JP2006310814A - Thin film wiring layer - Google Patents

Thin film wiring layer Download PDF

Info

Publication number
JP2006310814A
JP2006310814A JP2006085921A JP2006085921A JP2006310814A JP 2006310814 A JP2006310814 A JP 2006310814A JP 2006085921 A JP2006085921 A JP 2006085921A JP 2006085921 A JP2006085921 A JP 2006085921A JP 2006310814 A JP2006310814 A JP 2006310814A
Authority
JP
Japan
Prior art keywords
layer
film
atomic
thin film
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085921A
Other languages
Japanese (ja)
Other versions
JP4655281B2 (en
Inventor
Hideo Murata
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006085921A priority Critical patent/JP4655281B2/en
Publication of JP2006310814A publication Critical patent/JP2006310814A/en
Application granted granted Critical
Publication of JP4655281B2 publication Critical patent/JP4655281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film wiring layer which is effective as a wiring layer for a flat surface indicator and capable of also improving a moisture resistance, while ensuring a wet etching nature and a heat resistance. <P>SOLUTION: The thin film wiring layer is formed on a substrate consists of a main conductor layer making Ag or Cu a principal component, and a coating layer overlies an upper layer and/or a lower layer of the main conductor layer. The coating layer contains Cu of 1 to 25 atom% as an addition element, and one or two kinds or more addition elements of 1 to 25 atom% selected from (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W), and a total amount of the addition elements is made 35 atom% or less, and a remaining portion is the thin film wiring layer consisting of unescapable dopant and Ni. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板上に薄膜を形成して製造される薄膜電子部品等に用いられる薄膜配線層に関するものである。   The present invention relates to a thin film wiring layer used for a thin film electronic component manufactured by forming a thin film on a substrate.

例えば、ガラス基板またはSiウェハ−上に薄膜を積層して製造される平面表示装置(Flat Panel Display、以下、FPDという)としては液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等種々の新規製品が活発に研究、開発がされている。   For example, as a flat panel display (hereinafter referred to as FPD) manufactured by laminating a thin film on a glass substrate or Si wafer, a liquid crystal display (hereinafter referred to as LCD), a plasma display panel (hereinafter referred to as PDP). ), Field emission display (hereinafter referred to as FED), electroluminescence display (hereinafter referred to as ELD), electronic paper, and other various new products are actively researched and developed.

FPDの配線層には、基板との密着性や耐熱性が考慮され高融点金属のCr、Mo等の膜あるいはその合金膜が用いられている。また、さらに低抵抗が要求される場合には、AlやAl合金といったより低抵抗な膜と高融点金属材料とを積層した薄膜配線層が用いられている。さらに、ディスプレイの大型化や高精細化には配線層の低抵抗化が必要であり、Alより低抵抗なAgやCu等を主体とした材料が提案されている。   For the FPD wiring layer, a high melting point metal such as Cr or Mo or an alloy film thereof is used in consideration of adhesion to the substrate and heat resistance. Further, when further low resistance is required, a thin film wiring layer in which a lower resistance film such as Al or Al alloy and a refractory metal material are stacked is used. Furthermore, the resistance of the wiring layer needs to be reduced in order to increase the size and definition of the display, and materials mainly composed of Ag, Cu, etc. having a lower resistance than Al have been proposed.

しかし、AgやCuは基板等との密着性が低く、耐候性が悪いという問題を有している。このため、AgやCuに添加元素を加えたAg合金やCu合金が提案されているが、十分な基板との密着性と耐候性の確保には至っていない。
このため、AgやCuを主体とする膜においてもAl膜やAl合金膜と同様に高融点金属との積層膜とすることが有効であると考えられている。
However, Ag and Cu have a problem that adhesion to a substrate or the like is low and weather resistance is poor. For this reason, an Ag alloy or Cu alloy in which an additive element is added to Ag or Cu has been proposed, but sufficient adhesion to the substrate and weather resistance have not been ensured.
For this reason, it is considered that even a film mainly composed of Ag or Cu is effective to form a laminated film with a refractory metal in the same manner as an Al film or an Al alloy film.

例えば、Cr膜は耐食性、耐熱性に優れ、薬液を用いたウェットエッチングが可能であり、ガラス基板やSiウェハ−等の基板に対する密着性が高く、AgやCu等を主体とした材料の下地膜として有用な材料である。
また、Mo膜はCr膜と同様に高融点材料であるために耐熱性は高く、平面表示装置用のガラス基板やSiウェハ−等との密着性も良好である。さらに、ウェットエッチングが可能という利点も有するが、耐候性の中で特に耐湿性がCr膜より劣る。このため、Mo膜の耐湿性を改善したMo合金膜が下地膜として提案されている(例えば、特許文献1乃至3参照)。
特開2001−192752号公報 特開2004−91907号公報 特開2004−140319号公報
For example, the Cr film is excellent in corrosion resistance and heat resistance, can be wet etched using a chemical solution, has high adhesion to a substrate such as a glass substrate or Si wafer, and is a base film of a material mainly composed of Ag, Cu, or the like. As a useful material.
In addition, since the Mo film is a high melting point material like the Cr film, the heat resistance is high, and the adhesion to a glass substrate for a flat display device, a Si wafer or the like is also good. Furthermore, although there is an advantage that wet etching is possible, the moisture resistance is particularly inferior to the Cr film among the weather resistance. For this reason, a Mo alloy film with improved moisture resistance of the Mo film has been proposed as a base film (see, for example, Patent Documents 1 to 3).
JP 2001-192752 A JP 2004-91907 A JP 2004-140319 A

特許文献1乃至3には、FPDの配線膜の形成において、AgやCuやその合金膜の上層および下層にCr、Moやその合金を被覆した積層構造とすることで、密着性の改善や耐候性の向上に効果があることが提案されている。
基板等との密着力の改善や耐候性の向上を実現する上で、AgやCuに被覆するCrは有用な材料であるが、FPD素子を製造する際や、その廃棄、または、再生する際に六価Crを含んだ廃液が発生する等の問題があり、地球規模の環境保全のために、使用を削減する必要がある。
In Patent Documents 1 to 3, in the formation of an FPD wiring film, the upper and lower layers of Ag, Cu, or an alloy film thereof are coated with Cr, Mo, or an alloy thereof to improve adhesion and weather resistance. It has been proposed that there is an effect on improving the performance.
Cr that covers Ag or Cu is a useful material for improving adhesion to a substrate or the like and improving weather resistance, but when manufacturing an FPD element, discarding it, or recycling it. There is a problem such as the generation of waste liquid containing hexavalent Cr, and it is necessary to reduce the use for global environmental conservation.

また、Moを主成分とした場合、AgやCuとの積層膜でウェットエッチングを行うと電極電位差が大きいために、電池作用によりMoやMo合金が優先的に腐食してしまうという課題もある。   In addition, when Mo is the main component, there is a problem that Mo or Mo alloy is preferentially corroded by battery action because wet etching with a laminated film of Ag or Cu causes a large electrode potential difference.

本発明の目的は、上記の課題を解決し、AgまたはCuを主成分とする主導体層の持つ低抵抗な特性を維持するための被覆膜を有する配線層であって、ウェットエッチングで配線パターン形成できる新規の薄膜配線層を提供することにある。   An object of the present invention is a wiring layer having a coating film for solving the above-described problems and maintaining the low resistance characteristics of the main conductor layer mainly composed of Ag or Cu, and is formed by wet etching. It is an object of the present invention to provide a novel thin film wiring layer that can be patterned.

本発明者は、種々検討の結果、CrやMoを主成分とするのではなく、Niを主成分とする膜に特定の添加元素を使用したNi合金膜をAgまたはCuを主成分とする配線層の被覆層として積層することで、ウェットエッチングが可能な薄膜配線層とすることができることを見出し本発明に到達した。
すなわち、本発明は、基板上に形成される薄膜配線層であって、AgまたはCuを主成分とする主導体層と該主導体層の上層および/または下層を覆う被覆層からなり、該被覆層は添加元素としてCuを1〜25原子%、(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W)から選択される1種または2種以上の元素を1〜25原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなる薄膜配線層である。
As a result of various studies, the inventor has not made Cr or Mo as a main component, but a Ni alloy film in which a specific additive element is used for a film containing Ni as a main component, and a wiring mainly containing Ag or Cu. It was found that a thin film wiring layer capable of wet etching can be obtained by laminating as a covering layer of the layer, and the present invention has been achieved.
That is, the present invention is a thin film wiring layer formed on a substrate, comprising a main conductor layer mainly composed of Ag or Cu and a covering layer covering the upper layer and / or the lower layer of the main conductor layer, The layer contains 1 to 25 atomic% of Cu as additive elements, and 1 to 25 atomic% of one or more elements selected from (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W). The thin film wiring layer contains the total amount of additive elements of 35 atomic% or less, and the balance is inevitable impurities and Ni.

また、前記主導体層をAgを主成分とする層とする場合は、前記被覆層が添加元素としてCuを1〜25原子%、(Ti、Zr、Hf)から選択される元素を1種または2種以上の元素を1〜10原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなる薄膜配線層とすることが好ましい。
また、前記主導体層をCuを主成分とする層とする場合は、前記被覆層が添加元素としてCuを1〜25原子%、(V、Mo、W)から選択される1種または2種以上の元素を5〜25原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなる薄膜配線層とすることが好ましい。
また、好ましくは、前記被覆層が、添加元素として(Al、Si、Ge)から選択される1種または2種以上の元素を1〜10原子%含有する薄膜配線層である。
また、好ましくは、前記被覆層の層厚は5nm以上100nm以下である薄膜配線層である。
When the main conductor layer is a layer containing Ag as a main component, the coating layer contains 1 to 25 atomic% of Cu as an additive element and one element selected from (Ti, Zr, Hf) or It is preferable that the thin film wiring layer contains 1 to 10 atomic% of two or more elements, the total amount of additive elements is 35 atomic% or less, and the balance is inevitable impurities and Ni.
When the main conductor layer is a layer containing Cu as a main component, the coating layer has 1 to 25 atomic% of Cu as an additive element and one or two selected from (V, Mo, W). It is preferable that the thin film wiring layer contains 5 to 25 atomic% of the above elements, the total amount of additive elements is 35 atomic% or less, and the balance is inevitable impurities and Ni.
Preferably, the coating layer is a thin film wiring layer containing 1 to 10 atomic% of one or more elements selected from (Al, Si, Ge) as an additive element.
Preferably, the coating layer is a thin film wiring layer having a thickness of 5 nm to 100 nm.

本発明の薄膜配線層は、AgまたはCuを主成分とする主導体層を低抵抗に維持できるとともに、ウェットエッチングによる配線パタ−ンを形成できるために、特に高速駆動が必要で薄膜の特性の変化を嫌う平面表示装置用のTFTの配線層として極めて有効なものとなる。   The thin film wiring layer of the present invention can maintain the main conductor layer mainly composed of Ag or Cu at a low resistance and can form a wiring pattern by wet etching. It becomes extremely effective as a wiring layer of a TFT for a flat panel display device that does not like changes.

本発明の重要な特徴は、AgまたはCuを主成分とする主導体層とそれを覆う被覆層からなる構造の薄膜配線層において、従来、被覆層として適用されていたCrやMoに代えてNi合金を適用したことにある。
以下本発明に適用するNi合金層について説明する。
An important feature of the present invention is that, in a thin-film wiring layer having a structure composed of a main conductor layer mainly composed of Ag or Cu and a covering layer covering the main conductor layer, Ni instead of Cr or Mo, which has been conventionally applied as a covering layer. The alloy is applied.
The Ni alloy layer applied to the present invention will be described below.

Niの電極電位はAgやCuに近いために、積層膜の薄膜配線層としてウェットエッチングを行う際に、配線パターン形成が可能となるとともに、電池作用によりNi合金層が優先的に腐食されることを抑制できるため、信頼性の高い積層の薄膜配線層とすることが可能となるものである。この点が、本発明の最も重要な特徴である。
また、Niは電極電位が高く酸化されにくいためMoに比べて著しく優れた耐候性を確保することができ、主導体層の上層にキャップ層としてNi合金膜を被覆した際には、耐候性が確保できるという効果をも有する。また、NiはAgやCuと比較し、融点が高く、酸化しやすいために、ガラス基板等の上に主導体層の下地層として形成した場合には界面に酸化物等が生成し、凝集しづらくなるため密着性が向上するという効果をも有する。
Since the electrode potential of Ni is close to Ag and Cu, when wet etching is performed as a thin film wiring layer of a laminated film, a wiring pattern can be formed and the Ni alloy layer is preferentially corroded by battery action. Therefore, a highly reliable laminated thin film wiring layer can be obtained. This is the most important feature of the present invention.
In addition, since Ni has a high electrode potential and is not easily oxidized, it can ensure significantly superior weather resistance compared to Mo. When Ni alloy film is coated on the upper layer of the main conductor layer as a cap layer, the weather resistance is It also has the effect that it can be secured. In addition, since Ni has a higher melting point than Ag and Cu and is easily oxidized, when it is formed on the glass substrate or the like as an underlayer of the main conductor layer, an oxide or the like is generated at the interface and aggregates. Since it becomes difficult, it has the effect that adhesiveness improves.

なお、配線層を形成する上では、通電時に誘導磁界によって磁化して特性変化を起こすことがあるため強磁性を有することは好ましくない。Niは強磁性を有する元素であるため、Niに一定の添加元素を加えて磁性を低減する必要がある。また、Niは1400℃近辺の融点を持ち、AgまたはCuを主成分とする主導体層よりは高い融点を有するために、主導体層の上層にキャップ層として形成した場合に、耐熱性をある程度確保することができるが、耐熱性は高融点金属であるMoよりは劣るために、加熱時の膜の変質を抑えるためにも添加元素を加えることが有効である。   In forming a wiring layer, it is not preferable to have ferromagnetism because it may be magnetized by an induced magnetic field when energized to cause a characteristic change. Since Ni is an element having ferromagnetism, it is necessary to reduce the magnetism by adding a certain additive element to Ni. Further, since Ni has a melting point near 1400 ° C. and a melting point higher than that of the main conductor layer mainly composed of Ag or Cu, when it is formed as a cap layer on the main conductor layer, it has a certain degree of heat resistance. Although the heat resistance is inferior to that of Mo, which is a refractory metal, it is effective to add an additive element in order to suppress the deterioration of the film during heating.

そこで、本発明においては、被覆層はNiに対して、添加元素としてCuを1〜25原子%、(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W)から選択される1種または2種以上の添加元素を1〜25原子%含有したNi合金とする。   Therefore, in the present invention, the coating layer is selected from 1 to 25 atomic% of Cu as an additive element with respect to Ni (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) 1 A Ni alloy containing 1 to 25 atomic percent of seeds or two or more additive elements is used.

NiにCuを添加するのは主導体層との積層膜として、ウェットエッチング性を向上させる効果をも有するためである。つまり、CuはNiに固溶し易く、また、電極電位をAgやCuに近づけることができるため、主導体層のAgやCuを主成分とする薄膜層とNiを主成分とする被覆層とのウェットエッチング時のエッチング速度差を抑制することができるのである。また、Niの磁性を低減する効果も同時に有する。
なお、その効果は1原子%から現れ、3原子%以上でより顕著になるが、含有量が25原子%を越えるとウェットエッチングにおけるフォトリソグラフィを行う際の現像液やレジスト剥離液等に対して腐食し易くなるとともに、耐熱性が低下するため、NiへのCuの添加量は1〜25原子%とする。
The reason why Cu is added to Ni is that it has an effect of improving wet etching properties as a laminated film with the main conductor layer. That is, Cu is easily dissolved in Ni, and the electrode potential can be brought close to Ag and Cu. Therefore, a thin film layer mainly composed of Ag or Cu of the main conductor layer and a coating layer mainly composed of Ni Thus, the difference in etching rate during wet etching can be suppressed. It also has the effect of reducing the magnetism of Ni.
The effect appears from 1 atomic%, and becomes more noticeable at 3 atomic% or more. However, if the content exceeds 25 atomic%, the developer or resist stripping solution when performing photolithography in wet etching is used. Since corrosion easily occurs and heat resistance decreases, the amount of Cu added to Ni is set to 1 to 25 atomic%.

また、Niの磁性を低減するためには、Cuの添加とともに、4A族元素のTi、Zr、Hf、5A族元素のV、Nb、Ta、6A族元素のCr、Mo、Wから選択される1種または2種以上の元素を1〜25原子%添加する。Fe、Co等の強磁性の特性を有する金属元素以外をNiへ添加することで磁性の低減が可能であると考えられるが、これらの元素は、特に、少ない添加量でNiの有する磁性の低減がはかれるために効果的な元素である。なお、これらの添加元素による効果は、Cuとの複合添加によって、1原子%以上から現れ、3原子%以上で顕著になる。また、25原子%を越えるとTi、Zr、Hf、Nb、Ta、Crでは耐食性が高くなり、ウェットエッチング性が低下するため、配線のパターン形成が困難になる場合がある。また、V、Mo、Wでは25原子%を越えると耐食性が大きく低下する。このため、これらの元素の添加量としては1〜25原子%とする。   Further, in order to reduce the magnetism of Ni, together with the addition of Cu, it is selected from Ti, Zr, Hf of 4A group element, V, Nb, Ta of 5A group element, Cr, Mo, W of 6A group element 1 to 25 atomic% of one or more elements are added. Although it is considered that the magnetic properties can be reduced by adding to Ni other than metallic elements having ferromagnetic properties such as Fe and Co, these elements can reduce the magnetic properties of Ni, particularly with a small addition amount. Is an effective element for peeling. In addition, the effect by these additional elements appears from 1 atomic% or more by compound addition with Cu, and becomes remarkable at 3 atomic% or more. On the other hand, if it exceeds 25 atomic%, Ti, Zr, Hf, Nb, Ta, and Cr have high corrosion resistance, and wet etching property is lowered, which may make it difficult to form a wiring pattern. On the other hand, when V, Mo, and W exceed 25 atomic%, the corrosion resistance is greatly lowered. For this reason, the addition amount of these elements is set to 1 to 25 atomic%.

このように、Niに加える添加元素は種々の効果を有するが、Ni合金膜を被覆層としてAgやCuを主成分とする主導体層との積層の薄膜配線層とする場合、ウェットエッチング性が重要であるため、添加元素の総量を35原子%以下とする必要がある。それは、添加元素の総量が35%を越えると、ウェットエッチング時に残渣が生じ易くなるためである。また、添加元素の総量が35原子%を越えるとNi合金膜と基板との間で剥離が発生したり、Ni合金膜と主導体層との密着性が低下したりすることがあることからも、添加元素の総量は、上記の範囲内とするのが望ましい。なお、この密着性の低下の原因としては、添加元素の量が過大になることでNi合金膜の結晶構造が変化し非晶質(アモルファス)となりやすいことが影響していると考えられる。   As described above, the additive element added to Ni has various effects. However, when the Ni alloy film is used as a coating layer and a thin-film wiring layer laminated with a main conductor layer mainly composed of Ag or Cu, the wet etching property is improved. Since it is important, the total amount of additive elements needs to be 35 atomic% or less. This is because if the total amount of additive elements exceeds 35%, residues are likely to occur during wet etching. In addition, if the total amount of additive elements exceeds 35 atomic%, peeling may occur between the Ni alloy film and the substrate, or the adhesion between the Ni alloy film and the main conductor layer may be reduced. The total amount of additive elements is preferably within the above range. The cause of this decrease in adhesion is considered to be due to the fact that the crystal structure of the Ni alloy film changes and becomes amorphous easily due to an excessive amount of the additive element.

また、主導体層がAgを主成分とするときは、Ni膜とAgを主成分とする層の密着性は必ずしも高くなく、場合によっては剥がれることがある。その理由は、AgとNiは2相分離する元素系のためと考えられる。このため、NiとAgの密着性を高めるには、両者と固溶域を有する元素であるCuの添加が有効であるとともに、AgとNiの両者と化合物を形成する元素である(Ti、Zr、Hf)を添加することが特に有効である。
これらの元素の密着性を高める効果は1原子%からでも得られるが、10原子%を越えるとCuの添加量によっては、ウェットエッチング性が低下することや、加熱温度によっては添加元素がAgに拡散して抵抗値が増加することがあるため、1〜10原子%の範囲で含有させることが好ましい。また、これらの元素の中では工業的に安価なTiがより望ましい。
なお、主導体層をAgとし、Niを主成分とした膜の積層配線層をウェットエッチングする場合には、リン酸と硝酸と酢酸と水を混合したエッチャントを用いることが好ましい。
Further, when the main conductor layer contains Ag as a main component, the adhesion between the Ni film and the layer containing Ag as a main component is not necessarily high and may be peeled off in some cases. The reason is considered to be because Ag and Ni are element systems that separate into two phases. For this reason, in order to improve the adhesion between Ni and Ag, addition of Cu, which is an element having a solid solution region with both, is effective, and is an element that forms a compound with both Ag and Ni (Ti, Zr). , Hf) is particularly effective.
The effect of improving the adhesion of these elements can be obtained even from 1 atomic%, but if it exceeds 10 atomic%, depending on the amount of Cu added, the wet etching property may be reduced, or depending on the heating temperature, the additive element may be changed to Ag. Since it may diffuse and increase the resistance value, it is preferably contained in the range of 1 to 10 atomic%. Of these elements, industrially inexpensive Ti is more desirable.
In the case where wet etching is performed on a laminated wiring layer having a main conductor layer of Ag and a main component of Ni, it is preferable to use an etchant in which phosphoric acid, nitric acid, acetic acid, and water are mixed.

また、主導体層がCuを主成分とするときは、被覆層のNi合金としては、Cuとともに(V、Mo、W)を5〜25原子%の添加することが好ましい。それは、加熱処理を施した場合に被覆層のNiがCuを主成分とする主導体層に拡散し抵抗値を増加させる場合があるため、Niに固溶域を有し、Cuとは分離する元素である(V、Mo、W)をNi合金に添加することで、被覆層のNiが主導体層のCuに拡散するのを抑制するためである。これらの元素の添加効果は5原子%以上で明確となり、25原子%を越えると耐食性に問題を生じるため、5〜25原子%が好ましい。また、V、Mo、Wの中では、工業的に安価なMoが最も望ましい。
なお、主導体層をCuとし、Ni主成分とする層と積層した膜をエッチングするには、過硫酸アンモニウムと硝酸と水を混合したエッチャントを用いることが好ましい。また、このエッチャントにおいてもNi合金のエッチング性を改善するにはCuの添加が望ましい。
Further, when the main conductor layer is mainly composed of Cu, it is preferable to add 5 to 25 atomic% of (V, Mo, W) together with Cu as the Ni alloy of the coating layer. That is, when the heat treatment is performed, Ni in the coating layer may diffuse into the main conductor layer mainly composed of Cu and increase the resistance value, so that Ni has a solid solution region and is separated from Cu. This is because by adding (V, Mo, W), which is an element, to the Ni alloy, Ni in the coating layer is prevented from diffusing into Cu in the main conductor layer. The effect of addition of these elements becomes clear at 5 atomic% or more, and if it exceeds 25 atomic%, a problem arises in corrosion resistance, so 5 to 25 atomic% is preferable. Of V, Mo, and W, industrially inexpensive Mo is most desirable.
Note that an etchant in which ammonium persulfate, nitric acid, and water are mixed is preferably used to etch a film in which the main conductor layer is Cu and a layer having a Ni main component is laminated. Also in this etchant, it is desirable to add Cu in order to improve the etchability of the Ni alloy.

また、本発明においては、Niに添加する元素として、上記元素の他にさらに(Al、Si、Ge)を1〜10原子%含有することが望ましい。Al、Si、GeはNi合金膜の膜構造を緻密化し、耐熱性をさらに向上させる効果と基板等との密着性を改善する効果とを有する。これらの元素はNiに対して、固溶域を有するとともに、化合物を発現しやすい元素であるため、膜の結晶粒の成長を抑制することで膜を緻密化することが可能となる。これらの効果は、Al、Si、Geの添加が1原子%からでも現れるが、Cuや上記の元素と組み合わせた場合には、10原子%を越えると膜が非晶質化し易くなり、密着性が低下したり、エッチング時に残渣が発生することがあるために、1〜10原子%とすることが望ましい。   In the present invention, it is desirable that 1 to 10 atomic% of (Al, Si, Ge) is further contained in addition to the above elements as an element added to Ni. Al, Si, and Ge have the effect of densifying the film structure of the Ni alloy film, further improving heat resistance, and improving the adhesion to the substrate and the like. Since these elements have a solid solution region with respect to Ni and easily develop a compound, the film can be densified by suppressing the growth of crystal grains of the film. These effects appear even when Al, Si, and Ge are added from 1 atomic%, but when combined with Cu or the above elements, the film tends to become amorphous when it exceeds 10 atomic%, and adhesion is improved. It may be reduced or a residue may be generated during etching.

また、本発明のAgまたはCuを主成分とする主導体層としては、主導体層をより低抵抗とするため、純Agまたは純Cuを含む99原子%以上のAgまたはCuからなる層とすることが望ましい。   The main conductor layer mainly composed of Ag or Cu of the present invention is a layer made of 99 atomic% or more of Ag or Cu containing pure Ag or pure Cu in order to make the main conductor layer have a lower resistance. It is desirable.

本発明の構成は、基板上に形成される薄膜配線層であって、AgまたはCuを主成分とする主導体層と該主導体層を覆う被覆層からなり、該被覆層は上述のようなNi合金からなるものであるが、密着性を向上させるためにはAgまたはCuを主成分とする主導体層の下層に下地層として、耐候性を確保するにはAgまたはCuを主成分とする主導体層の上層にキャップ層として形成する。または両方に形成した薄膜配線層とすることにも有効である。この場合にも、本発明のNi合金膜はAgまたはCuを主成分とする主導体層との一括のウェットエッチングが可能である。
なお、主導体層がAgの場合、基板や酸化保護膜との密着性の低いために、Ni合金膜は下地膜として特に有効である。また、主導体層がCuの場合には、Ni合金膜を被覆層とすることは、Cuの拡散抑制にも効果があり、液晶ディスプレイ等のスイッチング素子である薄膜トランジスタの配線のバリヤ膜としての特に効果を得ることが可能である。
The configuration of the present invention is a thin-film wiring layer formed on a substrate, and includes a main conductor layer mainly composed of Ag or Cu and a covering layer covering the main conductor layer, and the covering layer is as described above. Although it is made of a Ni alloy, in order to improve adhesion, the underlayer of the main conductor layer containing Ag or Cu as a main component is used as an underlayer, and in order to ensure weather resistance, Ag or Cu is used as a main component. A cap layer is formed on the main conductor layer. It is also effective to form a thin film wiring layer formed on both. Also in this case, the Ni alloy film of the present invention can be collectively wet etched with the main conductor layer mainly composed of Ag or Cu.
When the main conductor layer is Ag, the Ni alloy film is particularly effective as a base film because of its low adhesion to the substrate and the oxidation protective film. Further, when the main conductor layer is Cu, using a Ni alloy film as a coating layer is effective in suppressing Cu diffusion, and is particularly effective as a barrier film of a thin film transistor wiring as a switching element such as a liquid crystal display. An effect can be obtained.

また、本発明の薄膜配線層においては、被覆層の層厚は、5nm以上100nm以下であることが望ましい。5nm未満では被覆層としての連続性が十分でなく、AgまたはCuを主成分とする主導体層の下地膜とした際に、十分な密着性が得られないためである。また、キャップ層とした場合の耐候性も十分に得られないためである。また、層厚が100nmを越えると成膜する際の時間が掛かるとともに、ウェットエッチング時間も長くなるために、生産効率上望ましくない。さらに、薄膜配線層においては、主導体層と被覆層の両者の構成により、配線層の抵抗値が決まるために、抵抗値がより高いNi合金膜の積層比率が増加すると、低抵抗なAgまたはCuと積層した薄膜配線層の抵抗値が増加する。このために、Ni合金膜でなる被覆層は、密着性、耐候性を確保し、出来る限り薄くても効果の得られるようにすることが望ましく、5〜100nm、さらには5〜50nmがより望ましい。   In the thin film wiring layer of the present invention, the coating layer preferably has a thickness of 5 nm to 100 nm. If the thickness is less than 5 nm, the continuity as the coating layer is not sufficient, and sufficient adhesion cannot be obtained when the base film of the main conductor layer mainly composed of Ag or Cu is used. Moreover, it is because the weather resistance at the time of setting it as a cap layer is not fully obtained. Further, when the layer thickness exceeds 100 nm, it takes time to form a film and the wet etching time becomes long, which is not desirable in terms of production efficiency. Further, in the thin film wiring layer, since the resistance value of the wiring layer is determined by the configuration of both the main conductor layer and the covering layer, when the lamination ratio of the Ni alloy film having a higher resistance value increases, the low resistance Ag or The resistance value of the thin film wiring layer laminated with Cu increases. For this reason, it is desirable that the coating layer made of the Ni alloy film secures adhesion and weather resistance, and is effective even if it is as thin as possible, more preferably 5 to 100 nm, and even more preferably 5 to 50 nm. .

また、AgまたはCuを主成分とする主導体層の層厚は、100〜350nmが好ましい。それは、100nmに満たないと層厚が薄いために表面散乱の影響が大きく十分に低い抵抗値を得にくいためであり、350nmを越えると形成する際の時間が掛かり、生産効率上好ましくないためとそれ以上厚くしても比抵抗値の減少に効果が低いためである。   The layer thickness of the main conductor layer mainly composed of Ag or Cu is preferably 100 to 350 nm. The reason is that if the thickness is less than 100 nm, the thickness of the layer is thin and the effect of surface scattering is large and it is difficult to obtain a sufficiently low resistance value. This is because even if the thickness is increased, the effect of reducing the specific resistance value is low.

なお、本発明の薄膜配線層を形成するには、スパッタリング法が望ましい。また、本発明の被覆層を形成するためには、同一組成のNiを主成分とするターゲット材が必要となるが、Niは磁性体であり、マグネトロンスパッタリングの効率が悪いという問題がある。しかし、本発明の被覆層におけるNi合金の組成では、添加元素の効果により磁性を低減もしくは消失させる効果もあり、マグネトロンスパッタ時の効率を高めることが可能なために、製造効率の向上に対する利点にもなる。   In order to form the thin film wiring layer of the present invention, sputtering is desirable. Further, in order to form the coating layer of the present invention, a target material mainly composed of Ni having the same composition is required. However, Ni is a magnetic material, and there is a problem that the efficiency of magnetron sputtering is poor. However, the composition of the Ni alloy in the coating layer of the present invention also has the effect of reducing or eliminating magnetism due to the effect of the additive element, and it is possible to increase the efficiency during magnetron sputtering. Also become.

また、本発明における薄膜配線層の構成として、基板上にNiを主成分とする被覆層を形成し、その上に主導体層を形成した場合には、AgまたはCuを主成分とする主導体層の原子の拡散や異常粒成長の発生を抑制し、耐熱性を改善することも可能となる。それは、被覆層の主成分であるNiが、主導体層であるAgまたはCuと同じ面心立方格子を有し、(111)面に配向し易いために、その上に同じく面心立方格子構造を有するAgまたはCuを主体とする膜を形成した場合には、主導体層が結晶最密面で成長し、高い(111)面の配向を有することで、加熱処理等における原子の拡散による結晶粒成長や部分的な異常粒の発生が抑制されるためであると考えられる。特にCuは、Agより酸化し易く、膜を形成する基板上や保護膜上で膜形成界面が酸化し(111)配向の膜の得づらいため、Cuを主成分とする主導体層に対する下地層として有効である。
なお、上記の耐熱性の改善は、Niを主成分とする被覆層が面心立方格子構造を維持する範囲において特に高い効果を有する。
Further, as a configuration of the thin film wiring layer in the present invention, when a coating layer mainly composed of Ni is formed on a substrate and a main conductor layer is formed thereon, the main conductor mainly composed of Ag or Cu. It is also possible to improve the heat resistance by suppressing the diffusion of atoms and abnormal grain growth in the layer. This is because Ni, which is the main component of the coating layer, has the same face-centered cubic lattice as Ag or Cu, which is the main conductor layer, and is easily oriented in the (111) plane. In the case of forming a film mainly composed of Ag or Cu having a crystal, the main conductor layer grows on the crystal close-packed surface and has a high (111) plane orientation. This is thought to be due to the suppression of grain growth and the occurrence of partial abnormal grains. In particular, Cu is more easily oxidized than Ag, and the film forming interface is oxidized on the substrate on which the film is formed and the protective film, and it is difficult to obtain a (111) oriented film. It is effective as
Note that the above-described improvement in heat resistance has a particularly high effect in the range in which the coating layer containing Ni as a main component maintains the face-centered cubic lattice structure.

本発明の薄膜配線層を形成する基板は、特に限定されるものではなく、シリコン基板、ガラス基板、樹脂基板等の平滑な表面と絶縁性を有する基板に適用できる。特に耐熱性が高く表面平滑性に優れるガラス基板上で特に好適である。本発明の薄膜配線層における、主導体層および被覆層は、各層と実質同一の組成を有するターゲット材を用いたスパッタリング法により形成することができる。   The board | substrate which forms the thin film wiring layer of this invention is not specifically limited, It can apply to the board | substrate which has insulation with smooth surfaces, such as a silicon substrate, a glass substrate, and a resin substrate. In particular, it is particularly suitable on a glass substrate having high heat resistance and excellent surface smoothness. The main conductor layer and the coating layer in the thin film wiring layer of the present invention can be formed by a sputtering method using a target material having substantially the same composition as each layer.

また、本発明の薄膜配線層は、Al合金やAl積層膜に比較してより低抵抗な配線層が得られるために、現在主流の薄膜トランジスタ(TFT)で駆動する液晶ディスプレイや有機ELディスプレイの配線層として有用である。
特に、本発明の薄膜配線層は、CuやAgを主体する主導体層に耐候性の高いNi合金膜で被覆した下地膜やキャップ膜が形成されえるために、有機発光体から放出される水分や放出ガスに対して変質しない高い耐候性が要求される有機ELディスプレイに有効である。また、同様に水分を透過し易く、放出しやすい樹脂基板や樹脂絶縁膜上に配線膜を形成するシ−トディスプレイ等に用いる事が有用である。また、特に耐候性が低く変質しやすいCuを主導体層とする薄膜配線層として用いる際に効果が高い。
Further, since the thin film wiring layer of the present invention can provide a wiring layer having a lower resistance than that of an Al alloy or an Al laminated film, wiring of a liquid crystal display or an organic EL display driven by a currently mainstream thin film transistor (TFT). Useful as a layer.
In particular, the thin film wiring layer according to the present invention can form a base film or a cap film coated with a highly weather-resistant Ni alloy film on a main conductor layer mainly composed of Cu and Ag, so that moisture released from an organic light emitter is formed. It is effective for organic EL displays that require high weather resistance that does not change with respect to the emitted gas. Similarly, it is useful to use in a sheet display or the like in which a wiring film is formed on a resin substrate or a resin insulating film that is easily permeable to moisture and easily released. In particular, it is highly effective when used as a thin-film wiring layer having Cu as a main conductor layer, which has a low weather resistance and is easily deteriorated.

高純度電解Niに、純度99.9%以上のCu、Ti、Nb、Ta、Si、Ge、Mo、W、99.3%以上のV、Zr、Hfを所定量加えて、真空誘導溶解炉にて溶解して、厚み50mm、幅200mm、高さ300mmの金属製鋳型に鋳造して表1に示す組成のインゴットを作製した。その後、塑性加工により板状にし、さらに機械加工を施して所定のサイズとして、種々組成のNi合金ターゲット材を作製した。また、同時にCr、Mo、純Ag、純Cu、Ag−0.5原子%Si−0.3原子%Geのタ−ゲット材を準備した。   A predetermined amount of Cu, Ti, Nb, Ta, Si, Ge, Mo, W, 99.3% or more of V, Zr, and Hf is added to high purity electrolytic Ni to a vacuum induction melting furnace. And was cast into a metal mold having a thickness of 50 mm, a width of 200 mm, and a height of 300 mm to produce an ingot having the composition shown in Table 1. After that, it was made into a plate shape by plastic working and further machined to obtain Ni alloy target materials of various compositions having a predetermined size. At the same time, a target material of Cr, Mo, pure Ag, pure Cu, and Ag-0.5 atomic% Si-0.3 atomic% Ge was prepared.

準備したタ−ゲット材を使用してアルゴン圧力:0.5Pa、投入電力:500W、基板加熱温度120℃の条件で、厚み0.7×100mm×100mmのコーニング社製1737ガラス基板、Siウェハ−、ポリカ−ボネイトの樹脂皮膜基板の上に膜厚10〜100nmのNi合金膜、Mo膜、Cr膜を形成し、その上に200nmの純Ag膜、純Cu膜、Ag−0.5原子%Si−0.3原子%Ge合金膜、さらに必要によりキャップ層としてその上に20〜30nmのNi合金膜を形成した試料を作製した。また、比較例としてガラス基板上に直接Ag、Cuを200nmで形成した試料も作製した。   Using the prepared target material, argon pressure: 0.5 Pa, input power: 500 W, substrate heating temperature 120 ° C., thickness 0.7 × 100 mm × 100 mm Corning 1737 glass substrate, Si wafer A Ni alloy film, a Mo film, and a Cr film having a film thickness of 10 to 100 nm are formed on a polycarbonate resin film substrate, and a 200 nm pure Ag film, a pure Cu film, and Ag-0.5 atomic% are formed thereon. A sample was prepared in which a Si-0.3 atomic% Ge alloy film and, if necessary, a 20-30 nm Ni alloy film was formed thereon as a cap layer. Moreover, the sample which formed Ag and Cu directly on the glass substrate at 200 nm as a comparative example was also produced.

上記で作製した試料を用いて、ウェットエッチングにおけるパタニング性を評価した。まず、スピンコートにより東京応化製OFPR−800ポジ型レジストを積層膜上に形成し、フォトマスクを用いて紫外線でレジストを露光後、有機アルカリ現像液NMD−3で現像し、ラインアンドスペース(L/S)で25μmのレジストパターンを作製した。その後、主導体層が純AgまたはAg−0.5原子%Si−0.3原子%Ge合金の場合は、燐酸と硝酸と酢酸の混合水溶液をエッチャントとして用いて、また、主導体層が純Cuの場合は過硫酸アンモニウムと硝酸の混合水溶液をエッチャントとして用いて、レジストパターンのない部分の積層膜が溶解した後、20sec浸積してエッチングした。エッチング終了後のレジストパターンとその周囲の残渣、およびパターンエッジの形状を光学顕微鏡で観察した。その時、配線パターンが形成できており、残渣が無いものを良好と評価した。なお、15分以上浸積しても溶解しない場合はその時点でエッチングを終了した。   Using the sample prepared above, the patterning property in wet etching was evaluated. First, an OFPR-800 positive resist manufactured by Tokyo Ohka Co., Ltd. is formed on the laminated film by spin coating, the resist is exposed with ultraviolet rays using a photomask, and then developed with an organic alkali developer NMD-3, and line and space (L / S), a 25 μm resist pattern was prepared. Thereafter, when the main conductor layer is pure Ag or an Ag-0.5 atomic% Si-0.3 atomic% Ge alloy, a mixed aqueous solution of phosphoric acid, nitric acid and acetic acid is used as an etchant. In the case of Cu, a mixed aqueous solution of ammonium persulfate and nitric acid was used as an etchant. After the laminated film having no resist pattern was dissolved, it was immersed and etched for 20 seconds. The resist pattern after etching was completed, the residues around it, and the shape of the pattern edge were observed with an optical microscope. At that time, a wiring pattern was formed, and no residue was evaluated as good. In addition, when it did not melt | dissolve even if it immersed for 15 minutes or more, the etching was complete | finished at that time.

また、積層膜のパターン形状において、エッジ部は直性であることが最も望ましい。エッチング後のパターン形状観察において、積層膜のエッジ直進性が低く最大幅と最小幅の差が3μmを越えるものを×、1.5〜3μmのものを△、1.5μm未満のものを○として評価した。また、さらに1μm以下のものを◎として評価した。また、その後、有機溶剤に浸積し、純水洗浄、スピン乾燥後、酸素アッシングを行うことでレジストを除去した後の積層膜パターンを光学顕微鏡により観察し、その形状、変色のないものを良好として評価した。以上の観察結果を表1に示す。   Further, in the pattern shape of the laminated film, it is most desirable that the edge portion is straight. When observing the pattern shape after etching, the edge straightness of the laminated film is low and the difference between the maximum width and the minimum width exceeds 3 μm, x is 1.5-3 μm, Δ is less than 1.5 μm. evaluated. Further, those having a size of 1 μm or less were evaluated as ◎. Also, after immersing in an organic solvent, cleaning with pure water, spin drying, and removing the resist by performing oxygen ashing, observe the laminated film pattern with an optical microscope. As evaluated. The above observation results are shown in Table 1.

なお、表1に示す試料No.1〜19の組成のNi合金膜については、磁気特性を確認するため、Φ8mmのガラス基板上に膜厚100nmで薄膜を形成し、VSM(振動試料型磁力計(BHV−35、理研電子製)により40kA/mの印加磁界を加えた際の薄膜の磁束密度も測定した。測定結果を、同様に表1に示す。なお、表1に示すように、Ni合金膜は全て、磁束密度で0.05(T)以下であり、配線材料として問題ない特性を有し、このため、タ−ゲット材も容易にスパッタリングすることが可能であった。   In addition, sample No. shown in Table 1 In order to confirm the magnetic properties of Ni alloy films having a composition of 1 to 19, a thin film having a film thickness of 100 nm was formed on a Φ8 mm glass substrate, and VSM (vibrating sample magnetometer (BHV-35, manufactured by Riken Denshi)) The magnetic flux density of the thin film when an applied magnetic field of 40 kA / m was applied was also measured by Table 1. The measurement results are also shown in Table 1. As shown in Table 1, all the Ni alloy films have a magnetic flux density of 0. .05 (T) or less, and has a characteristic that there is no problem as a wiring material. Therefore, the target material can also be easily sputtered.

Figure 2006310814
Figure 2006310814

表1に示すように今回用いたエッチャントでは、試料No.21の下地層のCr膜や、試料No.19のCuを含有しないNi合金膜は、エッチングすることが出来なかった。また、試料No.16のSiが10原子%を越えて含有されるNi合金膜では残渣が生じている。また、試料No.18のCuが25%を越えて含有されるNi合金膜ではNi合金膜のエッチングが早くなり、積層した純Ag膜との間で段差が生じてしまうことがわかる。また、Moを下地層とした試料No.20では、Mo膜が純Ag膜よりも早くエッチングされるために、下地層が狭くなる逆テ−パ−状となり、段差が大きくなる。また、試料No.1〜15に示すNi合金膜を被覆層として有する薄膜配線層は、ウェットエッチングによって良好な配線パターンの形成が可能であることがわかる。   As shown in Table 1, in the etchant used this time, sample No. 21 underlayer Cr film, sample No. 19 Ni alloy film not containing Cu could not be etched. Sample No. In the Ni alloy film containing 16 Si exceeding 10 atomic%, a residue is generated. Sample No. It can be seen that in the Ni alloy film containing 18% Cu exceeding 25%, the etching of the Ni alloy film is accelerated, and a step is produced between the laminated pure Ag films. Sample No. with Mo as the underlayer was also used. In No. 20, since the Mo film is etched faster than the pure Ag film, the underlayer becomes narrower and the step becomes larger. Sample No. It can be seen that a thin wiring layer having the Ni alloy film shown in 1 to 15 as a coating layer can form a good wiring pattern by wet etching.

次に、実施例1で作製したものと同様の積層膜の各試料に関して、以下の通り評価試験を行った。
まず、作製した各試料の電気伝導性に関して、比抵抗値を4端子薄膜抵抗率計(三菱油化製、MCP−T400)を用いて測定したシート抵抗値(Ω/□)と試料の膜厚から評価した。
密着性の評価方法として、膜表面に2mm間隔で切れ目を入れた升目状とした後に、膜表面に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にメンディングテープ810(スコッチ製)を貼り、斜め45°に引き剥がし、膜の剥がれ状況を確認した。
また、耐候性の試験として、温度85℃、相対湿度85%の環境下に150時間放置する試験を行い、その後膜表面を目視で確認した。その際に変色や白点、白濁等の発生しないものを良好(○)と評価した。以上の測定、評価結果を表2に示す。
Next, an evaluation test was performed as follows for each sample of the laminated film similar to that prepared in Example 1.
First, regarding the electrical conductivity of each prepared sample, the specific resistance value was measured using a four-terminal thin film resistivity meter (manufactured by Mitsubishi Oil Chemical Co., Ltd., MCP-T400) and the film thickness of the sample. It was evaluated from.
As a method for evaluating adhesion, after forming a grid pattern with slits on the surface of the film at intervals of 2 mm, cutting the grid surface with a grid pattern at intervals of 2 mm, and then forming a mending tape 810 (manufactured by Scotch) on the film surface. ) Was attached and peeled off at an angle of 45 ° to confirm the state of film peeling.
Further, as a weather resistance test, a test was conducted by leaving it in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 150 hours, and then the film surface was visually confirmed. In that case, the thing which does not generate | occur | produce discoloration, a white spot, cloudiness, etc. was evaluated as favorable ((circle)). The above measurement and evaluation results are shown in Table 2.

Figure 2006310814
Figure 2006310814

表2から、基板上に直接Ag膜やCu膜を形成した試料No.22および23に比較して、本発明例の試料No.1〜15のNi合金膜を下地層として形成した積層膜大幅に密着性が改善されていることがわかる。なお、キャップ層を形成しない試料No.3では耐候性試験後に白濁が発生したが、下地層のない試料No.22やMoで下地層を形成した試料No.20よりも白濁のレベルは低いものであった。
また、Ni合金膜をキャップ層として形成した試料No.1〜2、5〜15では、耐候性試験後も、変色、白点や白濁が発生しておらず、良好な耐候性を有していることが分かる。
From Table 2, sample No. 1 in which an Ag film or a Cu film was formed directly on the substrate Compared with Samples 22 and 23, Sample No. It can be seen that the adhesion of the laminated film formed by using the 1 to 15 Ni alloy films as the underlayer is greatly improved. In addition, sample No. which does not form a cap layer. In Example 3, white turbidity occurred after the weather resistance test. Sample No. 22 in which the underlayer was formed of Mo and Mo. The level of cloudiness was lower than 20.
In addition, Sample No. in which a Ni alloy film was formed as a cap layer was used. In 1-2, 5-15, even after a weather resistance test, it turns out that discoloration, a white spot, and white turbidity do not generate | occur | produce, but have favorable weather resistance.

なお、Cuの含有量が25原子%を越えたNi合金膜を下地層とキャップ層として被覆層を形成した試料No.18では、他のCuを含有したNi合金膜よりも密着性が低く、また、変色や白点の発生から耐候性が低いことがわかる。また、Moの含有量が25原子%を越えたNi合金膜を下地層とキャップ層として被覆層を形成した試料No.17では、密着性は良好であるが、耐候性が低下し変色や白点が発生していることがわかる。
なお、白点とは部分的な膜の粒成長や酸化等により膜表面の盛り上がった部分であり、白点が生じるとFPDの次工程での電気的や光学的な欠陥につながるため、発生しないことが望ましい。
It should be noted that sample No. 1 in which a coating layer was formed using a Ni alloy film having a Cu content exceeding 25 atomic% as a base layer and a cap layer was used. No. 18 shows lower adhesion than Ni alloy films containing other Cu and low weather resistance due to discoloration and white spots. Sample No. 1 in which a coating layer was formed using a Ni alloy film having a Mo content exceeding 25 atomic% as a base layer and a cap layer was used. In No. 17, the adhesion is good, but it can be seen that the weather resistance is lowered and discoloration and white spots are generated.
The white spot is a raised part of the film surface due to partial film growth or oxidation of the film. If a white spot occurs, it will cause an electrical or optical defect in the next process of the FPD, so it does not occur. It is desirable.

また、SiやGeが添加されたNi合金膜を下地層として形成した試料No.5および7では、密着性がより良好となっている。   In addition, sample No. 1 in which a Ni alloy film to which Si or Ge was added was formed as an underlayer. In 5 and 7, the adhesion is better.

以上、表1、表2に示されるように、AgやCuを主成分とする主導体層とその上層および/または下層にNiを主成分とする被覆層を形成した本発明例の積層構造は、ウェットエッチングによる配線パターンが良好に形成できることがわかる。なお、主導体層の下層として下地層を形成した場合には、良好な密着性を実現でき、また、主導体層の上層としてキャップ層を形成した場合には、良好な耐候性も実現できることも分かる。
また、被覆層の厚さが増加すると比抵抗値が増加するため、被覆層の膜厚は耐候性と密着性を確保出来る範囲で出来る限り薄い方が好ましい事がわかる。
As described above, as shown in Tables 1 and 2, the laminated structure of the present invention example in which the main conductor layer mainly composed of Ag or Cu and the coating layer mainly composed of Ni in the upper layer and / or the lower layer thereof are formed. It can be seen that the wiring pattern by wet etching can be formed satisfactorily. In addition, when the base layer is formed as the lower layer of the main conductor layer, good adhesion can be realized, and when the cap layer is formed as the upper layer of the main conductor layer, good weather resistance can also be realized. I understand.
Moreover, since the specific resistance value increases as the thickness of the coating layer increases, it can be seen that the coating layer is preferably as thin as possible within a range that can ensure weather resistance and adhesion.

また、実施例1で作製したものと同様の積層膜のうち、Cuを主成分とする主導体層にNi合金を被覆層として形成した試料に関して、耐熱性試験を行った。
耐熱性試験としては、各試料を、真空雰囲気中で温度250℃、1時間で加熱処理した後に、4端子薄膜抵抗率計(三菱油化製、MCP−T400)を用いて測定したシート抵抗値(Ω/□)と試料の総膜厚から比抵抗値を算出して、加熱処理前後の比抵抗値の変化により評価した。また、加熱試験後の各試料の膜表面を目視で確認し、変色や白点、白濁等の発生しないものを良好(○)と評価した。以上の評価結果を表3に示す。
Moreover, the heat resistance test was done about the sample which formed Ni alloy as a coating layer in the main conductor layer which has Cu as a main component among the laminated films similar to what was produced in Example 1. FIG.
As a heat resistance test, each sample was subjected to heat treatment in a vacuum atmosphere at a temperature of 250 ° C. for 1 hour, and then measured using a four-terminal thin film resistivity meter (manufactured by Mitsubishi Yuka, MCP-T400). The specific resistance value was calculated from (Ω / □) and the total film thickness of the sample, and evaluated by the change in specific resistance value before and after the heat treatment. Moreover, the film | membrane surface of each sample after a heating test was confirmed visually, and the thing which does not generate | occur | produce discoloration, a white spot, white turbidity, etc. was evaluated as favorable ((circle)). The above evaluation results are shown in Table 3.

Figure 2006310814
Figure 2006310814

表3に示すようにNiにCuとともにMo、W、Vを含有したNi合金を被覆層とした場合(試料No.9〜15)の各試料は、加熱試験後に比抵抗値が増加していないことがわかる。   As shown in Table 3, the specific resistance value of each sample when the Ni alloy containing Mo, W, and V together with Cu is used as the coating layer (sample Nos. 9 to 15) does not increase after the heating test. I understand that.

以上のように、本発明の薄膜配線層は低抵抗なCuやAgを主成分とする膜と耐熱性、耐食性、耐候性に優れるNi合金膜を積層することで、高い信頼性が要求される平面表示装置用の導電膜と最適である。また、特に樹脂を導電膜上に形成する有機ELディスプレイ用の薄膜配線層としても好適であるとともに、高い信頼性が要求される車載用等の移動機器用平面表示装置用の薄膜配線層として用いることが可能である。   As described above, the thin film wiring layer of the present invention is required to have high reliability by laminating a film mainly composed of low resistance Cu or Ag and a Ni alloy film excellent in heat resistance, corrosion resistance, and weather resistance. It is optimal for a conductive film for a flat panel display. In addition, it is particularly suitable as a thin film wiring layer for organic EL displays in which a resin is formed on a conductive film, and is used as a thin film wiring layer for flat display devices for mobile devices such as in-vehicle devices that require high reliability. It is possible.

Claims (5)

基板上に形成される薄膜配線層であって、AgまたはCuを主成分とする主導体層と該主導体層の上層および/または下層を覆う被覆層からなり、該被覆層は添加元素としてCuを1〜25原子%、(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W)から選択される1種または2種以上の元素を1〜25原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなることを特徴とする薄膜配線層。 A thin-film wiring layer formed on a substrate, comprising a main conductor layer mainly composed of Ag or Cu and a coating layer covering the upper layer and / or the lower layer of the main conductor layer, the coating layer being Cu as an additive element 1-25 atomic%, (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) containing one or more elements selected from 1 to 25 atomic%, and an additive element A thin film wiring layer characterized in that the total amount of is 35 atomic% or less, and the balance is inevitable impurities and Ni. 前記主導体層をAgを主成分とする層とし、前記被覆層が添加元素としてCuを1〜25原子%、(Ti、Zr、Hf)から選択される元素を1種または2種以上の元素を1〜10原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなることを特徴とする請求項1に記載の薄膜配線層。 The main conductor layer is a layer containing Ag as a main component, and the coating layer has 1 to 25 atomic% of Cu as additive elements and one or more elements selected from (Ti, Zr, Hf) The thin film wiring layer according to claim 1, wherein the total amount of additive elements is 35 atomic% or less, and the balance is inevitable impurities and Ni. 前記主導体層をCuを主成分とする層とし、前記被覆層が添加元素としてCuを1〜25原子%、(V、Mo、W)から選択される1種または2種以上の元素を5〜25原子%含有し、かつ添加元素の総量を35原子%以下とし、残部が不可避的不純物およびNiからなることを特徴とする請求項1に記載の薄膜配線層。 The main conductor layer is a layer containing Cu as a main component, and the coating layer contains 1 to 25 atomic% of Cu as additive elements and 5 elements of one or more selected from (V, Mo, W). 2. The thin film wiring layer according to claim 1, wherein the thin film wiring layer is contained in an amount of ˜25 atomic%, the total amount of additive elements is 35 atomic% or less, and the balance is inevitable impurities and Ni. 前記被覆層が、添加元素として(Al、Si、Ge)から選択される1種または2種以上の元素を1〜10原子%含有することを特徴とする請求項1乃至3のいずれかに記載の薄膜配線層。 4. The coating layer according to claim 1, wherein the covering layer contains 1 to 10 atomic% of one or more elements selected from (Al, Si, Ge) as an additive element. 5. Thin film wiring layer. 前記被覆層の層厚が5nm以上100nm以下であることを特徴とする請求項1乃至4のいずれかに記載の薄膜配線層。 The thin film wiring layer according to any one of claims 1 to 4, wherein the coating layer has a thickness of 5 nm to 100 nm.
JP2006085921A 2005-03-29 2006-03-27 Thin film wiring layer Active JP4655281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085921A JP4655281B2 (en) 2005-03-29 2006-03-27 Thin film wiring layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005095840 2005-03-29
JP2006085921A JP4655281B2 (en) 2005-03-29 2006-03-27 Thin film wiring layer

Publications (2)

Publication Number Publication Date
JP2006310814A true JP2006310814A (en) 2006-11-09
JP4655281B2 JP4655281B2 (en) 2011-03-23

Family

ID=37477274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085921A Active JP4655281B2 (en) 2005-03-29 2006-03-27 Thin film wiring layer

Country Status (1)

Country Link
JP (1) JP4655281B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038393A (en) * 2011-07-13 2013-02-21 Hitachi Metals Ltd Multilayer wiring film for electronic component
JP2015061933A (en) * 2013-08-21 2015-04-02 日立金属株式会社 Sputtering target material for forming coating layer, and manufacturing method thereof
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material
TWI493624B (en) * 2011-08-22 2015-07-21 Hitachi Metals Ltd Layered interconnection film for electronic device, and sputtering target for forming a covering layer
CN105908139A (en) * 2015-02-25 2016-08-31 日立金属株式会社 Laminated wiring film for electronic components and sputtering target material for forming coating layer
KR20160112995A (en) 2015-03-20 2016-09-28 히타치 긴조쿠 가부시키가이샤 Laminated wiring film for electronic components and sputtering target material for forming coating layer
KR20180076316A (en) 2016-12-27 2018-07-05 히타치 긴조쿠 가부시키가이샤 LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135927A (en) * 1980-03-28 1981-10-23 Shindengen Electric Mfg Co Ltd Forming method for electrode of semiconductor device
JPH1010554A (en) * 1996-06-25 1998-01-16 Canon Inc Wiring board, production of this wiring board, liquid crystal element having this wiring board and production of this liquid crystal element
JPH10186389A (en) * 1996-12-24 1998-07-14 Canon Inc Wiring board, production of wiring board, and liquid crystal element using the wiring board
JP2000104183A (en) * 1997-12-25 2000-04-11 Canon Inc Method for etching
JP2001262328A (en) * 2000-03-23 2001-09-26 Hitachi Metals Ltd Ni-Nb BASED TARGET MATERIAL AND SUBSTRATE FILM FOR BRAZING FILLER METAL
JP2005079130A (en) * 2003-08-28 2005-03-24 Hitachi Metals Ltd Thin film wiring layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135927A (en) * 1980-03-28 1981-10-23 Shindengen Electric Mfg Co Ltd Forming method for electrode of semiconductor device
JPH1010554A (en) * 1996-06-25 1998-01-16 Canon Inc Wiring board, production of this wiring board, liquid crystal element having this wiring board and production of this liquid crystal element
JPH10186389A (en) * 1996-12-24 1998-07-14 Canon Inc Wiring board, production of wiring board, and liquid crystal element using the wiring board
JP2000104183A (en) * 1997-12-25 2000-04-11 Canon Inc Method for etching
JP2001262328A (en) * 2000-03-23 2001-09-26 Hitachi Metals Ltd Ni-Nb BASED TARGET MATERIAL AND SUBSTRATE FILM FOR BRAZING FILLER METAL
JP2005079130A (en) * 2003-08-28 2005-03-24 Hitachi Metals Ltd Thin film wiring layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038393A (en) * 2011-07-13 2013-02-21 Hitachi Metals Ltd Multilayer wiring film for electronic component
TWI493624B (en) * 2011-08-22 2015-07-21 Hitachi Metals Ltd Layered interconnection film for electronic device, and sputtering target for forming a covering layer
JP2015061933A (en) * 2013-08-21 2015-04-02 日立金属株式会社 Sputtering target material for forming coating layer, and manufacturing method thereof
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material
CN105908139A (en) * 2015-02-25 2016-08-31 日立金属株式会社 Laminated wiring film for electronic components and sputtering target material for forming coating layer
JP2016157925A (en) * 2015-02-25 2016-09-01 日立金属株式会社 Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
KR20160103933A (en) 2015-02-25 2016-09-02 히타치 긴조쿠 가부시키가이샤 Laminated wiring film for electronic components and sputtering target material for forming coating layer
KR20160112995A (en) 2015-03-20 2016-09-28 히타치 긴조쿠 가부시키가이샤 Laminated wiring film for electronic components and sputtering target material for forming coating layer
CN105986233A (en) * 2015-03-20 2016-10-05 日立金属株式会社 Stacked wireing film for electronic member and sputtering target material for formation of coating layer
KR101840109B1 (en) * 2015-03-20 2018-04-26 히타치 긴조쿠 가부시키가이샤 Laminated wiring film for electronic components and sputtering target material for forming coating layer
KR20180076316A (en) 2016-12-27 2018-07-05 히타치 긴조쿠 가부시키가이샤 LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL

Also Published As

Publication number Publication date
JP4655281B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4730662B2 (en) Thin film wiring layer
JP5171990B2 (en) Cu alloy film and display device
JP4655281B2 (en) Thin film wiring layer
CN108054176B (en) Combination of patterned metal wire and substrate
JP5032687B2 (en) Al alloy film, wiring structure having Al alloy film, and sputtering target used for production of Al alloy film
JP6888318B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
KR102546803B1 (en) Etching solution composition for silver-containing layer and an display substrate using the same
JP2004140319A (en) Thin film wiring
WO2016024615A1 (en) Laminated film, laminated wiring film, and method for manufacturing laminated wiring film
WO2011102396A1 (en) Al alloy film for display device
JP6020750B1 (en) Transparent conductive wiring and method for manufacturing transparent conductive wiring
JP6135275B2 (en) Sputtering target for protective film formation
WO2012118039A1 (en) Al alloy film for display devices or semiconductor devices, display device or semiconductor device equipped with al alloy film, and sputtering target
KR101926274B1 (en) Etchant composition for silver thin layer and ehting method and mehtod for fabrication metal pattern using the same
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP2005079130A (en) Thin film wiring layer
JP2011017944A (en) Aluminum alloy film for display device, display device, and aluminum alloy sputtering target
WO2016136953A1 (en) Transparent conductive wire and method for manufacturing transparent conductive wire
KR20190057018A (en) Etchant composition for silver thin layer and ehting method and mehtod for fabrication metal pattern using the same
KR20180090081A (en) Etching solution composition for silver-containing layer and manufacturing method for an array substrate for display device using the same
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
KR101926279B1 (en) Etchant composition for silver thin layer and ehting method and mehtod for fabrication metal pattern using the same
JP2004149861A (en) Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION
JP2012015200A (en) Thin film transistor substrate and display device including thin film transistor substrate
JP2012003228A (en) Wiring film for display with excellent wet etching property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350