なお、水への溶解度およびpHの観点からナトリウム塩を選択した。当該水溶液に上記で得られたサンプルを1時間浸漬した。浸漬後、1分間水洗し、乾燥させた。これにより、Al−Ta酸化膜の表面にアミノ酸であるL−グリシンが存在する配線構造となる。なお、アミノ酸の厚みは走査型トンネル顕微鏡により1分子層以上であることを確認した。
上記で得られた配線構造に対し、実施例1−1と同様の耐食性評価(1%塩水滴下試験)を行った。
Next, a 1% aqueous solution of sodium L-glycinate was prepared as a sodium salt of an amino acid that is an organic compound containing a carboxyl group and an amino group. The sodium salt was selected from the viewpoints of water solubility and pH. The sample obtained above was immersed in the aqueous solution for 1 hour. After soaking, it was washed with water for 1 minute and dried. Thus, a wiring structure in which L-glycine, which is an amino acid, is present on the surface of the Al—Ta oxide film is obtained. The amino acid thickness was confirmed to be one or more molecular layers by a scanning tunneling microscope.
The wiring structure obtained above was subjected to the same corrosion resistance evaluation (1% salt water dropping test) as in Example 1-1.

[実施例2−2〜2−4]
カルボキシル基及びアミノ基を含む有機化合物であるアミノ酸のナトリウム塩として、L−トリプトファンナトリウムの1%水溶液(実施例2−2)、L−アスパラギンナトリウムの1%水溶液(実施例2−3)、又は、カルボキシル基を含む有機化合物として酒石酸ナトリウムの1%水溶液(実施例2−4)を用いた以外は実施例2−1と同様にして配線構造を各々得て、同様に耐食性評価(1%塩水滴下試験)を行った。
[Examples 2-2 to 2-4]
As a sodium salt of an amino acid which is an organic compound containing a carboxyl group and an amino group, 1% aqueous solution of L-tryptophan sodium (Example 2-2), 1% aqueous solution of L-asparagine sodium (Example 2-3), or A wiring structure was obtained in the same manner as in Example 2-1, except that a 1% aqueous solution of sodium tartrate (Example 2-4) was used as the organic compound containing a carboxyl group. Corrosion resistance evaluation (1% brine) Drop test).

評価結果を表2に示す。表2中、腐食面積が2%以下のものを◎、2%超5%以下を〇、5%超8%以下を△、8%超を×とした。また、表中「at%」とは「原子%」と同義である。   The evaluation results are shown in Table 2. In Table 2, when the corrosion area is 2% or less, ◎ more than 2%, 5% or less, ◯, more than 5%, 8% or less, Δ, more than 8%. In the table, “at%” is synonymous with “atomic%”.

Figure 0006574714
Figure 0006574714

その結果、実施例2−1〜実施例2−4はいずれも、腐食面積率が2%以下であり、非常に良好な耐食性が得られることを見出した。   As a result, it was found that all of Examples 2-1 to 2-4 had a corrosion area ratio of 2% or less, and very good corrosion resistance was obtained.

[実施例3−1]
実施例1−1と同様にして、Ta添加量0.3原子%、Cu含有量0.01原子%、残部がAl及び不可避不純物のAl−Ta合金薄膜(膜厚300nm)を成膜した。
次いで、実施例1−1と同様にしてAl−Ta合金薄膜の表面上にAl−Ta酸化膜の成膜を行った。得られたAl−Ta酸化膜中のTa原子濃度は0.1原子%であり、膜厚は3nmであった。
得られたAl−Ta合金薄膜及びAl−Ta酸化膜からなる配線構造に対し、フォトリソグラフィー及びウェットエッチングによるパターニングを行い、配線幅10μm、配線間隔10μmのストライプ状の配線パターンを作成した。
なお、Al−Ta合金薄膜及びAl−Ta酸化膜の同定及び膜厚の測定は実施例1−1と同様に行った。
[Example 3-1]
In the same manner as in Example 1-1, an Al—Ta alloy thin film (thickness: 300 nm) having a Ta addition amount of 0.3 atomic%, a Cu content of 0.01 atomic%, and the balance being Al and inevitable impurities was formed.
Next, an Al—Ta oxide film was formed on the surface of the Al—Ta alloy thin film in the same manner as in Example 1-1. The Ta atom concentration in the obtained Al—Ta oxide film was 0.1 atomic%, and the film thickness was 3 nm.
The obtained wiring structure composed of the Al—Ta alloy thin film and the Al—Ta oxide film was subjected to patterning by photolithography and wet etching to form a stripe-like wiring pattern having a wiring width of 10 μm and a wiring interval of 10 μm.
The identification of the Al—Ta alloy thin film and the Al—Ta oxide film and the measurement of the film thickness were performed in the same manner as in Example 1-1.

次に、耐食性評価として、塩水滴下試験を行った。塩水として、1%の塩化ナトリウム水溶液にL−グリシン酸ナトリウムを1%添加したものをスポイトで滴下し、室温環境下で168時間放置し評価を行った。168時間経過後にサンプルを水洗した上で光学顕微鏡にて観察し、腐食面積を測定した。   Next, a salt water drop test was performed as a corrosion resistance evaluation. As a salt water, 1% sodium chloride aqueous solution added with 1% sodium L-glycinate was dropped with a dropper, and was allowed to stand in a room temperature environment for 168 hours for evaluation. After 168 hours, the sample was washed with water and observed with an optical microscope, and the corrosion area was measured.

[実施例3−2及び3−3]
耐食性評価として、滴下試験溶液を1%の塩化ナトリウム水溶液にL−グリシン酸ナトリウムを1%添加したものに代えて、1%の塩化ナトリウム水溶液にL−トリプトファンナトリウムを1%添加したもの(実施例3−2)、又は、1%の塩化ナトリウム水溶液にL−アスパラギンナトリウムを1%添加したもの(実施例3−3)を用いた以外は実施例3−1と同様にして配線構造を各々得て、耐食性評価を行った。
[Examples 3-2 and 3-3]
For the corrosion resistance evaluation, the dripping test solution was replaced with 1% sodium chloride aqueous solution added with 1% sodium L-glycinate, and 1% sodium chloride aqueous solution added with 1% sodium L-tryptophan (Example) 3-2) or wiring structures were obtained in the same manner as in Example 3-1, except that 1% sodium chloride aqueous solution with 1% L-asparagine sodium added (Example 3-3) was used. The corrosion resistance was evaluated.

評価結果を表3に示す。表3中、腐食面積が2%以下のものを◎、2%超5%以下を〇、5%超8%以下を△、8%超を×とした。また、表中「at%」とは「原子%」と同義である。   The evaluation results are shown in Table 3. In Table 3, when the corrosion area is 2% or less, ◎ over 2%, 5% or less, ○ over 5%, 8% or less, Δ, over 8% as x. In the table, “at%” is synonymous with “atomic%”.

Figure 0006574714
Figure 0006574714

その結果、実施例3−1〜実施例3−3はいずれも、腐食面積率が2%以下であり、非常に良好な耐食性が得られることを見出した。   As a result, in all of Examples 3-1 to 3-3, the corrosion area ratio was 2% or less, and it was found that very good corrosion resistance was obtained.

[実施例4−1]
無アルカリガラス基板(直径4インチ、板厚0.7mm)上に、DCマグネトロンスパッタリング法により下地層として純Mo膜を30nm成膜した。成膜にあたっては、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10−6Torrに調整してから、直径4インチの円盤型純Moスパッタリングターゲットを用い、下記条件でスパッタリングを行った。
(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:30sccm
・スパッタパワー:500W
・基板温度:室温
・成膜温度:室温
・膜厚:30nm
[Example 4-1]
On an alkali-free glass substrate (diameter 4 inches, plate thickness 0.7 mm), a pure Mo film having a thickness of 30 nm was formed as a base layer by a DC magnetron sputtering method. In film formation, the atmosphere in the chamber is once adjusted to an ultimate vacuum of 3 × 10 −6 Torr before film formation, and then a 4 inch diameter disc type pure Mo sputtering target is used and sputtering is performed under the following conditions. went.
(Sputtering conditions)
Ar gas pressure: 2 mTorr
Ar gas flow rate: 30sccm
・ Sputtering power: 500W
・ Substrate temperature: Room temperature ・ Film formation temperature: Room temperature ・ Film thickness: 30 nm

その上にAl−Ta合金薄膜を成膜した以外は実施例1−1と同様にして、Al−Ta合金薄膜及びAl−Ta酸化膜からなる配線構造を得て、さらに、フォトリソグラフィー及びウェットエッチングによるパターニングを行った。
なお、Al−Ta合金薄膜及びAl−Ta酸化膜の同定及び膜厚の測定は実施例1−1と同様に行った。
得られた配線構造について、実施例1−1と同様にして耐食性評価(1%塩水滴下試験)を行った。
A wiring structure composed of an Al—Ta alloy thin film and an Al—Ta oxide film was obtained in the same manner as in Example 1-1 except that an Al—Ta alloy thin film was formed thereon, and photolithography and wet etching were further performed. Patterning was performed.
The identification of the Al—Ta alloy thin film and the Al—Ta oxide film and the measurement of the film thickness were performed in the same manner as in Example 1-1.
About the obtained wiring structure, it carried out similarly to Example 1-1, and performed corrosion resistance evaluation (1% salt water dropping test).

[実施例4−2及び4−3]
無アルカリガラス基板(直径4インチ、板厚0.7mm)上に、DCマグネトロンスパッタリング法により下地層として純Mo膜を30nm成膜し、その上にAl−Ta合金薄膜を成膜した以外は実施例1−2(実施例4−2)又は実施例1−3(実施例4−3)と同様にして、Al−Ta合金薄膜及びAl−Ta酸化膜からなる配線構造を得て、さらに、フォトリソグラフィー及びウェットエッチングによるパターニングを行った。
なお、Al−Ta合金薄膜及びAl−Ta酸化膜の同定及び膜厚の測定は実施例1−1と同様に行った。
得られた配線構造について、実施例1−1と同様にして耐食性評価(1%塩水滴下試験)を行った。
[Examples 4-2 and 4-3]
Implemented except that a pure Mo film was deposited as an underlayer by DC magnetron sputtering on an alkali-free glass substrate (diameter 4 inches, plate thickness 0.7 mm), and an Al-Ta alloy thin film was formed thereon. In the same manner as in Example 1-2 (Example 4-2) or Example 1-3 (Example 4-3), a wiring structure composed of an Al—Ta alloy thin film and an Al—Ta oxide film was obtained. Patterning was performed by photolithography and wet etching.
The identification of the Al—Ta alloy thin film and the Al—Ta oxide film and the measurement of the film thickness were performed in the same manner as in Example 1-1.
About the obtained wiring structure, it carried out similarly to Example 1-1, and performed corrosion resistance evaluation (1% salt water dropping test).

[実施例4−4〜4−6]
下地層を膜厚30nmの純Ti膜(実施例4−4)、膜厚30nmのMo−10原子%Nb合金膜(実施例4−5)又は膜厚30nmのITO膜(実施例4−6)として、それぞれDCマグネトロンスパッタリング法により成膜した以外は実施例4−2と同様にして配線構造を各々得て、耐食性評価を行った。
[Examples 4-4 to 4-6]
The underlayer is a 30 nm thick pure Ti film (Example 4-4), a 30 nm thick Mo-10 atomic% Nb alloy film (Example 4-5), or a 30 nm thick ITO film (Example 4-6). The wiring structures were respectively obtained in the same manner as in Example 4-2 except that each film was formed by DC magnetron sputtering, and the corrosion resistance was evaluated.

評価結果を表4に示す。表4中、腐食面積が2%以下のものを◎、2%超5%以下を〇、5%超8%以下を△、8%超を×とした。また、表中「at%」とは「原子%」と同義である。   The evaluation results are shown in Table 4. In Table 4, those having a corrosion area of 2% or less are marked with ◎, more than 2%, 5% or less, ◯, over 5%, 8% or less, and over 8%, x. In the table, “at%” is synonymous with “atomic%”.

Figure 0006574714
Figure 0006574714

その結果、実施例4−1〜実施例4−6はいずれも、腐食面積率が5%以下であり、非常に良好な耐食性が得られることを見出した。   As a result, in all of Examples 4-1 to 4-6, the corrosion area ratio was 5% or less, and it was found that very good corrosion resistance was obtained.

Claims (8)

Al−Ta合金薄膜の表面及び側面の少なくともいずれか一方の面にAl−Ta酸化膜が形成された配線構造であって、
前記Al−Ta合金薄膜のTa添加量が0.3〜3.0原子%かつCu含有量が0.03原子%以下であり、
前記Al−Ta酸化膜の膜厚が3〜10nmであり、かつ、
前記Al−Ta酸化膜中のTaの原子%濃度がAl−Ta合金薄膜中のTaの原子%濃度より低いことを特徴とする配線構造。
A wiring structure in which an Al-Ta oxide film is formed on at least one of the surface and the side surface of the Al-Ta alloy thin film,
The Ta addition amount of the Al-Ta alloy thin film is 0.3 to 3.0 atomic% and the Cu content is 0.03 atomic% or less,
The Al—Ta oxide film has a thickness of 3 to 10 nm, and
A wiring structure, wherein an atomic percent concentration of Ta in the Al-Ta oxide film is lower than an atomic percent concentration of Ta in the Al-Ta alloy thin film.
前記Al−Ta合金薄膜が希土類元素を0.05〜3.0原子%含有することを特徴とする請求項1に記載の配線構造。   The wiring structure according to claim 1, wherein the Al—Ta alloy thin film contains 0.05 to 3.0 atomic% of a rare earth element. 前記Al−Ta酸化膜の表面に、カルボキシル基及びアミノ基の少なくとも一方の官能基を有する有機化合物が1分子層以上存在することを特徴とする請求項1又は2に記載の配線構造。   3. The wiring structure according to claim 1, wherein an organic compound having at least one functional group of a carboxyl group and an amino group is present on the surface of the Al—Ta oxide film. 前記有機化合物がアミノ酸であることを特徴とする請求項3に記載の配線構造。   The wiring structure according to claim 3, wherein the organic compound is an amino acid. 配線構造の下地層として、Mo、Mo合金、Ti、Ti合金及びInからなる群より選ばれる少なくとも1種を含有する透明導電膜を、少なくとも1層有する請求項1〜4のいずれか1項に記載の配線構造。   The base layer of the wiring structure has at least one transparent conductive film containing at least one selected from the group consisting of Mo, Mo alloy, Ti, Ti alloy and In. The wiring structure described. 請求項1〜5のいずれか1項に記載の配線構造を有する表示装置又は入力装置。   The display apparatus or input device which has a wiring structure of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載の配線構造を有するタッチパネル。   A touch panel having the wiring structure according to claim 1. 請求項1〜5のいずれか1項に記載の配線構造におけるAl−Ta合金薄膜を成膜するためのスパッタリングターゲットであって、Taを0.3〜3.0原子%、かつCuを0.001〜0.03原子%含む、スパッタリングターゲットA sputtering target for forming an Al-Ta alloy thin film in the wiring structure according to any one of claims 1 to 5 , wherein Ta is 0.3 to 3.0 atomic%, and Cu is 0.00. A sputtering target containing 001 to 0.03 atomic% .
JP2016011521A 2016-01-25 2016-01-25 Wiring structure and sputtering target Expired - Fee Related JP6574714B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016011521A JP6574714B2 (en) 2016-01-25 2016-01-25 Wiring structure and sputtering target
PCT/JP2016/081280 WO2017130484A1 (en) 2016-01-25 2016-10-21 Wiring structure and sputtering target
KR1020187021159A KR102107158B1 (en) 2016-01-25 2016-10-21 Wiring structure and sputtering target
CN201680079797.6A CN108496241A (en) 2016-01-25 2016-10-21 Wire structures and sputtering target
TW105135479A TWI641050B (en) 2016-01-25 2016-11-02 Wiring structure, display device, input device, touch panel and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011521A JP6574714B2 (en) 2016-01-25 2016-01-25 Wiring structure and sputtering target

Publications (2)

Publication Number Publication Date
JP2017135149A JP2017135149A (en) 2017-08-03
JP6574714B2 true JP6574714B2 (en) 2019-09-11

Family

ID=59397740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011521A Expired - Fee Related JP6574714B2 (en) 2016-01-25 2016-01-25 Wiring structure and sputtering target

Country Status (5)

Country Link
JP (1) JP6574714B2 (en)
KR (1) KR102107158B1 (en)
CN (1) CN108496241A (en)
TW (1) TWI641050B (en)
WO (1) WO2017130484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492204B2 (en) 2017-11-15 2019-11-26 Charter Communications Operating, Llc Methods and apparatus for utilization of quasi-licensed wireless spectrum for IoT (Internet-of-Things) services

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032687B1 (en) 1970-10-28 1975-10-23
US5500301A (en) * 1991-03-07 1996-03-19 Kabushiki Kaisha Kobe Seiko Sho A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
JPH05297389A (en) * 1992-04-22 1993-11-12 Kobe Steel Ltd Production of liquid crystal display
JP2917820B2 (en) 1994-07-25 1999-07-12 株式会社神戸製鋼所 Electrodes or wiring materials for semiconductor devices
JP3213196B2 (en) * 1995-03-08 2001-10-02 日本アイ・ビー・エム株式会社 Wiring material, metal wiring layer forming method
EP0855451A4 (en) * 1995-10-12 1999-10-06 Toshiba Kk Wiring film, sputter target for forming the wiring film and electronic component using the same
JP2000104164A (en) * 1998-06-29 2000-04-11 Toshiba Corp Sputtering target
JP4247863B2 (en) * 1999-07-12 2009-04-02 ソニー株式会社 Metal materials for electronic components, wiring materials for electronic components, electrode materials for electronic components, electronic components, electronic equipment, processing methods for metal materials, and electro-optical components
WO2001081650A1 (en) * 2000-04-20 2001-11-01 Kabushiki Kaisha Toshiba Sputter target, barrier film and electronic component
SG169230A1 (en) * 2002-08-02 2011-03-30 Idemitsu Kousan Co Ltd Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device
JP2005093597A (en) * 2003-09-16 2005-04-07 Shinko Electric Ind Co Ltd Thin film capacitor and its manufacturing method
JP2006098856A (en) * 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag REFLECTIVE FILM AND ITS MANUFACTURING METHOD
JP4665866B2 (en) * 2006-08-18 2011-04-06 住友金属鉱山株式会社 Manufacturing method of valve metal composite electrode foil
JP4538490B2 (en) * 2007-11-26 2010-09-08 上村工業株式会社 Metal substitution treatment liquid on aluminum or aluminum alloy and surface treatment method using the same
US20110008640A1 (en) * 2008-03-31 2011-01-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Display device, process for producing the display device, and sputtering target
KR20110107130A (en) * 2010-03-24 2011-09-30 삼성전자주식회사 Thin film transistor array panel and method of fabricating the same
US8883555B2 (en) * 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
JP5032687B2 (en) * 2010-09-30 2012-09-26 株式会社神戸製鋼所 Al alloy film, wiring structure having Al alloy film, and sputtering target used for production of Al alloy film
KR20130080047A (en) * 2010-10-08 2013-07-11 가부시키가이샤 고베 세이코쇼 Al-based alloy sputtering target and production method of same
CN102956546A (en) * 2011-08-30 2013-03-06 中芯国际集成电路制造(上海)有限公司 Copper interconnection structure and forming method thereof
JP2013118367A (en) * 2011-11-02 2013-06-13 Hitachi Cable Ltd Thin film transistor, manufacturing method of the same, display device equipped with thin film transistor and sputtering target material
TWI537400B (en) * 2011-12-06 2016-06-11 神戶製鋼所股份有限公司 Cu alloy interconnection film for touch-panel sensor and method of manufacturing the interconnection film, touch-panel sensor, and sputtering target
JP2013147738A (en) * 2011-12-22 2013-08-01 Kobe Steel Ltd Ta-CONTAINING ALUMINUM OXIDE THIN FILM
JP2014120486A (en) * 2012-12-12 2014-06-30 Kobelco Kaken:Kk Electrode for use in display device or input device, and sputtering target for electrode formation

Also Published As

Publication number Publication date
CN108496241A (en) 2018-09-04
KR102107158B1 (en) 2020-05-06
WO2017130484A1 (en) 2017-08-03
TW201727748A (en) 2017-08-01
TWI641050B (en) 2018-11-11
KR20180096769A (en) 2018-08-29
JP2017135149A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6060202B2 (en) Transparent conductive film manufacturing method, sputtering apparatus, and sputtering target
JP5032687B2 (en) Al alloy film, wiring structure having Al alloy film, and sputtering target used for production of Al alloy film
TWI248978B (en) Ag-based interconnecting film for flat panel display, Ag-base sputtering target and flat panel display
TW201219601A (en) Composition for etching metal layer
TW201035290A (en) Etchant for transparent conductive ito films
TW201204875A (en) Etching solution composition for metal layer comprising copper and titanium
JP2016040411A (en) Laminate film, laminate wiring film, and manufacturing method of laminate wiring film
TWI591696B (en) Transparent conductive wire and method for manufacturing transparent conductive wire
KR20180133455A (en) The laminated wiring film and the thin film transistor element
TW201142084A (en) Etching solution composition for metal layer comprising copper and titanium (4)
JP6574714B2 (en) Wiring structure and sputtering target
KR20140054339A (en) Wiring structure for display device
JP2006310814A (en) Thin film wiring layer
JP2012189725A (en) WIRING FILM AND ELECTRODE USING Ti ALLOY BARRIER METAL AND Ti ALLOY SPUTTERING TARGET
JP4188299B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2012189726A (en) WIRING FILM AND ELECTRODE USING Ti ALLOY BARRIER METAL AND Ti ALLOY SPUTTERING TARGET
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2011017944A (en) Aluminum alloy film for display device, display device, and aluminum alloy sputtering target
JPWO2010143609A1 (en) Method for forming electronic device, electronic device, semiconductor device, and transistor
TW201200616A (en) Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same
JP2012003228A (en) Wiring film for display with excellent wet etching property
JP2013087353A (en) Etching solution for multilayer film containing copper and molybdenum
JP2011112934A (en) Display device
JP2017139381A (en) Wiring structure for display device
TW201133705A (en) Thin-film transistor substrate, method of manufacturing the same, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6574714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees